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Abstract Reperfusion of ischemic brain can reduce injury
and improve outcome, but secondary injury due to
inflammatory mechanisms limits the efficacy and time
window of such treatments for stroke. This review
summarizes the cellular and molecular basis of inflamma-
tion in ischemic injury as well as possible therapeutic
strategies.
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Introduction

Ischemic stroke occurs when blood flow to the brain is
interrupted resulting in immediate deprivation of nutrients
and oxygen needed to support the brain's metabolic require-
ments. Restoration of perfusion, if done very early after the
onset of ischemia, can reduce or mitigate damage from
stroke, but the efficacy of reperfusion is limited by
secondary injury mechanisms. This complex series of events
leads to the activation of noxious cycles of inflammation,
oxidant stress, and apoptosis that ultimately result in delayed

death of neurons even when the brain is successfully
reperfused [1]. Increasing evidence, from both clinical as
well as experimental studies, suggests a major role of
inflammation in this secondary injury that occurs after
reperfusion [2]. This review addresses the cellular and
molecular mediators of inflammation and describes experi-
mental therapeutic strategies that may improve outcome
after stroke.

Inflammatory Cells

Leukocytes/Neutrophils

Increased infiltration of peripheral leukocytes into the brain
has been observed within hours to days after the ischemic
insult in human cases of stroke [3–6]. Generally, neutrophils
are first among the leukocyte species to accumulate in the
brain after stroke, and their number has direct correlation
with infarction volume [7]. Price and colleagues, using
selective labeling of neutrophils, reported that neutrophils
are recruited to the brain within 24 h of the ischemic insult
[8]. In a rat model of cerebral ischemia, neutrophils may
remain more than 3 days or longer in the ischemic brain;
however, their presence becomes less evident after 3 days,
obscured by the massive accumulation of activatedmicroglia/
macrophages.

Several studies have shown that inhibition of neutrophil
infiltration reduces cerebral ischemic injury and improves
outcome [9]. In the rat model of cerebral ischemia,
neutrophil inhibitory factor, a 41kD recombinant glycopro-
tein derived from hookworm, showed neuroprotective
effects by reducing the number of infiltrated neutrophils
and infarct volume [10]. High doses of the protein adminis-
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tered for 7 days exhibited maximum neuroprotection in a
temporary focal ischemia model but was ineffective in a
permanent cerebral ischemia model [11]. In another study
involving rats, RP-3 monoclonal antibodies that selectively
reduce leukocytes in the rat by 90% to 95% showed a
significant reduction in both neutrophil accumulation and
infarct size [12].

Microglia/Macrophages

Microglia are the resident macrophages of the brain and
spinal cord. Microglia act as the main form of active immune
defense in the central nervous system and have phagocytic
properties, serving as scavenger cells in the event of injury
and infection. Once activated, microglia can undergo
morphologic transformation into phagocytes, making them
virtually indistinguishable from circulating macrophages
[13, 14]. Price and colleagues demonstrated significant
microglial activation after 72 h, extending to 30 days, in
core infarction areas, contralateral hemisphere, and the peri-
infarct zone of stroke patients, although only minimal
activation of microglia is seen before 72 h [8]. The
mechanisms by which microglia are activated following
ischemia have not been entirely elucidated, but involve
activation of CD14 receptors in microglia [15].

Microglia are activated after ischemia and release a variety
of substances, many of which are cytotoxic and/or cytopro-
tective [16–18]. In the four-vessel rat model of cerebral
ischemia, increased staining of microglia, consistent with
activation, are found in the dentate hilus and CA1 of
ipsilateral hippocampus starting as early as 20 min after
reperfusion. The strongest microglial activation was observed
4–6 days after reperfusion when reactive microglia were
abundant throughout all laminae of CA1 and the dentate hilus
[16]. In transient middle cerebral artery occlusion (MCAO),
phagocytic microglia are found in the cerebral cortex of the
ischemic hemisphere [19, 20].

Cytokines and Chemokines

Cytokines

There is a large literature demonstrating an increased
production of cytokines after stroke. Several clinical studies
have shown an increase in expression of IL-6, but other
studies show increases in expression of tumor necrosis
factor-α (TNF-α), monocyte chemoattractant protein-1
(MCP-1; or CCL2) and interleukins (IL)-1β, IL-8, and IL-
10. Differential expression of cytokines occurs after stroke
and depends on the time of sampling and preexisting levels
of peripheral inflammation [21]. Many studies have
reported increases in plasma levels of cytokines after stroke

that correlated with poor outcomes. The increase in IL-6
concentration starts as early as 24 h up to 7 days [4, 22–24].
Tarkowski and colleagues found that increased cerebro-
spinal fluid (CSF) cytokine levels but not serum IL-6
correlated with stroke outcome. Furthermore, increased IL-
1β levels were observed in CSF [25] but not in serum [26].
Similar results were obtained from patients at 4 h after
stroke onset, who had increases in serum IL-6 [27]. Serum
and CSF levels of TNF-α are increased within the first 24 h
after stroke [28] but may not be correlated with lesion size
or neurological impairment [29].

Interleukins

Compelling evidence from experimental studies suggests a
prominent role for interleukins in ischemic injury [3, 9, 13].
IL-1β mRNA expression has been shown to increase in
cerebral cortex, striatum, thalamus, hippocampus, and
olfactory bulb after transient brain ischemia in rats within
minutes of ischemia and increases are sustained until 7 days
[30–33]. Exacerbation of ischemic brain injury caused by
exogenous IL-1β administered into the brain has been
observed [34, 35]. Mice deficient in IL-1α/ β exhibited
dramatically reduced ischemic infarct volumes compared
with wild-type; however, mice lacking either IL-1α or IL-
1β alone did not have significantly altered infarct volumes
[36]. IL-1 receptor null mice had smaller infarcts compared
with wild-type controls and overexpression of IL-1ra
antagonist reduced ischemic injury [37, 38]. Similar results
were obtained in a rat stroke model using the IL-1ra
antagonist [39, 40]; mice lacking IL-1ra exhibited a
dramatic increase in ischemic damage [41]. Among the
two receptors IL-1R1 and IL-1R2 for IL-1, only IL-1R1 is
reported to have role in mediating ischemic injury [42].
Inactivating or knocking out IL-1R1 decreased the extent of
damage caused by a hypoxic–ischemic (H/I) insult and
preserved neurological function [43].

TNF-α

TNF-α is also upregulated in the brain after ischemia and
plays a vital role in the execution of inflammatory cascade
after ischemia [3, 9, 13]. TNF-α protein and message is
increased within a few hours of middle cerebral occlusion
in rats [44]. Protein expression is initially observed in
neurons and later in glia [44, 45].

There are conflicting data as to whether TNF-α
exacerbates ischemic injury. Several studies support a role
for TNF-α in exacerbating injury: TNF-α overexpressing
rats had larger Infarcts than wild-type at 24 h and 7 days
after cerebral ischemia [46]. Inhibition of TNF-α using
anti-murine TNF-α antibody also reduced ischemic brain
injury in mice [47]. Application of recombinant TNF-α
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protein after stroke onset worsens ischemic brain damage
by non-neuronal mechanisms [48]; tumor necrosis factor
binding protein was protective against stroke in mice [49].
However, other studies have not supported a role for TNF-
α in ischemic injury: Murakami et al. found a difference in
hippocampal cell death after global ischemia between wild-
type and mice bone marrow transplanted-chimeric–TNF-α
gene-deficient [50]. TNF-α may also protect the brain from
ischemic insult by invoking ischemic tolerance probably
via TNF receptor 1 upregulation [51]. TNF-R1 is upregu-
lated after ischemia [52] and TNF-R1 receptor null mice
had larger infarcts after temporary focal ischemia [53].
Conflicting studies about the role of TNF-α might be due in
part to its two receptors, TNF-R1 and TNF receptor 2
(TNF-R2), which may have opposing effects upon cell
death. Most of the studies have highlighted the role of
TNF-R1 in cell death or cell survival. However, there
seems to be no role for TNF-R2 in ischemia [54].

Chemokines

Chemokines are a family of regulatory polypeptides with
roles in cellular communication and inflammatory cell
recruitment in host defense, such as regulating the migration
of leukocytes in inflammatory and immune responses.
Chemokines operate via G protein-coupled receptors and
can be divided into four groups: C, CC, CXC, and CX3C
based on the positions of their cysteine residues [55]. MCP-1,
the major chemokine in mammalian systems, may play a
crucial role in ischemic injury. High levels of MCP-1 have
been observed in CSF as compared with controls [56].
Several studies have found increased concentrations of
MCP-1 in the serum of stroke patients compared with
healthy controls [57–59]. Another study [60] reported that
CXCL1, a potent neutrophil chemoattractant, was signifi-
cantly higher in the CSF of stroke patients as compared with
controls and that these levels correlated positively with the
volume of brain CT hypodense areas.

Monocyte Chemoattractant Protein-1

MCP-1 is expressed in ipsilateral cortex and striatum after
MCAO in rats [57, 61] beginning 12 h after ischemia in
neurons and 2 days after ischemia in astrocytes [62]. MCP-1
deficiency is protective in a mouse stroke model, probably
because of IL1-β in ischemic tissue [63]. Overexpression of
MCP-1 in the brain exacerbates ischemic brain injury and is
associated with recruitment of inflammatory cells [64].
Administration of MCP-1 significantly enhanced the perme-
ability of blood brain barrier (BBB) in vivo and in vitro [65].

Fractalkine, a neuronally expressed chemokine, acts
through its G protein-coupled receptor CX3CR1. It is a
transmembrane protein possessing adhesion properties and

exists in two forms with intrinsically different spatial
properties and biologic functions [66–70]. Interestingly,
fractalkine is expressed in neurons while its receptor is
found predominantly on resident microglial cells, suggesting
coordination between neurons and microglia [13, 71–73]. In
animal stroke studies, fractalkine expression was increased
in injured cortical neurons that peaked at 48 h and returned
to basal levels by 7 days after ischemia. Upregulation of
fractalkine was also detected in endothelial cells of the
infarcted area at 48 h and 7 days after ischemia. Addition-
ally, fractalkine receptor CX3CR1 expression was detected
in the activated microglia in infarcted tissue at 24 and 48 h
after ischemia and became strongly upregulated in 7 days.
These data suggest that fractalkine may participate in the
activation and chemoattraction of microglia into the infarct-
ed tissue and contribute to the control of leukocyte
trafficking from blood vessels into the injured area [74]. In
addition, fractalkine-deficient mice have smaller infarct
volumes and lower mortality after transient focal cerebral
ischemia [75].

Adhesion Molecules

Cell adhesion molecules (CAMs) are membrane-bound
proteins that are involved in many important processes of
the cell. CAMs act as a molecular link between the outside
and inside of the cell environment and have a role in cell–cell
communication. CAMs facilitate migration of inflammatory
cells to the site of injury. The major CAMs are selectins (P-,
E-, and L-subtypes), integrins (LFA-1, Mac-1), intercellular
adhesion molecule-1 (ICAM-1), and vascular adhesion
molecule-1 (VCAM-1) [13, 76–78]. Strong precedent exists
in the literature regarding the importance of CAMs in
stroke-related brain injury [79–81]. CAMs play a central
role in the infiltration of leukocytes into the brain parenchyma
after stroke and may represent important therapeutic targets.
Activated leukocytes result in further damage of ischemic
lesions through reperfusion or secondary injury mechanisms
[13, 82, 83]. Thus, CAMs may represent important thera-
peutic targets.

Selectins

The selectin family of adhesion molecules mediates the initial
rolling and tethering of leukocytes to endothelium. L-selectin
is expressed constitutively on lymphocytes; E-selectin is
expressed by activated endothelial cells, and P-selectin is
expressed by activated platelets and endothelial cells [84]. In
patients, there is an early increase of E-selectin levels in
plasma in the early hours after stroke [111]. Post-mortem
samples of brain from patients who died of cardiac arrest or
focal infarction revealed a robust expression of P-selectin
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and ICAM [85], and patients with severe periventricular
white matter lesions demonstrated increased levels of P-
selectin [86]. Soluble P-selectin and E-selectin were signif-
icantly elevated in plasma in patients with acute stroke [87].

In experimental stroke models, expression of P- and E-
selectins is also increased, and there is compelling data that
suggests that selectin expression exacerbates ischemic
injury [88, 89]. P-selectin-overexpressing mice had larger
infarcts as compared with wild-type, and treatment with
antibodies or inhibitors against P- and E-selectin was
associated with improved neurological outcome [89, 90].
P-selectin immunoreactivity was observed in post-capillary
venules of the cerebral cortex and caudate in the MCA
territory with a peak at 8 h to 1 day after cerebral ischemia
in rats [91]. Treatment with anti-P-selectin monoclonal
antibody significantly reduced ischemic damage in transient
[92] and permanent cerebral ischemia [93] by improving
blood flow and reducing infiltration of leukocytes [93]
Additionally, P-selectin knockout animals had smaller
infarctions and improved survival compared with wild-type
mice. A post-ischemic blockade with monoclonal antibody
raised against P-selectin also improved early reperfusion and
stroke outcome [94]. Pharmacologic inhibition of both P-
and L-selectin with fucoidin significantly reduced infarct
size and improved neurological function in experimental
stroke in rats [84]. L-selectin does not appear to be
important in exacerbating cerebral ischemic injury. Treat-
ment with L-selectin antibody proved ineffective in a rabbit
model of stroke [95].

CAM and VCAM

ICAM-1 (CD54) is constitutively expressed in low levels on
cell membranes of endothelial cells, leukocytes, epithelial
cells, and fibroblasts, and its expression increases upon
stimulation by cytokines. VCAM-1 (CD106) is an endo-
thelial cell membrane receptor, whose expression is also
induced by cytokines. The roles of ICAM-1 and VCAM-1 in
stroke have been addressed in a number of studies [1, 3, 9,
13, 96].

ICAM-1 expression in brain is increased within hours
after cerebral ischemia and peaks at about 12–24 h [97–
100]. Pharmacological blockade or genetic ablation of
ICAM-1 has protected against ischemic damage in rodents
[3, 13]. Ablation of the ICAM-1 gene in mice led to smaller
infarcts, improvement of neurological deficits, and increased
blood flow to infracted areas as compared with wild-type mice
after stroke [101, 102]. ICAM-1 deficiency attenuates
necrosis but not apoptosis after cerebral ischemia [103,
104]. In mice, rosuvastatin, a 3-hydroxy-3-methylglutaryl
coenzyme-A reductase inhibitor, protected mice from
ischemia/reperfusion injury by suppression of post-ischemic
ICAM-1 expression [105]. Blockade of ICAM-1 with

antibodies [106–108] and antisense oligonucleotides against
ICAM-1 mRNA protected against stroke-related injury and
behavioral deficits in rats [109].

Clinical studies have shown that there is an increase in
serum, plasma, or CSF levels of ICAM-1 and VCAM-1
within the first 24 h after stroke [110–113], and these levels
were dependent on leukocyte response [110]. Expression of
ICAM-1 and VCAM-1 was observed in post-mortem brains
of patients who died of stroke [85, 114]. Treatment with a
murine anti-ICAM-1 antibody (enlimomab) was investigated
in patients with acute ischemic stroke in the Enlimomab
Acute Stroke Trial (EAST). The trial had to be halted after it
was observed that the antibody led to significantly more
adverse events than placebo [115]. However, the outcome of
this trial may have been influenced by the use of a murine
antibody in humans.

Blood concentrations of VCAM-1 are also increased in
stroke patients compared with healthy controls [114, 116],
and its expression was observed in cerebral endothelium after
stoke [117]. Cervera and colleagues have shown that heparin-
induced neuroprotection involves decreased VCAM-1 expres-
sion along with other inflammatory mediators in rats after
cerebral ischemia [118]. But, other studies have not con-
firmed a role of VCAM-1 expression in ischemic injury.
Antibodies targeted against VCAM-1 had no apparent effect
on stroke outcome in rats and mice [119].

Arachidonic Acid Metabolites

Arachidonic acid and its metabolites are important inflam-
matory mediators in ischemic injury. Arachidonic acid (AA)
is an unsaturated fatty acid that is released by activation of
phospholipase A2s (PLA2s), particularly cytoplasmic PLA2
from the membrane phospholipid of the cell. Thereafter, it
may be metabolized by at least two cyclooxygenase (COX)
isoforms to prostaglandins and related compounds, via
lipoxygenases to leukotrienes and via p450-catalyzed
metabolism to epoxyeicosatrienoic acids (EETs) [120].

Cyclooxygenase Pathway

Arachidonic acid, by the action of cyclooxygenases, is
metabolically degraded into prostaglandins that have been
shown to have both pro- and anti-inflammatory roles in
mammalian systems besides serving in other physiological
functions. Cyclooxygenases exist in two isoforms, COX-1
and COX-2, sharing the same catalytic functions but having
different physiological roles. COX-1 is present in most cells
constitutively and is involved in normal housekeeping
functions while COX-2 is the predominant isoform
expressed in neurons, and its expression is induced by
excitatory amino acids and spreading depression [121–123].

Transl. Stroke Res. (2010) 1:74–84 77



Clinical studies have shown that COX-2 protein is
expressed in infarcted human brains and is present in both
neuronal and glial cells throughout the brain [124].
Furthermore, Iadecola and colleagues observed its expres-
sion in infiltrating neutrophils, vascular cells, and neurons
in the peri-infarct zone [125]. Strong precedent exists in the
literature highlighting a key role for COX-2 in cerebral
ischemic injury in animal models [2, 126–128]. Disruption
of the COX-2 gene provides protection against ischemic
brain injury in rodents [129, 130] while COX-2 over-
expressing mice had larger infarcts after experimental
stroke [131]. Selective pharmacologic inhibition of COX-2
activity has proven to be a potential therapeutic target against
stroke in animal models [132, 133].

COX-1 is thought to be involved in housekeeping
functions in brain such as regulation of blood flow. Mice
deficient in COX-1 were more susceptible to stroke, possibly
due to COX-1's role in vasodilatation [134]. Conflicting
results have been reported [135] in transient global cerebral
ischemia, wherein pharmacologic inhibition of COX-1 with
valeryl salicylate increased the number of healthy neurons in
the CA1 region of hippocampus.

Prostaglandin E2 and D2 are two major prostanoids
formed by the cyclooxygenase pathway and have been
implicated in ischemic injury in brain. Prostaglandin PGD2
and PGE2 levels are increased in brain after ischemia [126,
132, 133, 136–138]. After concerns about the safety of
COX-2 inhibitors were raised in 2004, most of the research
related to role of the cyclooxygenase pathway in stroke was
focused on the receptors of PGE2 and PGD2. PGE2
receptors, which elicit their actions through four G protein-
coupled receptors (EP1-4), are mediators of stroke-induced
injury, proving to have some paradoxically protective effects
depending on which receptor is activated [139]. It has been
demonstrated that the prostaglandin EP1 receptor signals
through phospholipase C and phosphatidylinositol turnover
and prompts excessive of release of intracellular calcium
through a Gi-coupled mechanism. EP2 and EP4 receptors
stimulate adenylyl cyclase and increase intracellular levels
of cAMP via a G protein-coupled receptor mechanism
[140]. The EP3 receptor has multiple isoforms and signals
via the activation of several pathways, leading to increased
cAMP levels, calcium mobilization, and activation of
phospholipase C [140, 141].

Accumulating evidence suggests that EP1 receptors are
mediators of COX-2 toxicity in stroke and excitotoxicity that
is executed through its effects on intracellular calcium. EP1
receptor knockout animals or its pharmacological inhibition
results in reduced susceptibility to cerebral ischemia as
compared with wild-type controls [142–144]. Inhibition of
the EP1 receptor pathway in cerebral ischemia has a long
therapeutic window [145], involves the PI3K/AKT signaling
cascade [146], and modulates cerebral blood flow [147].

The EP2 receptor, through a cAMP-dependent pathway, is
protective in cerebral ischemia and excitoxicity [148–150].
Pharmacologic activation of EP3 receptors abrogated
neuronal injury [151] while its disruption or genetic deletion
prevented stroke-induced damage in mice [152] 72 h after
ischemia. However, a conflicting study was reported by Li
and colleagues [153], who observed no differences between
EP3-deficient mice and their control littermates. The EP4
receptor has been implicated in cerebral ischemia [153], and
its pharmacological activation protected NMDA-induced
brain lesions in mice [154].

Prostaglandin D2 is the most abundant prostaglandin in
brain and has pronounced effects on ischemic injury by
activating its DP1 and DP2 receptors. It has been observed
that mice lacking in the DP1 receptor have increased infarcts
after ischemia [155] and that selective stimulation of DP1
receptors afforded protection against cerebral ischemia in
mice [156] after 72 h. The DP1 receptor was also protective
against excitoxicity in a cAMP-dependent manner [155, 157].
DP1 receptor activation also protected hypoxic/ischemic
injury in mice while DP2 gene deletion did not increase
infarct size [158]. Cyclopentenone prostaglandin metabolites
of PGD2 such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-
PGJ2), have been shown to exhibit neuroprotective effects in
experimental stroke, by reducing infarct volume and
improving neurologic deficit through a peroxisome prolif-
erator-activated receptor gamma (PPARγ)-dependent mech-
anism, inhibiting NFκB signaling and neutrophil infiltration
[159–161]. 15d-PGJ2 can be protective or toxic depending
on the dose [162].However, prostaglandin J2 induced
toxicity and expression of inflammatory mediators in
neuronal cells through the p38MAPK pathway [163].

5-Lipoxygenase Pathway

Arachidonic acid is also metabolized to 5-hydro-
peroxyeicosatetraenoic acid by 5-lipoxygenase (5-LOX),
which is further metabolized to leukotriene A4, a precursor
of cysteinyl leukotrienes. There is some evidence that 5-LOX
has a role to play in stroke. It had been observed that 5-LOX
translocates from the cytosol to the membrane fraction after
ischemic damage [164]. Tomimoto and colleagues have
observed 5-LOX immunoreactivity in perivascular mono-
cytes in autopsied human brains of stroke victims [165], and
5-LOX was expressed in animal brains after excitoxicity and
cerebral ischemia [166–168]. In animal studies, 5-LOX
inhibitor, AA861, abrogated brain edema, cell death, and
LTC4 levels [166, 169]; additionally caffeic acid, which
inhibits 5-LOX, attenuated OGD-induced death of PC12
cells [170]. Elevated levels of LTC4 along with arachidonic
acid after ischemia lead to membrane permeability, resulting
in BBB dysfunction, edema, and ultimately to neuronal
death [171]. However, genetic deletion of 5-LOX proved to
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be ineffective in transient and permanent cerebral ischemia
in mice [172]. In contrast to this study, pharmacological
inhibition and/or genetic deletion of 5-LOX inhibited
rosiglitazone-induced neuroprotection and down-regulation
of inflammatory gene expression, LXA [4] synthesis, and
PPARγ transcriptional activity in rodents after cerebral
ischemia [173]. Some 5-lipoxygenase metabolites, such as
lipoxin A4, may protect the brain from ischemic injury [174].

Other Lipoxygenase Pathways

Less is known about the role of the other lipoxygenase
pathways in cerebral ischemic injury since there are fewer
available specific inhibitors. Non-specific lipoxygenase
inhibitors such as BW755C decrease leukocyte migration,
prevent post-ischemic hypoperfusion, and decrease infarct
volume after middle cerebral artery occlusion in rats [175].
More recent studies suggest an important role for 12/15
lipoxygenase in ischemic injury. The natural product
baicalein is an inhibitor of 12/15-lipoxygenase and reduces
infarct volume in mice after temporary focal ischemia.
Furthermore, 12/15-lipoxygenase null mice have smaller
infarction after temporary focal ischemia compared with
wild-type controls [176].

20-HETE and EETs

Arachidonic acid may be metabolized by cytochrome
P450 to produce the potent vasoactive metabolites, 20-
hydroxyeicosatetraenoic acid (20-HETE) and EETs. 20-
HETE is a potent vasoconstrictor produced by metabolism
of AA by the 4F isoform of the P450 enzyme. Inhibition of
synthesis of 20-HETE with HET0016 decreases infarction
volume after temporary focal ischemia and increases post-
ischemic regional cerebral blood flow [177]. EETs are
produced in astrocytes by the P450 2C11 isoform, have
vasodilatory effects on the cerebral circulation, and may
play an important role in coupling local cerebral blood flow
to metabolic demand [178].

Conclusion

A wealth of data from both human and animal studies
indicates that inflammation mediated by inflammatory
cells, cytokines, cell adhesion molecules, and eicosanoids
occurs after ischemic injury and may exacerbate ischemic
injury. The development of a variety of approaches to
prevent this post-ischemic inflammation shows great
promise to augment therapies aimed at reperfusion. As
yet, no such therapies have been translated to clinical
application, but the treatment of inflammation in stroke
remains a viable target for drug development.
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