Skip to main content

Advertisement

Log in

Combination of Polyethylene Glycol-Conjugated Urokinase Nanogels and Urokinase for Acute Ischemic Stroke Therapeutic Implications

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Tissue reperfusion is a serious therapeutic strategy of ischemic stroke in addition to recanalization. In this work, we aimed to establish new urokinase-based therapeutics in order to dissolve large vessel thrombus together with microthrombi for stroke implications. Formulations consisted of free urokinase (UK), polyethylene glycol–crosslinked urokinase nanogel (PEG-UK), and a 1:1 mixture of UK and PEG-UK (PEG-UK+UK) were tested both in vitro and in vivo. In vitro experiments confirmed the pH-dependent release of PEG-UK in the PEG-UK+UK formulation. It was activated at pH 6.50, an environmental pH in the infarct brain tissue, owing to the dynamic crosslink property of PEG-UK. In vivo tests on a thromboembolic stroke rat model showed that the formulations containing UK, i.e., free UK and PEG-UK+UK, demonstrated better neurological scores and smaller infarction volumes within the time window, in which the PEG-UK+UK formulation relatively performed better. On the other hand, the formulations containing PEG-UK, i.e., PEG-UK and PEG-UK+UK, gained sufficient thrombolytic efficiency beyond the time window. Further investigation on the mechanism revealed that PEG-UK could reduce microthrombus in distal microcirculation, and its destructive effect was also less than that of free UK. The PEG-UK+UK formulation actually provided a “dual targeting” delivery of UK to both the large vessels and the microcirculation, which was beneficial to the treatment of cerebral ischemic stroke both within and beyond the therapeutic time window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCA:

common carotid artery

ECA:

external carotid artery

Hb:

hemoglobin

H&E:

hematoxylin-eosin

HT:

hemorrhagic transformation

ICA:

internal carotid artery

MCAO:

middle cerebral artery occlusion

MRA:

magnetic resonance angiography

OD:

optical density

OHC-PEG-CHO:

benzaldehyde-terminated PEG

PEG:

polyethylene glycol

PEG-UK:

PEG-urokinase nanogels

SEM:

scanning electron microscopy

TTC:

2,3,5-triphenyltetrazolium chloride

UK:

urokinase

References

  1. Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379:2429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

    Article  CAS  PubMed  Google Scholar 

  3. del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991;22:1276–83.

    Article  PubMed  Google Scholar 

  4. Little John R, Kerr Frederick WL, Sundt Thoralf M. Microcirculatory obstruction in focal cerebral ischemia: an electron microscopic investigation in monkeys. Stroke. 1976;7:25–30.

    Article  PubMed  Google Scholar 

  5. Khatri P, Neff J, Broderick JP, Khoury JC, Carrozzella J, Tomsick T. Revascularization end points in stroke interventional trials: recanalization versus reperfusion in IMS-I. Stroke. 2005;36:2400–3.

    Article  CAS  PubMed  Google Scholar 

  6. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Ann Neurol. 2006;60:508–17.

    Article  PubMed  Google Scholar 

  7. De Silva DA, Fink JN, Christensen S, Ebinger M, Bladin C, Levi CR, et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke. 2009;40:2872–4.

    Article  PubMed  CAS  Google Scholar 

  8. Tomsick T, Broderick J, Carrozella J, Khatri P, Hill M, Palesch Y, et al. Revascularization results in the Interventional Management of Stroke II trial. AJNR Am J Neuroradiol. 2008;29:582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalkara T, Arsava EM. Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab. 2012;32:2091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaidat OO, Yoo AJ, Khatri P, Tomsick TA, von Kummer R, Saver JL, et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke. 2013;44:2650–63.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alexandrov AV, Hall CE, Labiche LA, Wojner AW, Grotta JC. Ischemic stunning of the brain: early recanalization without immediate clinical improvement in acute ischemic stroke. Stroke. 2004;35:449–52.

    Article  PubMed  Google Scholar 

  12. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:e46–e110.

    Article  PubMed  Google Scholar 

  13. Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Phys. 1991;260:R581–8.

    Article  CAS  Google Scholar 

  14. Sako K, Kobatake K, Yamamoto YL, Diksic M. Correlation of local cerebral blood flow, glucose utilization, and tissue pH following a middle cerebral artery occlusion in the rat. Stroke. 1985;16:828–34.

    Article  CAS  PubMed  Google Scholar 

  15. Tan H, Jin H, Mei H, Zhu L, Wei W, Wang Q, et al. PEG-urokinase nanogels with enhanced stability and controllable bioactivity. Soft Matter. 2012;8:2644–50.

    Article  CAS  Google Scholar 

  16. Zhao L, Zhu L, Liu F, Liu C, Shan D, Wang Q, et al. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm. 2011;410:83–91.

    Article  CAS  PubMed  Google Scholar 

  17. Cui W, Liu R, Jin H, Lv P, Sun Y, Men X, et al. pH gradient difference around ischemic brain tissue can serve as a trigger for delivering polyethylene glycol-conjugated urokinase nanogels. J Control Release. 2016;225:53–63.

    Article  CAS  PubMed  Google Scholar 

  18. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375:1695–703.

    Article  CAS  PubMed  Google Scholar 

  19. de Los Rios la Rosa F, Khoury J, Kissela BM, Flaherty ML, Alwell K, Moomaw CJ, et al. Eligibility for intravenous recombinant tissue-type plasminogen activator within a population: the effect of the European Cooperative Acute Stroke Study (ECASS) III Trial. Stroke. 2012;43:1591–5.

    Article  PubMed  Google Scholar 

  20. An H, Ford AL, Eldeniz C, Chen Y, Vo KD, Zhu H, et al. Reperfusion beyond 6 hours reduces infarct probability in moderately ischemic brain tissue. Stroke. 2016;47:99–105.

    Article  PubMed  Google Scholar 

  21. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21.

    Article  PubMed  Google Scholar 

  23. Jin H, Tan H, Zhao L, Sun W, Zhu L, Sun Y, et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int J Pharm. 2012;434:384–90.

    Article  CAS  PubMed  Google Scholar 

  24. Colasuonno M, Palange AL, Aid R, Ferreira M, Mollica H, Palomba R, et al. Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano. 2018;12:12224–37.

    Article  CAS  PubMed  Google Scholar 

  25. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472–6.

    Article  CAS  PubMed  Google Scholar 

  26. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.

    Article  CAS  PubMed  Google Scholar 

  28. Heye N, Cervos-Navarro J. Microthromboemboli in acute infarcts: analysis of 40 autopsy cases. Stroke. 1996;27:431–4.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Z, Davies K, Prostak J, Fenstermacher J, Chopp M. Quantitation of microvascular plasma perfusion and neuronal microtubule-associated protein in ischemic mouse brain by laser-scanning confocal microscopy. J Cereb Blood Flow Metab. 1999;19:68–78.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang ZG, Chopp M, Goussev A, Lu D, Morris D, Tsang W, et al. Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J Neurosci. 1999;19:10898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang E, Wu Y, Cheung JS, Igarashi T, Wu L, Zhang X, et al. Mapping tissue pH in an experimental model of acute stroke - determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. NeuroImage. 2019;191:610–7.

    Article  PubMed  Google Scholar 

  32. Chen Y, Zhu W, Zhang W, Libal N, Murphy SJ, Offner H, et al. A novel mouse model of thromboembolic stroke. J Neurosci Methods. 2015;256:203–11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002;54:459–76.

    Article  CAS  PubMed  Google Scholar 

  34. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    Article  CAS  PubMed  Google Scholar 

  35. Jaillard A, Cornu C, Durieux A, Moulin T, Boutitie F, Lees KR, et al. Hemorrhagic transformation in acute ischemic stroke. The MAST-E study. MAST-E Group. Stroke. 1999;30:1326–32.

    Article  CAS  PubMed  Google Scholar 

  36. Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke. 1998;29:1888–93.

    Article  CAS  PubMed  Google Scholar 

  37. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke. 1997;28:2109–18.

  38. Larrue V, von Kummer R, del Zoppo G, Bluhmki E. Hemorrhagic transformation in acute ischemic stroke. Potential contributing factors in the European Cooperative Acute Stroke Study. Stroke. 1997;28:957–60.

    Article  CAS  PubMed  Google Scholar 

  39. Desilles JP, Loyau S, Syvannarath V, Gonzalez-Valcarcel J, Cantier M, Louedec L, et al. Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke. 2015;46:3241–8.

    Article  PubMed  Google Scholar 

  40. Belayev L, Pinard E, Nallet H, Seylaz J, Liu Y, Riyamongkol P, et al. Albumin therapy of transient focal cerebral ischemia: in vivo analysis of dynamic microvascular responses. Stroke. 2002;33:1077–84.

    Article  PubMed  Google Scholar 

  41. Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34:185–99.

    Article  CAS  PubMed  Google Scholar 

  42. Rosell A, Foerch C, Murata Y, Lo EH. Mechanisms and markers for hemorrhagic transformation after stroke. Acta Neurochir Suppl. 2008;105:173–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Zhang Baogui from the Chinese Academy of Sciences-Institute of Automation Center for Advanced Imaging for the MR scan of rats.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81971115, No. 81400941, No. 51773119, No. 82071306).

Author information

Authors and Affiliations

Authors

Contributions

Ding Nan and Haiqiang Jin performed the experiments, analyzed and interpreted the data, and wrote the manuscript; Di Yang, Weiwei Yu, Jingjing Jia, Zemou Yu, Yongan Sun, Hongjun Hao, and Hui Tan aided in the preparation of the manuscript; Xiaozhong Qu supervised the study; Yining Huang supervised the study and provided financial support; and all authors revised the manuscript and approved its final version.

Corresponding authors

Correspondence to Xiaozhong Qu or Yining Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All experiments were performed according to the Guideline for the Care and Use of Experimental Animals of Peking University First Hospital (J201890).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

First author: Ding Nan and Haiqiang Jin

Electronic Supplementary Material

ESM 1

(DOCX 3037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, D., Jin, H., Yang, D. et al. Combination of Polyethylene Glycol-Conjugated Urokinase Nanogels and Urokinase for Acute Ischemic Stroke Therapeutic Implications. Transl. Stroke Res. 12, 844–857 (2021). https://doi.org/10.1007/s12975-020-00865-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00865-2

Keywords

Navigation