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Abstract

One major aim of preclinical intracerebral hemorrhage (ICH) research is to develop and test potential neuroprotectants. Published
guidelines for experimental design and reporting stress the importance of clearly and completely reporting results and method-
ological details to ensure reproducibility and maximize information availability. The current review has two objectives: first, to
characterize current ICH neuroprotection research and, second, to analyze aspects of translational design in preclinical ICH
studies. Translational design is the adoption and reporting of experimental design characteristics that are thought to be clinically
relevant and critical to reproducibility in animal studies (e.g., conducting and reporting experiments according to the STAIR and
ARRIVE guidelines, respectively). Given that ICH has no current neuroprotective treatments and an ongoing reproducibility
crisis in preclinical research, translational design should be considered by investigators. We conducted a systematic review of
ICH research from 2015 to 2019 using the PubMed database. Our search returned 281 published manuscripts studying putative
neuroprotectants in animal models. Contemporary ICH research predominantly uses young, healthy male rodents. The collage-
nase model is the most commonly used. Reporting of group sizes, blinding, and randomization are almost unanimous, but group
size calculations, mortality and exclusion criteria, and animal model characteristics are infrequently reported. Overall, current
ICH neuroprotection research somewhat aligns with experimental design and reporting guidelines. However, there are areas for
improvement. Because failure to consider translational design is associated with inflation of effect sizes (and possibly hindered
reproducibility), we suggest that researchers, editors, and publishers collaboratively consider enhanced adherence to published
guidelines.

Keywords Neuroprotection - Intracerebral hemorrhage - Translational research - Reproducibility - Animal models - Systematic
review - Experimental design - Experimental reporting

Introduction

Intracerebral hemorrhage (ICH) is a deadly stroke subtype,
accounting for ~ 15% of all strokes [1]. ICH affects ~ 5 million
people each year worldwide. Of those, ~3 million will die
within 1 year, and only 12-39% of survivors will regain func-
tional independence [2]. These statistics are concerning given
that the incidence of ICH rose globally by 47% between 1990
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and 2010, yet the rates of death and disability were unchanged
during this time [1, 3]. Rates of disability following ICH are
quite high, and we lack effective neuroprotective interven-
tions. Those are expected to arise from rigorous and coordi-
nated evaluation at the preclinical and clinical levels (the so-
called translational pipeline) [4].

Translational experimental design is the adoption of a re-
search plan that may advance a novel therapy from bench to
bedside [5]. Translational design evolves, changing as the
therapeutic approach becomes better understood. For exam-
ple, safety and exploratory studies are often the first steps,
whereas more rigorous (and costly) testing elements are added
later as we progress towards translation (e.g., varying age and/
or sex; using preclinical randomized controlled trials) [5, 6]. In
sum, translational research uses information from basic and
clinical sciences to advance therapies to the clinical realm.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12975-020-00824-x&domain=pdf
https://orcid.org/0000-0002-9567-2082
mailto:fcolbour@ualberta.ca

1204

Transl. Stroke Res. (2020) 11:1203-1213

In stroke neuroprotection, reproducibility and bias reduction
are key issues [7, 8]. To address these, preclinical stroke re-
searchers are encouraged to follow the STAIR and RIGOR
guidelines [6, 9—11]. These contain widely adopted experimen-
tal design elements that preclinical scientists can use to produce
more meticulous research [11-13]. These elements are
blinding, randomization, a priori sample size calculations, ex-
plicit a priori statement of inclusion and exclusion criteria, and
replication in multiple laboratories, to name a few [9, 14].
Although seemingly trivial, these experimental design compo-
nents may have striking implications for translation. For exam-
ple, previous studies have shown that more strict adherence to
translational design associates with decreased efficacy (i.e.,
smaller effect sizes) of putative neuroprotective agents under
study [15]. Thus, failing to use randomization and blinding
could lead to bias in experimental neuroprotection research.

There are no agreed-upon definitions for neuroprotection.
However, it is often described as an intervention that can
preserve brain structure and/or function [15—19]. In the clin-
ic, neuroprotection is commonly measured behaviorally
(e.g., using the modified Rankin scale) [19-21].
Conversely, preclinical ischemia studies tend to measure in-
farct volume to gauge neuroprotection [19]. In preclinical
ICH studies, the most common endpoints are behavior and
brain water content (edema) assessments [22]. Although
edema is commonly used preclinically, the relationship be-
tween edema and clinical outcomes is unclear, though recent
studies suggest that peri-hematoma edema expansion is an
independent predictor of ICH outcomes [23-25]. Thus, sim-
ple preclinical edema assessments (one-time wet-dry weight
measurements) may not equivalently predict behavioral out-
come as well as clinical edema markers (serial neuroimaging
of edema expansion). The STAIR guidelines suggest that
long-term (> 2 weeks post-stroke) behavioral and histologi-
cal assessments should be performed in preclinical stroke
studies, with emphasis placed on functional outcomes. This
is especially important in the context of ICH, as post-ICH
secondary injury can occur over several weeks [26, 27].

Similar to designing experiments using the STAIR and
RIGOR guidelines, researchers can follow the ARRIVE
guidelines to report important aspects of an experiment
during publication, and ARRIVE is available in a check-
list format which can be easily published as supplemental
material [28]. The ARRIVE guidelines were developed
with the rationale that improved reporting of published
literature could lead to improved reproducibility, by fully
characterizing a study. Aside from completely reporting
analyses and results, ARRIVE outlines critical informa-
tion required to interpret and replicate the study, for ex-
ample, drug doses, routes, and timing of administration;
animal age, weight, strain, sex, sample sizes, and method
of their determination; and bias reduction measures (e.g.,
randomization and blinding), among others. Not only are
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the ARRIVE guidelines important for replicability, but
this information is critical for research interpretation and
synthesis (e.g., during meta-analyses, study quality
assessments).

Given that experimental design is seen as critical to re-
search translation, the present review aims to provide a snap-
shot of the quality of experimental design in ICH neuropro-
tection research and some considerations for researchers.
Using the STAIR and ARRIVE guidelines as a framework
to analyze experimental design and reporting, we sought to
systematically investigate the reporting of in vivo preclinical
experiments from the past 5 years of ICH neuroprotection
research. Specifically, given that published guidelines suggest
long-term behavioral and histological assessment, one goal of
this study was to analyze the type and timing of behavioral
and histological assessments in current preclinical ICH
research.

Methods

We searched the PubMed database from January 2015 to
June 2019. The search criteria were made with the combina-
tion of the following terms: “(animal OR rodent OR rat OR
mouse)” AND “(intracerebral hemorrhage OR
intraparenchymal hemorrhage OR intrastriatal hemorrhage)”
NOT “(ischemia OR subarachnoid hemorrhage OR traumatic
brain injury OR middle cerebral artery occlusion model).”
Using these search criteria, abstracts and titles of 1265 articles
were returned and screened for eligibility. The inclusion
criteria comprised only in vivo experimental ICH studies writ-
ten in the English language. Of the 1265 articles returned in
our search, 281 met inclusion criteria and were analyzed for
experimental design characteristics (e.g., endpoints used,
model descriptions, and alignment with STAIR and
ARRIVE guidelines), and the venue of publication was also
extracted, in addition to whether the venue required mandato-
ry reporting in accordance with published guidelines. A flow-
chart of the search results can be found in Fig. 1. Our analysis
focused exclusively on studies with a clearly defined ictus and
intervention. Therefore, spontaneous ICH models were also
excluded (though these models were used infrequently).
Finally, as the main focus of this analysis was centered around
adult ICH models, intrauterine and neonatal models were ex-
cluded from our analysis.

Results
Experimental Design Reporting

In our analysis of experimental design, we found that 94%
of studies clearly report the number of animals used per
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Fig. 1 Overview of articles

revealed from PubMed search and n=1265

Initial PubMed search

total studies selected for analyses.
The inclusion criteria involved
intracerebral hemorrhage (ICH)
studies that evaluated a

neuroprotective or cell-saving
therapy. The search criteria
included the following terms:

n =1265

Analysis of abstracts for ICH and
neuroprotective studies

Papers excluded
n =900

“(animal OR rodent OR rat OR
mouse)” AND “(intracerebral
hemorrhage OR
intraparenchymal hemorrhage

OR intrastriatal hemorrhage)”
NOT “(ischemia OR
subarachnoid hemorrhage OR

n = 365

Detailed analysis of full paper

Papers excluded
n =284

traumatic brain injury OR middle
cerebral artery occlusion model)”

Studies included
n =281

group. We also found that 12.5% of studies detailed a
priori how many animals per group were deemed neces-
sary to detect an expected effect. A majority of authors
now report use of randomization or blinding in their pub-
lications. An overview of experimental design reporting
can be found in Fig. 2a.

Characteristics of Animal Models Used in ICH
Neuroprotection Research

In our evaluation of ICH neuroprotection research, we char-
acterized most aspects of the animal ICH models used. We
found that most studies make use of chloral hydrate, sodium
pentobarbital, or isoflurane anesthesia (Fig. 2b). We also
found that about 50% of the published studies used the colla-
genase model of ICH [29]. About 40% of studies used the
blood infusion model of ICH [30, 31]. Remaining studies used
blood component models (e.g., thrombin or iron) or multiple
models (e.g., collagenase and blood infusion model or blood
infusion model and thrombin model; Fig. 2¢). In terms of the
animal species used in preclinical research, about 60% of
studies use rats, and 38% of studies use mice (Fig. 2d). Pigs
and rabbits are uncommon ICH models, and few studies are
performed using multiple animal species.

Weight and Age Reporting

Forty-seven percent of studies reported the age of animals
used in the study. Eighty-three percent of studies stated the
weight of the animals used. Only 34% of studies reported both
the weight and age of the animals used in the study.

Sex Differences in ICH Neuroprotection Research

Of the 281 total studies, 270 reported the biological sex of the
animals used. Of these studies, we found that about 96% used
male rats and only about 3% of studies were conducted using
female rats (Fig. 2e).

Animal Health Status

Overall, we found 16 studies that used animals with advanced
age or comorbid conditions. Three studies used hypertensive
rats, 4 studies used rats with hyperglycemia, and 9 studies
used aged (age > 1 year) rats. A breakdown of animal age
categories used in current preclinical ICH research is depicted
in Fig. 2f. In sum, of the 281 experimental neuroprotection
studies, about 5% used animals with altered health status.

Neuroprotective Intervention Characteristics

To better characterize ICH neuroprotection research, we eval-
uated how neuroprotective interventions are delivered, wheth-
er a dose-response relationship was shown, whether interven-
tion timing was considered, and the latest intervention delay
within each study. We found that intraperitoneal injection was
the most common route of administration, followed by intra-
cerebroventricular administration (Fig. 3a). Few studies (~
20%) did dose-response assessment (Fig. 3b). Only ~7% of
studies varied the delay between ICH and treatment adminis-
tration. Thus, most studies treated animals at only one time
after ICH, and most treated within the first hour (Fig. 3c).
Remarkably, 1 in 6 ICH neuroprotection studies used pre-
ICH treatment. Only ~ 16% of neuroprotective interventions
were given after a 6-h or longer delay. Finally, no study
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Fig. 2 Analysis of experimental
design. a Proportion of studies
reporting key components of
translational design. b
Distribution of anesthetic use
across all studies analyzed. ¢
Analysis of ICH models used in
current ICH research. d Species of
animals used in current ICH
neuroprotection research. e Sex of
animals used in ICH
neuroprotection research. f
Proportion of studies using
animals within particular age
groupings
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compared treatment efficacy across a range in hemorrhage
volumes.

Tissue Endpoints

For an overview of tissue endpoints in preclinical ICH litera-
ture from 2015 to 2019, see Fig. 4a. Overall, we found that
most studies used endpoints related to the reduction of inflam-
mation (~60%), edema (~58%), and cell death (~55%).
Fewer studies assessed blood brain barrier (BBB) disruption
or hematoma volume.

Injury Volume Estimation and Latest Timing of Assessment

Ninety-four studies (~33% of 281 studies) performed histolog-
ical or imaging assessment of injury volume. To look at the
timing of the injury volume assessment, we collected the latest
assessment time in each study. We categorized the studies into
those where the assessment was on or before day 1 post-ICH,
between 1- and 7-day post-ICH, between 7- and 14-day post-
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ICH, and studies which assessed injury volume later than 14-day
post-ICH. Of the 94 studies that performed injury volume assess-
ment, 89 reported when the assessment occurred. The results of
our analysis are in Fig. 4b. We found that 14% of studies
assessed injury volume on or before day 1 post-ICH. A majority
of studies (56%) performed injury volume assessments between
days 1 and 7 post-ICH. About 19% of studies that assessed lesion
size did so at a long-term survival time (>2-week survival).
Thus, only ~ 6% of all studies assessed long-term injury volume.

Behavioral Tasks and Timing of Assessment

Similar to our analysis of tissue endpoints, we looked at the
prevalence of various behavioral tasks used in the assessment
of post-ICH functional outcomes and the timing of these as-
sessments. Overall, 47 studies did not perform behavioral as-
sessment, and 234 studies used 1 or more behavioral tests. We
found heavy reliance on a variety of neurological deficit scales
(NDS) to gauge behavioral outcomes following ICH (Fig. 5a).
The next most common assessments included forelimb use
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Fig. 3 Assessment of ICH neuroprotection intervention parameters. a
Breakdown of treatment administration route across studies. b
Evaluation of whether treatment efficacy was shown in a dose-response
fashion. ¢ Longest treatment delay in ICH neuroprotection studies

asymmetry (i.e., cylinder or forelimb placing tasks), followed
by corner turn assessments. The “other” category included
assessments of somatosensation, proprioception, and addi-
tional uncommon assessment strategies.

Timing of Latest Behavioral Assessment

Of the 234 studies which reported using behavioral assess-
ments, 231 clearly reported the timing of behavioral assess-
ment. Again, we collected data with respect to timing of latest
behavioral assessment. The results are in Fig. 5b. Of the stud-
ies that conducted behavior, we found that most studies
(77.5% of 231) conduct assessments on or before day 7
post-ICH and 22% of studies conduct long-term (> day 14)
behavioral assessments. We also found that about 50% of
published ICH neuroprotection studies make use of 2 or more
behavioral tests per study (range = 1-6; Fig. 5¢). Out of all
studies, 18.5% conducted long-term behavioral testing.

Largest Reported Group Size

Because few studies (~ 12.5%) reported using a priori group size
calculations to select group sizes, we assessed group sizes used in
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Fig.4 Analysis of tissue endpoints used in ICH neuroprotection research.
a Categorization of endpoints into classes. b Latest timing of injury
volume assessment

published research. By looking at the largest group sizes in each
study, we found a skewed distribution, ranging from 3 to 24
animals per group (mean=8.6, SD=3.5; median=_8, IQR =
6-10). A histogram of the largest reported group sizes can be
found in Fig. 6.

We were also interested in whether group sizes used in a
study were increased when a priori sample size calculations
were performed. We found that studies performing a priori
sample size calculations had larger group sizes (~2 more an-
imals per group) when compared with studies that did not
perform these calculations (p = 0.0092).

Publication Venue Characteristics

We found that the most popular journals used for publishing ICH
neuroprotection research were Stroke, the Journal of Cerebral
Blood Flow and Metabolism, and the Journal of
Neuroinflammation, respectively (Fig. 7a). Publications in the
most common 3 journals accounted for 13% of the total publi-
cations analyzed. Publications in the top 25 most popular
journals accounted for about 50% of all publications analyzed.
We analyzed the top 25 most popular journals for statements
related to mandatory reporting in accordance with experimental
design and reporting guidelines and found that 2 journals
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Fig. 5 Assessment of behavioral endpoints used in ICH neuroprotection
research. a Proportion of behavioral endpoint use. Neurological deficit
scales are common endpoints in ICH neuroprotection research. b Latest
time of behavioral testing for all studies. A majority of studies conduct
behavioral testing on or before day 7 post-ICH. ¢ Number of behavioral
tasks used per study. About 50% of current ICH neuroprotection research
make use of 2 or more behavioral tests per study

required mandatory publication of experimental design charac-
teristics according to published guidelines in the form of a check-
list as supplemental material (Fig. 7b). Fifty-two percent of
journals recommended reporting in accordance with published
guidelines, and 40% of journals did not mention reporting or
designing experiments in accordance with published guidelines.

Discussion and Additional Considerations

Developed with the “3 R’s” of animal ethics in mind, the
ARRIVE guidelines aimed to improve the reporting standards
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for animal experiments [28, 32]. Recently, ethicists have pro-
posed a “fourth R”: reproducibility [7, 33, 34]. The authors of
ARRIVE sought to reduce the costs and consequences of in-
complete study reporting [28]. Similarly, in stroke neuropro-
tection, several guidelines intend to enhance reproducibility
and reduce bias [9—11]. Here, we used those guidelines as a
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Fig. 7 Analysis of most common publication venues for preclinical ICH
neuroprotection research. a The top 10 most popular journals from 2015
t0 2019 and the number of ICH neuroprotection papers published in each.
b Analysis of the top 25 journals that publish ICH neuroprotection
research and whether experimental design and reporting in accordance
with published guidelines was mandatory, recommended, or not
mentioned
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framework for analyzing ICH neuroprotection studies.
Generally, reporting simple experimental design features is
commonplace, but imperfect. Published guidelines can im-
prove research quality, especially when adopted and enforced
by editors, journals, and funders [28, 35, 36]. Altogether,
guidelines can benefit authors (by making a clear process),
publishers (by creating higher quality publications), and
readers (by maximizing information available) [28, 37].

In 2012 we investigated experimental quality in preclinical
ICH research [22]. There have been some improvements since
then, but many aspects are similar. Key changes from that study
include a large increase in use of chloral hydrate, greater use of
mice, and a greater prevalence of cell death and inflammation
measurements. Interestingly, our previous study was published
closely after the publication of the ARRIVE guidelines, so
some improvements were expected, though more work must
be done. Finally, authors in subarachnoid hemorrhage noted
transient improvements in experimental reporting following
the publication of the ARRIVE guidelines, suggesting that sys-
tem-wide, collaborative changes must be implemented to reach
and sustain a standard of experimental design reporting [38].

To briefly summarize our findings, almost all studies use
young, healthy, male rodents. Authors frequently provide
weight information to refer to the developmental status of their
animals and infrequently provide age information; both are
important [28]. Indeed, age may not be accurately gleaned
from weight (e.g., due to species and strain differences, hus-
bandry conditions, if food restriction is used) [39—41]. Few
studies use animals with advanced age or comorbidities.
Studies considering these conditions are critical to understand-
ing treatment efficacy, as most ICH patients are not young and
healthy. Indeed, many have shown decreased treatment effi-
cacy with stronger adherence to translational design [15].
Echoing this, a recent meta-analysis of preclinical ischemia
studies could not find evidence for therapeutic efficacy across
many treatments in studies using animals with comorbidities
[42]. Lastly, many clinical studies do not find sex differences
in the incidence of ICH [3, 43]. Despite this fact, almost all
ICH research uses male animals. Moreover, sex differences in
post-ICH outcomes are understudied, despite the expectation
that they should be considered [44—46]. Previous research has
shown that sex hormones (e.g., estradiol) affect post-ICH in-
jury trajectories [47, 48]. Unfortunately, we found that very
few studies use female rats. Future preclinical ICH studies
should consider biological sex, and calls are being made to
investigate these issues [14, 44—46]. Although animal models
of ICH appear relatively homogenous, our findings may un-
derestimate the heterogeneity of translational design since no
single group would assess every endpoint and parameter in the
short and long term [49].

Investigators must consider the use of anesthetics and an-
algesics, as they can alter post-ICH injury trajectories [50, 51].
Indeed, the most common 3 anesthetics identified here have

significant concerns. For example, pentobarbital, chloral hy-
drate, and isoflurane affect thermoregulation, and some can
decrease body temperature for hours despite providing exter-
nal heating [51-53]. Although the relationship between brain
damage and temperature is better known in other brain inju-
ries, anesthetic-driven hypothermia should be avoided in ICH
[51]. Additionally, general anesthetics depress respiration.
Finally, general anesthesia can reduce blood pressure which
may modify post-ICH outcomes, particularly in the collage-
nase model where bleeding occurs over hours [26, 54, 55].
Little is known about the impact of analgesics on post-ICH
outcomes. For example, one study showed that buprenorphine
decreased hematoma volume while increasing peri-hematoma
cell death in the collagenase model [50]. Buprenorphine also
affects inflammation and suppresses respiration at high doses
[56]. Interestingly, chloral hydrate is the most commonly used
anesthetic (Fig. 2b), but its analgesic properties are inade-
quate, and the agent is toxic [57—60]. These issues are rele-
vant, especially for multiple surgical preparations and long-
term survivals. We recently demonstrated that ICH can be
induced in awake freely behaving animals using collagenase;
this method may avoid anesthetic-related confounds [51].
Altogether, analgesics and general anesthetics may alter many
physiological processes, leading to experimental confounds if
improperly considered.

Group size reporting is ubiquitous in preclinical ICH stud-
ies, but the method of determining group sizes is rarely men-
tioned. Studies using a priori sample size calculations gener-
ally had larger group sizes than those that did not. Notably, we
considered only the largest group sizes used in a study, and
often, group sizes for other endpoints were smaller. Thus,
future reports should detail the group size calculation for all
endpoints [10, 11, 28]. Group sizes are a critical issue, and
they present researchers with an ethical dilemma because re-
searchers are obligated to use the fewest animals possible [32].
Conversely, researchers must ensure that they have sufficient
statistical power. Indeed, conclusions may be impossible to
draw from an underpowered study [10, 61, 62]. A priori sam-
ple size calculations may solve this dilemma, as they represent
the fewest animals necessary to detect an expected effect.

Most ICH studies use neurological deficit scoring, forelimb
use asymmetry tasks, or the corner turn test, which are simple
and quick to administer. Although deficit scales appear to
mimic clinical assessments, these tasks are often not sensitive
to chronic impairments [4, 63]. These scales also involve sub-
jective assessments, and thus, blinded assessments are critical.
However, these tests are reasonable to use as a gross assess-
ment strategy and possibly in tandem with tasks that are sen-
sitive to chronic behavioral deficits. Indeed, we and others
have found that a battery of tests discriminates ICH injury
better than any single test and thus researchers should use
multiple tests and assessment times longer than 2 weeks
whenever possible [4, 10, 63, 64].
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Our analysis of brain tissue endpoints revealed that most
assess inflammation, edema, or cell death. Inflammation was
frequently measured with immunohistology or western blot-
ting. Edema was mostly assessed with wet-dry measurements.
Cell death was mostly measured using TUNEL or Fluoro-Jade
counts. Generally, tissue endpoints in preclinical research are
difficult to translate to clinic, and thus calls have been made to
investigate biomarkers that predict neuroprotective efficacy
[4]. While preclinical research is advantageous because mech-
anisms can be evaluated, they must still be established as
biomarkers (i.e., shown on a translatable scale, alongside neu-
rological improvements), as described by the STAIR/RIGOR
guidelines [4, 9, 14].

We began this study with the premise that long-term histo-
logical or imaging assessments of injury may be easily trans-
latable endpoints in preclinical research. This is because neuro-
imaging is the gold standard for assessment and diagnosis of
ICH and these data is easily available [65]. Additionally, many
studies have determined the impact of injury volume and loca-
tion on death and disability in animals and humans [63, 66—69].
We also reasoned that short-term injury assessments produce
an incomplete picture, as injury occurs for weeks [26, 27, 70].
Moreover, mass effect complicates short-term injury assess-
ments, which can result in biased measurements if tissue dis-
placement is not considered. Moreover, cell death assessments
may not be feasible in a long-term study and are influenced by
the region of interest. Conversely, long-term injury volume
assessments capture the end-product of injury and repair pro-
cesses that result in an easily defined cavity without mass effect
and are feasible owing to low mortality rates in preclinical
models [71, 72]. Although other tissue endpoints are informa-
tive, we propose (in line with published guidelines) that long-
term preclinical injury volume measurements are
translationally valuable as they are established biomarkers
[10]. However, we acknowledge that depending on the preclin-
ical model used, there may be key differences in cerebral anat-
omy that must be considered (e.g., lissencephaly).

Table 1

Lastly, to better understand the context of current research,
we analyzed the most popular publishing venues and whether
they require that manuscripts comply with experimental de-
sign and reporting guidelines. Few journals require mandatory
compliance with published guidelines. About half of the most
popular journals suggest reporting in accordance with
ARRIVE or similar guidelines, but do not mandate it.
Finally, 40% of the most popular journals in ICH do not rec-
ommend or require alignment with published guidelines.
These facts are concerning given calls for transparent,
translationally rigorous preclinical research [5, 9, 11, 28, 49].

Can We ARRIVE at a Standard for Experimental Design
and Reporting by Putting our HEADS Together?

In 2018, the Hemorrhagic Stroke Academia Industry
(HEADS) Roundtable published a report addressing current
practices, priorities, and limitations of translational ICH re-
search [73]. Several of our recommendations overlap with
those, which are presented in Table 1. For example, the
HEADS report stressed that advanced age and comorbidities
must be addressed, speculating that most preclinical ICH re-
search is performed in young, healthy animals, which our
results confirm. Studies that consider advanced age and hy-
pertension are important as they are established risk factors for
ICH incidence and recurrence in patients [2, 74].

Similarly, HEADS recommended finding biomarkers to
guide neuroprotective interventions. Our results suggest that
most authors consider inflammation, cell death, and edema to
be important ICH biomarkers. We found a heavy focus on
preventing these injury processes. However, many post-
stroke processes are multiphasic [73, 75]. Thus, timing of
treatment onset should be considered, but few investigated
multiple treatment delays, and most administered treatments
before or immediately following ICH. Relying upon hyper-
acute treatments means that most ICH neuroprotection studies
do not consider realistic therapeutic windows, as patient

Overlapping recommendations for contemporary preclinical ICH research and adherence to recommendations

Recommendation

% Adherence

Neuroprotective efficacy based on improvement on established biomarkers (e.g.,
behavior and histology) over extended survival times. Improvements on other
endpoints should not be accepted as evidence of neuroprotection without proof

of their translational relevance
Use of a realistic treatment delay (e.g., >3 h)

Use of a priori sample size calculations

Use of multiple models (multiple ICH models and/or multiple species)
Use of aged animals

Use of male and female animals

Use of animals with comorbid conditions

Efficacy shown across a variety of injury sizes

Behavior: 83.3%
Histology: 33.5%
Behavior and histology: 29.9%

23.1%
12.5%
6.4%
3.2%
32%
2.5%
0%

Readers are also referred to the recent HEADS publication [73]
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studies often show treatment delays of several hours [76-78].
Also, in the collagenase model, treatments administered in the
first few hours must be considered as occurring during hema-
toma formation and are therefore more relevant to a smaller
portion of re-bleeding patients that receive very early treat-
ment. In sum, more work must be done to evaluate parameters
under which neuroprotectants are effective (e.g., efficacy fol-
lowing a clinically relevant treatment delay).

To best address the issues raised here and in the HEADS
report, a common recommendation is to systematically form
networks that engage in high-quality ICH research. Indeed,
Table 1 suggests that at the individual level, many of the
HEADS recommendations are not being met. Although one
group probably cannot assess every translational issue, several
laboratories may [4, 73]. The HEADS report recognizes that
ARRIVE and STAIR guidelines must be followed and recog-
nize the value of replication studies. Authors may resist run-
ning replication studies, with concerns that the study may not
replicate. These concerns must subside, as scientific inquiry
must be supported by rigor and replication. Moreover, it is
unethical to leave “unsuccessful” replication studies unpub-
lished [9, 14, 73]. Several journals recognize the value of
“negative” studies, and avenues exist to publish studies before
they are conducted (i.e., registered studies). We and many
others maintain that both “positive” and “negative” studies
are essential to translational success, as they contribute to
the evidence-base of a therapy [7, 42, 79, 80].

Conclusion and Summary

We conducted this study to assess research design and
reporting in current preclinical ICH research, recognizing that
inappropriate or inadequate research design can produce bi-
ased research findings and hinder translational success [9, 10,
15, 28]. We found that reporting of basic design elements has
become commonplace, but there is significant room for im-
provement in terms of both experimental reporting and design.
We note that published guidelines exist to aid investigators in
research development and dissemination [9, 10, 28, 73].
Finally, publishers infrequently require mandatory reporting
of critical experimental characteristics. In order to see im-
provements, publishers must require reporting in accordance
with published guidelines, as the mere publication of guide-
lines without their enforcement may not improve reporting
[38]. A collaborative approach towards improved experimen-
tal design and reporting is suggested at all levels of the publi-
cation process.
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