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Abstract
Since their first appearance in the context of schizophrenia and bipolar disorder in 2009, polygenic risk scores (PRSs) have 
been described for a large number of common complex diseases. However, the clinical utility of PRSs in disease risk assess-
ment or therapeutic decision making is likely limited because PRSs usually only account for the heritable component of a 
trait and ignore the etiological role of environment and lifestyle. We surveyed the current state of PRSs for various diseases, 
including breast cancer, diabetes, prostate cancer, coronary artery disease, and Parkinson disease, with an extra focus upon 
the potential improvement of clinical scores by their combination with PRSs. We observed that the diagnostic and prognostic 
performance of PRSs alone is consistently low, as expected. Moreover, combining a PRS with a clinical score at best led 
to moderate improvement of the power of either risk marker. Despite the large number of PRSs reported in the scientific 
literature, prospective studies of their clinical utility, particularly of the PRS-associated improvement of standard screening 
or therapeutic procedures, are still rare. In conclusion, the benefit to individual patients or the health care system in general 
of PRS-based extensions of existing diagnostic or treatment regimens is still difficult to judge.

Keywords Genetic risk · Heritability · Diagnostics · Prognostics · Validation · Clinical score

Introduction

Genome-wide association studies (GWAS), as performed 
in large numbers over the last 20 years, have proven the 
genetic architecture of most, if not all, common human dis-
eases to be complex. Contrary to original expectation (Reich 
& Lander 2001), the heritability of diseases such as cancer 
or diabetes was not found to be explicable by a handful of 
common genetic variants with strong effects (Lewis & Vas-
sos 2020; Slunecka et al. 2021). Instead, GWAS of common 
single nucleotide polymorphisms (SNPs) yielded hundreds 
to thousands of weak to moderate disease associations, and 
even an “omnigenic model” has been proposed according 
to which variation in all genes expressed in disease-relevant 

human cells plays a potential role in common complex dis-
ease etiology (Boyle et al. 2017).

One way to aggregate the joint effects of a large number 
of SNPs upon the risk of a common complex disease is by 
way of so-called ‘polygenic risk scores’ (PRSs). PRSs sum 
up a large number of single-variant association statistics so 
as to combine these (individually weak) effects in a single 
number for use in disease diagnosis, prognosis or treatment, 
and in research (Lambert et al. 2019). In the process, the 
computation of a PRS mostly draws upon summary statistics 
of large GWAS, which may be shared without raising data 
privacy concerns (Thelwall et al. 2020).

There are several different methods to construct a PRS. 
The most straightforward approach is to include all known, 
clinically relevant risk variants for a given disease, such as 
the BRCA  gene mutations for breast cancer, supplemented 
perhaps by genome-wide significant hits from GWAS. In this 
case, however, the number of SNPs would usually be small, 
implying that the resulting PRS cannot capture much of the 
polygenic nature of the disease in question. More recent 
methods of PRS construction also include SNPs with disease 
associations lacking genome-wide significance. However, 
owing to their sheer number, many of these SNPs will be in 
linkage disequilibrium (LD) with each other so that simple 
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summation of their association statistics in a PRS would be 
inappropriate. The most common methods to deal with this 
problem are clumping-and-thresholding, Bayesian inference 
and penalized regression (Choi & O’Reilly 2019; Ge et al. 
2019; Lloyd-Jones et al. 2019; Mak et al. 2017; Prive et al. 
2020). While the first removes SNP-SNP correlations by 
keeping only the most significant SNPs representative of an 
LD cluster, the other two approaches usually downweigh the 
effect sizes of individual SNPs before their inclusion into a 
PRS, taking the local strength of LD into account.

PRSs are calculated at the level of the individual and 
therefore are ascribed potential utility for ‘precision’ 
medicine, especially in terms of disease prognosis at an early 
age, if not at birth or even before (Choi et al. 2020; Slunecka 
et al. 2021). However, the strong role of environmental 
and lifestyle factors in the etiology of common complex 
diseases, which inherently cannot be captured by a PRS, has 
inevitably dimmed the hope for a substantial contribution 
of PRSs to precision medicine (Caliebe et al. 2021; Herzig 
et al. 2022). Since heritability equals the proportion of 
population-level phenotypic variability explicable by genetic 
variability (Genin 2020; Visscher et al. 2008), the diagnostic 
and prognostic performance of a PRS is conceptually limited 
by the heritability of the phenotype in question when there 
is no gene-environment correlation. Worthy of note in this 
context, heritability is not the same as genetic causality. The 
latter may, in fact, be overestimated by the heritability of 
a phenotype when there is gene-environment correlation 
due to, for example, population stratification or the shared 
environment of blood relatives (Young et al. 2018). In such 
instances, it is conceivable that the diagnostic or prognostic 
performance of a PRS exceeds that from direct genetic 
causality. Moreover, heritability is not a natural constant but 
depends upon the population specifics of disease-relevant 
genetic and environmental factors. Finally, heritability says 
nothing about the genetic architecture of a given phenotype, 
neither in terms of the number nor the effect sizes of 
phenotype-relevant genetic variants, nor of the interaction 
of the latter with each other or with the environment.

Generally, the heritability of common complex diseases 
in humans is much smaller than 100% (Schork 1997) so 
that, by definition, a PRS cannot fully explain the presence 
or absence of such a disease as long as environmental 
and lifestyle factors are disregarded. What is more, classic 
PRSs only comprise common genetic variants (e.g. SNPs) 
that were found to be disease-associated in GWAS. 
This implies that the contributions of rare variants and 
gene–gene-interactions to disease risk are not adequately 
represented as well. In consequence, it may be concluded 
that the diagnostic and prognostic performance of a PRS 
will not even come close to the heritability of the target 
disease.

The present study aims at providing an up-to-date over-
view of the current prospects of PRSs for clinical practice. 
Instead of representing a fully comprehensive review of the 
literature on PRSs, however, we exemplify PRS-disease 
relationships and their potential for diagnosis, prognosis 
and therapeutic decision making for selected diseases, rep-
resenting a broad spectrum of clinical conditions (cancer, 
neurological, psychiatric, internal).

Materials and methods

Study retrieval and information about PRSs

We focused upon PRSs constructed for one of nine 
common complex diseases: breast cancer, type 1 diabetes, 
type 2 diabetes, prostate cancer, coronary artery disease, 
Parkinson disease, Alzheimer disease, major depressive 
disorder and schizophrenia. Heritability estimates for these 
diseases were derived from European twin studies, excluding 
studies that were based exclusively upon Finns. The studies 
were retrieved from PubMed or Google using search term 
‘heritability’ AND [disease].

We first investigated PRSs constructed from case–control 
studies to assess their specific diagnostic performance 
(Table 1). We confined our study to PRSs that were based 
upon European ancestry GWAS, again excluding Finns. 
In addition to drawing upon the polygenic score catalogue 
(Lambert et al. 2020) and selected review articles (Byrne & 
Toland 2021; Chatterjee et al. 2016; Fullerton & Nurnberger 
2019; Lambert et al. 2019; Lewis & Vassos 2020; Padilla-
Martinez et al. 2020; Slunecka et al. 2021; Yanes et al. 
2020; Zeinomar & Chung 2021), we searched PubMed and 
Google with terms (‘PRS’ OR ‘polygenic risk score’ OR 
‘polygenic score’) AND [disease] as well as ‘validation’ 
AND (‘AUC’ OR ‘AUROC’). The results were narrowed 
down to publications that provided sufficient details about 
the respective PRS, including the number of SNPs and the 
method of PRS construction. In addition, the diagnostic 
performance of a PRS must have been quantified by the 
area under curve (AUC) for the PRS alone (i.e. without 
adjustment for additional variables). Owing to these 
limitations, our study cannot claim completeness or being 
fully systematic. Moreover, we focused upon PRSs that 
were as general as possible for the disease in question in the 
sense that they were not specific, for example, for a disease 
subtype or a certain age at onset.

We classified the validation of a given PRS in an inde-
pendent dataset as ‘external’ when it was performed by 
authors other than those of the original report, or as ‘internal’ 
otherwise. The PRS construction methods were classified 
into five categories. Methods using only known clinically 
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relevant risk SNPs and genome-wide significant SNPs 
were labeled ‘risk + GWS’. Approaches that first pruned or 
clumped SNPs by LD, and then selected SNPs with a p value 
of the GWAS summary statistic below a certain threshold, 
were labelled ‘clumping + thresholding’. When several exist-
ing PRSs were combined into a single PRS, this PRS was 
labelled ‘metaPRS’. If the PRS weights had been adjusted 
with Bayesian methods, the approach was termed ‘Bayesian’. 
Finally, the adjustment of weights by penalized regression, 
such as Lasso, was labelled ‘penalized regression’.

Next, we searched for PRSs constructed in a prognostic 
context from, or applied to, prospective cohort studies. The 
search procedure was very similar to that followed above for 
the diagnostic setting. As a sole exception, term (‘AUC’ OR 
‘AUROC’) was replaced by (‘Harrell ‘s C’ OR ‘C statistic’). 
The C statistic measures the goodness-of-fit of risk score-based 
statistical models of right-censored survival time data. Similar 
to the AUC, the value of the C statistics can range from 0.5 
to 1, with a value of 1 indicating that the risk score perfectly 
predicts which of two individuals develops the target disease 
first. We only included studies that reported C statistics.

Combination of PRSs with clinical risk scores

We examined the effect of combining a PRS with a clinical 
risk score upon the predictive performance of both. This anal-
ysis was first performed for breast cancer because exception-
ally many clinical risk scores have been developed for this 
disease. Studies were retrieved from reviews by Fung et al. 
(2019) and Lambert et al. (2019) as well as through PubMed 
and Google searches for (‘PRS’ OR ‘polygenic risk score’ 
OR ‘polygenic score’) AND [breast cancer score]. We con-
fined our analysis to PRSs that comprised at least 15 SNPs.

Selected combinations of a PRS and a clinical risk score 
were then also considered for less well covered conditions, 
including prostate cancer, Parkinson disease, coronary artery 
disease and type 2 diabetes. The respective studies were 
either retrieved from reviews by Lambert et al. (2019) and 
Byrne & Toland (2021), or through PubMed and Google 
searches for (‘PRS’ OR ‘polygenic risk score’ OR ‘polygenic 
score’) AND (‘model’ OR ‘complex’) AND [disease]. Other 
than in our analysis of PRSs alone, AUC and C statistic 
were allowed to have been adjusted for clinical covariates 
because we were only interested in comparing the predictive 
performance of the PRS with and without the clinical risk 
score in the same cohort.

Statistical analysis

Linear regression analysis was performed for the PRSs listed 
in Table 1 treating the estimated heritability of the disease in 
question as the explanatory variable and the AUC of the PRS 

as the response variable. For coronary artery disease, we 
considered the average of the two gender-specific heritability 
estimates reported in the literature. The regression analysis 
was performed using the lm command of R version 4.1.3 
(R Core Team 2022). The results were visualized with the 
geom_smooth function of ggplot2 version 3.3.5 (Wickham 
2016), setting the method parameter to ‘lm’.

All plots were generated with ggplot2 version 3.3.5.

Results

Heritability

Of the exemplary common complex diseases for which PRSs 
have been retrieved from the literature (Table 1), Parkinson 
disease, breast cancer and major depressive disorder had 
the lowest heritability (27%, 31% and 37%, respectively). 
Heritability estimates for coronary artery disease (sex 
average: 48%), Alzheimer disease and prostate cancer (both 
58%) were found to be intermediate whilst the highest 
values have been reported for type 1 diabetes (72%) and 
schizophrenia (79%). Notably, the heritability estimates for 
type 2 diabetes varied considerably between studies (26% 
to 72%) and, for coronary artery disease, the heritability 
was found to be higher for men (57%) than women (38%) 
(Zdravkovic et al. 2002).

Diagnostic performance of PRSs

We first investigated how well PRSs could differentiate 
between cases and controls, i.e. how well they performed in 
a diagnostic context. The most frequently applied method 
of PRS construction was the use of known, clinically 
relevant risk alleles and genome-wide significant SNPs 
(‘risk + GWS’). In these cases, the ensuing PRS typically 
comprised < 100 SNPs. LD clumping combined with p value 
thresholding (‘clumping + thresholding’) was the second 
most frequent approach and typically included thousands to 
tens of thousands of SNPs into the PRS. Bayesian selection 
(‘Bayesian’) was the next most frequently used method 
and often resulted in the utilization of up to several million 
SNPs. Penalized regression (‘penalized regression’) was 
used in three studies whilst a metaPRS was developed in 
two studies (‘metaPRS’).

The diagnostic performance of PRSs was found to vary 
considerably (Table 1), with AUC values ranging from 0.502 
for coronary artery disease (Inouye et al. 2018) to 0.927 
for type 1 diabetes (Sharp et al. 2019). Note that, here and 
in the following, all performance measures are given with 
original precision or were rounded to three decimal places 
if the original precision was higher. Even for one and the 
same disease, the AUC was sometimes highly variable. For 
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coronary artery disease, for example, the AUC of PRSs 
ranged for 0.502 to 0.675 while, for breast cancer, the 
lowest AUC was 0.596 and the highest AUC was 0.68. At 
least in part, this variation may be explicable by the use of 
different cohorts for internal and external validation. Thus, 
in a study by Gola et al. (2020) of two PRSs for coronary 
artery disease, the AUC of the PRS of Inouye et al. (2018) 
varied between 0.502 and 0.660, and that of the PRS of 
Khera et al. (2018) between 0.562 and 0.670, in the same 
European ancestry cohorts. Tanigawa et al. (2022) used a 
method specifically designed to obtain “sparse” PRSs from 
comparatively small numbers of SNPs, and developed 813 
such PRSs from the UK Biobank data. Notably, the UK 
biobank is population-based and hence provides only few 
cases for many diseases. This limitation may explain why 
the PRSs reported by Tanigawa et al. (2022) performed 
poorer, on average, than other PRSs based upon larger 
numbers of cases. Most PRS published so far were not 
based upon the largest GWAS datasets available at the time. 
Consideration of these resources and of additional data 
gathered, for example, by private companies like 23andMe 
could potentially improve the performance of PRS beyond 
the level shown in Table 1.

Usually, AUCs were lower in external validation studies 
than in original publications. However, one of the exceptions 
that proved the rule was the breast cancer PRS of Mavaddat 
et al. (2019), comprising 313 SNPs, for which a similar AUC 
was achieved in the original study (0.639) and the external 
validation (0.628) (Jia et al. 2020). For the Parkinson disease 
PRS of Nalls et al. (2019), the validation AUC (0.645) as 
reported by Koch et al. (2021) even slightly surpassed the 
original value (0.640). Only a few PRSs have been validated 
independently, namely the breast cancer PRS of Mavaddat 
et al. (2019), by Jia et al. (2020), and that of Khera et al. 
(2018), by Mavaddat et  al. (2019), the coronary artery 
disease PRSs of Inouye et al. (2018) and of Khera et al. 
(2018), both by Bolli et al. (2021) and Gola et al. (2020), 
and the Parkinson disease PRS of Nalls et al. (2019), by 
Koch et al. (2021).

We next examined whether a higher heritability was 
associated with a better diagnostic performance of a PRS. 
While a trend towards higher AUC with increasing heritabil-
ity indeed became apparent for the PRSs studied here, there 
was also considerable variability between diseases (Fig. 1). 
For example, the PRSs for Parkinson disease had remark-
ably high AUC despite a low heritability of the disease of 
only 27%. On the other hand, PRSs for major depressive 
disorder and schizophrenia yielded average AUC values that 
were notably smaller than for diseases of similar heritability. 
This variation likely reflects the above-mentioned fact that 
heritability does not account for the specific genetic architec-
ture of a disease. If its heritability is mainly due to common 
variants, like those targeted by GWAS, a PRS may perform 

better than if the disease is mostly caused by rare variants 
or, possibly, gene–gene interactions. The same is true for 
diseases for which the number of causal variants is small, 
rather than heritability being distributed diffusely across 
the genome. Noteworthy, almost all common diseases have 
been shown to have a large polygenic component (O'Connor 
2021), with only few exceptions, such as type I diabetes.

Prognostic performance of PRS

In a prognostic context, PRSs would offer the specific 
advantage that, other than clinical or lifestyle parameters, 
they do not change over lifetime. However, the prognostic 
performance of a PRS will usually be worse than its 
diagnostic performance. This is because any meaningful 
PRS can be expected to be negatively correlated with the 
age at onset (AO) of the disease in question (Caliebe et al. 
2021; Koch et al. 2021; Pavelka et al. 2022; Sleegers et al. 
2015). Although potentially useful in its own right, this 
negative correlation implies that the relative lifetime risk 
of individuals with a low PRS is always higher than their 
relative frequency among cases, compared to controls. What 
is more, the stronger the negative correlation between PRS 
and AO, the larger the discrepancy between prognostic 
and diagnostic value of the PRS. Therefore, the prognostic 
performance of a PRS cannot be equated to its diagnostic 
performance in the underlying (case–control) GWAS, but 
must be determined in prospective studies before putting the 
PRS to practical prognostic use.

Despite these more general caveats, a small number of 
studies have already been published that developed or vali-
dated PRSs in past prospective cohorts, thereby validly, albeit 
retrospectively, addressing the prognostic performance of the 
PRSs (Table 2). Instead of the AUC, the C statistic for right-
censored survival time data was included as performance 
measure in these reports (see Methods). Although the studies 
already gave a first indication of the prognostic performance 
of PRSs, more research is clearly necessary in this regard.

Combination of PRSs with clinical scores

Clinical (i.e. non-genetic) scores have been developed for 
many common complex diseases, and some of these scores 
are also being used for prognostics, particularly in the case of 
breast cancer. This includes the BOADICEA and the IBIS risk 
model, also known as the ‘Tyrer-Cuzick model’ (Lee et al. 
2019; Tyrer et al. 2005). The clinical parameters normally 
included in breast cancer scores are family history, age, breast 
density, age at menarche and age at birth of the first living 
child. While some scores target both the risk of carrying a 
BRCA  gene mutation and the risk of developing breast cancer, 
other scores are only applicable to BRCA  non-carriers. There-
fore, the consequences of a high score may vary from case 
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to case, including testing for BRCA  gene mutations or more 
frequent, or earlier, mammographic screening.

The improvement of the performance of a clinical score for 
breast cancer by its combination with a PRS would be reflected 
by an increase of either the AUC or the C statistic. In our survey 
(Supplementary Table S1, Fig. 2), we considered the BCRAT, 
BOADICEA, BRCAPRO, IBIS and BCSC scores (Gail et al. 
1989; Parmigiani et al. 1998; Tice et al. 2008), in addition to the 
combination of various clinical parameters. The original studies 
took different approaches to combine clinical scores with PRSs, 
from simple multiplication (Dite et al. 2016; Vachon et al. 2015; 
van Veen et al. 2018), via the simultaneous inclusion of both 
scores in a logistic regression or Cox model (Husing et al. 2012; 
Lall et al. 2019; Zhang et al. 2018), to the direct inclusion of the 
early PRS of Mavaddat et al. (2015) into the BOADICEA score 
(Choudhury et al. 2021; Lakeman et al. 2020).

In general, combination with a PRS yielded only minor 
to moderate improvement of the respective clinical score. 
In some cases, the PRS alone performed nearly as well as 
the combination of clinical score and PRS (Supplementary 
Table S1). The largest improvement of the prognostic perfor-
mance of a clinical score was reported for the combination 
of BOADICEA + age with the late PRS of Mavaddat et al. 
(2019), raising the C statistic from 0.531 to 0.636 (Lakeman 
et al. 2020). Note, however, that the C statistic of the PRS 
alone already ranged from 0.632 (age < 60 years) to 0.673 
(age 60 to 70 years). The same PRS also yielded the small-
est increase in diagnostic performance of all combinations 
considered. Thus, integrating the PRS into the BOADICEA 
formula raised the AUC of the latter from 0.691 to 0.704 
for women under 50 years of age (Choudhury et al. 2021). 
The corresponding study by Choudhury et al. (2021) also 
revealed that BOADICEA had a better diagnostic perfor-
mance for women < 50 years than for older women (AUC 
0.691 vs. 0.568), and that combination with a PRS provided 

greater benefit to the latter group. The best prognostic per-
formance of a combination between a clinical score for 
breast cancer and a PRS was obtained by adding the early 
PRS of Mavaddat et al. (2015) to the BCRAT model (Lall 
et al. 2019), raising the C statistics from 0.627 (PRS) and 
0.677 (score) to a combined value of 0.708.

We also addressed the effect of combining clinical scores 
or parameters with PRSs for prostate cancer, Parkinson dis-
ease, coronary artery disease and type 2 diabetes (Supple-
mentary Table S2, Fig. 3). All studies integrated clinical 
score and PRS through either a logistic or a Cox model. The 
results were similar to those obtained for breast cancer. For 
clinical scores comprising many relevant non-genetic risk 
factors, the PRS added only little in terms of performance, 
as was exemplified by type 2 diabetes. For diseases with only 
few known risk factors, such as Parkinson disease, the PRS 
alone was found to be as efficient as the combined score.

The combined score for type 2 diabetes (Lall et  al. 
2017) yielded the best diagnostic performance of all dis-
eases and diagnostic models. Here, the AUC of the clinical 
score, including body mass index (BMI), sex and age, was 
increased from 0.775 to 0.8 by the respective PRS. When 
BMI was removed from the clinical score, the impact of 
the PRS was even more pronounced, changing the AUC 
from 0.699 to 0.74. A similar improvement was observed 
by Black et al. (2020) for a prostate cancer score comprising 
age and family history. There, the AUC increased from 0.6 
to 0.64, but the utility of the combined score was question-
able because the PRS alone already yielded an AUC of 0.64.

Clinical application of PRSs

One of the obvious clinical applications of PRSs would 
be the estimation of the residual lifetime risk for diseases 
for which risk-adjusted screening is meaningful. A prime 

Fig. 1  Relationship between 
heritability and PRS diagnos-
tic performance. The violin 
plot relates disease-specific 
heritability estimates to the 
AUC of PRSs (see Table 1). 
A sex-averaged heritability 
estimate was considered for 
coronary artery disease; type 2 
diabetes was excluded because 
of its widely varying heritabil-
ity estimates. The red line was 
derived by linear regression 
analysis. PRS: polygenic risk 
score, AUC: area under the 
receiver operating curve
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example in this regard is breast cancer, where the American 
Cancer Society recommends screening by magnetic reso-
nance imaging (MRI) when the lifetime risk exceeds 20–25% 
(Saslow et al. 2007). Using a PRS comprising 24 SNPs, Li 
et al. (2017) monitored 2599 healthy women for an average 
of 7.4 years and calculated the residual lifetime risk from 
both BOADICEA and BOADICEA + PRS. Adopting a risk 
threshold of 20% (or 25%, henceforth referred to in brackets), 
some 35.7% (42.2%) of women placed above the threshold 
by BODICEA alone fell below it with BOADICEA + PRS 
whereas 15.7% (10.7%) of women placed above the threshold 
by BOADICEA + PRS fell below it with BOADICEA alone. 
In total, combination of BOADICEA with the PRS changed 
the screening recommendation for 23% (14%) of participants.

Similarly, Lakeman et al. (2019) calculated a PRS com-
prising 161 SNPs for 323 cases and 262 controls from 101 
high-risk breast cancer families lacking BRCA  mutations. 
The authors then investigated how their risk classifications 
according to the NCCN (National Comprehensive Cancer 
Network, USA), NICE (National Institute for Health and 
Care Excellence, UK) and the IKNL (Netherlands Compre-
hensive Cancer Organisation, NL) guidelines changed by 
combining BOADICEA with the PRS. Whilst the NCCN 
distinguishes between low and high risk by a threshold of 
20%, NICE and IKNL distinguish between low, moderate 
and high risk with thresholds of 17% and 30%, and 20% and 
30%, respectively. Combining BOADICEA with the PRS 
changed the screening recommendation for 11.5% of women 
for NCCN, 14.7% for NICE, and 19.8% for IKNL. Cases 
were more frequently shifted to a higher risk category than 
controls.

For breast cancer, consideration of a PRS has already 
made its way into clinical practice. Thus, the Centre for 
Familial Breast and Ovarian Cancer in Cologne, Germany, 
offers CanRisk (Carver et al. 2021), a CE-certified web tool 
to calculate BOADICEA version 6 which also includes the 
PRS of Mavaddat et al. comprising 313 SNPs (Lee et al. 
2019; Mavaddat et al. 2019). To study the extent to which 
women would actually want to know their genetic risk for 
breast cancer and how they would handle this knowledge, 
Yanes et al. (2021) asked 208 healthy Australian women for 
their decision at baseline and followed them for 12 months. 
If a participant had agreed, genetic health professionals 

informed her about her individual 62 SNP PRS, which was 
then classified as either low, moderate or high, followed by 
a comparison to the overall breast cancer risk in the pop-
ulation. Some 165 women (79%) agreed to be informed, 
and 91% of them still remembered their PRS category after 
12 months. A majority of those who were told their PRS 
(57%) had no regrets about their decision. Participants with 
a high PRS regretted their decision slightly more often than 
those with a low PRS, but not as much as those who refused 
to know their PRS altogether. However, knowledge of the 
PRS had no influence upon the willingness to be screened.

In a study of prostate cancer, Huynh-Le et al. (2020) 
defined risk-equivalent age groups based upon a PRS com-
prising 54 SNPs (Seibert et al. 2018). Notably, using the prior 
disease risk at 50 years of age as a reference, it turned out 
that men with a PRS in the  1st percentile do not reach this 
risk before the age of 60 whereas those with a PRS in the  99th 
percentile already do so at 41. Risk-equivalent age also had 
a strong influence upon the positive predictive value (PPV) 
of the prostate-specific antigen screening test. Between 55 
and 64 years of age, the PPV is 21% for those with a risk-
equivalent age in their actual age range, 12% for those with a 
risk-equivalent age below 55 years, and 40% when the risk-
equivalent age is > 65 years.

Another potential application of PRSs is the stratifica-
tion of drug treatment. In a clinical study by Damask et al. 
(2020), 11,953 patients previously hospitalized for myocar-
dial infarction or unstable angina were treated with either 
alirocumab, a PCSK9 inhibitor, or placebo. Participants 
were followed-up for MACE (major adverse cardiovascular 
event) for a median of 2.8 years. In addition, they were geno-
typed to allow computation of a coronary artery disease-
specific PRS. The incidence of MACE, which comprises 
death of coronary heart disease, nonfatal myocardial infarc-
tion, ischemic stroke, or unstable angina requiring hospi-
talization (Bosco et al. 2021), was 17.4% in the top PRS 
decile of the placebo group, compared to 11.5% in the lowest 
decile. At 11.4% (top) and 10.0% (lowest), by contrast, the 
two incidence values were found to differ much less in the 
verum group. The authors concluded that patients with a 
high genetic risk might benefit more from alirocumab treat-
ment than those with a low genetic risk. A study by Marston 
et al. (2020) yielded similar results for evolocumab, another 

Table 2  Prognostic performance 
of PRSs for breast cancer and 
coronary artery disease

PRS: polygenic risk score, SNP: single nucleotide polymorphism, # SNP (PRS): number of SNPs included 
in the PRS, GWS: genome-wide significant, C statistic: Harrell’s C statistic, 1BRCA1 mutation carriers, 
2BRCA2 mutation carriers.

Disease SNP selection # SNPs (PRS) C statistic Reference

Breast cancer risk + GWS 77 0.622 Mavaddat et al. (2015)
88 0.5411

0.5662
Kuchenbaecker et al. (2017)

Coronary artery disease penalized regression 40,079 0.608 Elliott et al. (2020)
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PCSK9 inhibitor used to treat cardiovascular disease. In this 
study, some 14,298 patients with atherosclerotic cardiovas-
cular disease were treated with either verum or placebo and 
were followed for a median of 2.3 years. Among patients 
with a low PRS-based genetic risk, and without any clini-
cal risk factors, the hazard ratio (HR) (verum versus pla-
cebo) for a major vascular event was virtually unity. Among 
patients with multiple clinical risk factors, however, the HR 

equaled 0.87 and the number needed to treat (NNT) 71 when 
the genetic risk was low, whereas HR = 0.69 and NNT = 25 
when the genetic risk was high.

Prevention is one of the three key areas of the 2020 
“Genome UK” program, which deals with PRSs as well 
(HM Government 2020). Researchers can access the avail-
able scores, and participants are provided an opportunity of 
personal risk assessment. Over a period of 10 years, Genome 
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UK is set to help evolving the National Health Service from 
disease detection and treatment to disease prediction and 
prevention. A public health and screening system is envis-
aged to this end that uses genomics to intensify screening 
and intervention for individuals with high disease risk, 
including the development and transition into practical use 
of risk prediction tools comprising both genetic and non-
genomic factors. Not least, the project is hoped to generate 
evidence whether PRSs can be used in large-scale health 
services and whether they help to reduce the burden on 
healthcare. Similar goals are also pursued by another UK 
program, called “Our Future Health”, that plans to recruit up 
to five million representative adults for translational research 
on new tools and strategies for diagnostics, prevention and 
treatment. Notably, one of the primary objectives of the pro-
gram is to validate PRS-based predictive models of health 
and disease (Our Future Health 2022).

The above developments notwithstanding, randomized 
studies systematically comparing PRS-informed screening 
or treatment with standard-of-care are still necessary to be 
able to judge the true benefit of including PRSs into clinical 
practice. While some such studies have started recently (Hao 
et al. 2022), no results are available as yet.

Discussion

Selection of studies

One important finding of our literature-based survey of 
PRSs was the frequent lack of comparability between the 
measures of PRS performance used in different studies. Such 
variety is not surprising in view of the many ways in which 
the capability of a diagnostic or prognostic marker can be 
measured. In addition to the AUC and C statistic considered 
in our study, other useful metrics include the coefficient of 
determination, the odds ratio, the relative risk and the haz-
ard ratio. What is more, the performance measures were 
often not calculated for a PRS alone, but in combination 
with other covariates such as age, gender or the genetic back-
ground. Since such a combination with other information 
can strongly increase the diagnostic or prognostic capability 
ascribed to a PRS, the results are not comparable to those 
obtained without covariates. In fact, many studies had to be 
excluded from our survey for this reason. We may thus con-
clude that the development and implementation of report-
ing guidelines for PRS studies would greatly improve their 
practical benefit (Wand et al. 2021).

A limitation of our survey has been that it was confined to 
PRSs developed predominantly in samples of European ances-
try. Our results therefore cannot be transferred immediately to 
other ethnicities (Duncan et al. 2019). Moreover, the study by 
Gola et al. (2020) served to highlight that even applying one 

and the same PRS to different European cohorts may yield 
considerably different results. Since most GWAS underlying 
PRSs have been performed in European ancestry populations, 
there is thus a need for more diverse data to ensure equitable 
participation in the research and health progress potentially 
arising from the use of PRSs (Caliebe et al. 2022).

Performance evaluation

For the PRSs covered by our study, AUC was generally 
between 0.65 and 0.70 in the corresponding validation stud-
ies. A notable exception is type 1 diabetes for which AUC 
was around 0.90. This result may point towards the spe-
cific genetic architecture of this disease. Indeed, according 
to Noble and Valdes (2011), 40–50% of the heritability of 
type 1 diabetes is explained by the HLA locus alone. In line 
with this, a PRS based upon five HLA region SNPs only 
already achieved an AUC of 0.87 (Oram et al. 2016; Sharp 
et al. 2019). The addition of 25 non-HLA SNPs increased 
the value to 0.89. Using 35 HLA and 32 non-HLA SNPs, 
the AUC value was found to be as high as 0.92, with 0.90 
achieved by the HLA SNPs alone, and 0.75 by the non-HLA-
SNPs alone (Sharp et al. 2019).

We assessed the performance of a PRS by its AUC. How-
ever, while the AUC is a popular measure in diagnostic stud-
ies, other criteria have been proposed particularly for PRSs. 
For example, individuals in the extreme upper quantiles of 
a PRS distribution are often thought to benefit most from 
the clinical use of the PRS because their odds ratios come 
close to those of monogenic diseases (Khera et al. 2018). 
Early identification of such individuals would allow timely 
prevention, if available. Notwithstanding the appeal of the 
approach, it must be noted that putting a focus upon extreme 
values of a PRS would greatly limit its overall clinical utility 
because only a small fraction of the population would get 
something out of having the PRS measured.

Clinical applications

Since the positive predictive value of a PRS is typically low 
in diagnostic settings (Ala-Korpela & Holmes 2020; Koch 
et al. 2021; Wald & Old 2019), the same is inevitably true in 
the prognostic context, i.e. many false-positive results are to 
be expected when a PRS is applied to predict future disease. 
Therefore, it would usually remain unclear which meaningful 
consequences can be drawn from a positive prognostic result 
(i.e. a high PRS). The incentive for a lifestyle change or other 
preventive treatment would likely be low if only a few percent 
of individuals with a positive test result indeed developed the 
disease of interest later in life. Moreover, it is by no means 
clear for individuals with a high PRS whether the effect 
of such a change would be as expected. On the contrary, a 
strong role of genetics in the etiology of a disease may even 
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imply that those with a high PRSs benefit less from a lifestyle 
change than those with a low PRS. In addition, the benefit of 
earlier, or more frequent, screening has to be weighed against 
potential side effects such as, for example, radiation damage, 
over-screening, over-diagnosis and psychological distress.

Use of a PRS for prognostic testing as a means to improve 
screening efficiency currently seems most promising for breast 
cancer and prostate cancer. However, while PRS-based changes 
in screening recommendations may be expected to occur fre-
quently for these entities, it has not been investigated yet whether 
such changes have any meaningful clinical consequences, 
including the avoidance of unnecessary screening, the earlier 
detection of disease or, ultimately, a reduction in cancer-related 
deaths. As regards diseases other than cancer, we noted that 
PRSs for type 1 diabetes have exceptionally high AUC and are 
thus potentially useful in cases where clinical signs of risk are 
ambiguous (Padilla-Martinez et al. 2020). For type 2 diabetes, 
in contrast, PRSs promise no relevant improvement over the use 
of known clinical risk factors alone, similar to other diseases.

Another obstacle to the translation of PRSs into clinical rou-
tine is the difficult interpretation of an actual PRS value. The 
value by itself has no straightforward meaning. Even standard-
ized PRS values, or population quantiles, are only meaningful 
when gauged against cases and, at best, lead only to relative 
risks, i.e. a high PRS value is not tantamount to a high abso-
lute disease risk and vice versa. To convey this discrepancy to 
medical practitioners and patients is a huge challenge, adding 
another argument to the need for randomized clinical studies to 
compare PRS-informed decisions with standard-of-care. Some 
such trials have already started (Hao et al. 2022) with the goal 
to avoid or delay disease occurrence, or to improve treatment 
without generating unwanted side effects.

Finally, the introduction of PRSs into clinical practice will 
also have health-economic implications. The incremental 
costs caused by deriving PRSs must be justified by the added 
value which, in turn, will depend upon the disease and practi-
cal application in question. Unfortunately, important param-
eters such as the number needed to treat or to screen, are usu-
ally not provided by PRS publications. One notable exception 
is a study by Marston et al. (2020), who reported the numbers 
needed to treat with evolocumab for cardiovascular disease 
patients, stratified by their PRS value. Before using PRSs like 
this in clinical practice, however, the numbers would have to 
be related to the costs of treatment and screening. Since the 
latter likely vary between countries and therapeutic settings, 
further research is required to measure the true value of add-
ing a PRS to existing screening or treatment protocols.

PRSs in research

While their application in clinical routine may still be conten-
tious, PRSs clearly bear great potential in medical research. For 
example, applying a disease-specific PRS to another condition 

may shed light upon common genetic etiologies. Early on, Pur-
cell et al. (2009) developed a PRS for schizophrenia and applied 
it to patients with bipolar disorder, revealing that the PRS for 
the former disease explained some of the risk for the latter. The 
same approach has also been useful to define and study disease 
subtypes. For example, Stahl et al. (2019) showed that a PRS for 
schizophrenia was significantly increased in patients with type 
1 bipolar disorder, compared to type 2 bipolar disorder. A PRS 
for depression, on the other hand, was higher in those with type 
2 bipolar disorder than in type 1 patients.

Other PRS-related research was focused upon the expressiv-
ity and the symptoms of diseases. In a study by Ruderfer et al. 
(2018), a schizophrenia PRS turned out to be increased in bipo-
lar patients when psychotic features were present, but not when 
they were lacking, while a PRS for bipolar disorder was higher 
in schizophrenia patients with manic symptoms than in those 
without. The authors expressed the hope that, by identifying the 
polygenetic components of the different symptoms of schizophre-
nia and bipolar disorder, more conclusions can be drawn about 
possible treatments. By applying a PRS for Alzheimer disease 
to Parkinson disease patients with and without hallucinations, 
Kusters et al. (2020) showed that the latter symptom is associated 
with the same genetic factors, especially APOE variation, that 
are responsible for the cognitive deficits in Alzheimer patients.

PRSs may also help to gain new insights into the vari-
ability in age-at-onset of monogenic diseases. In a study by 
Fahed et al. (2020), PRSs for coronary heart disease, breast 
cancer and colorectal carcinoma were applied to their mono-
genic counterparts, namely familial hypercholesterolemia, 
hereditary breast and ovarian cancer, and Lynch syndrome. 
For all three diseases, the risk up to the age of 75 of carriers 
of monogenic mutations was positively correlated with the 
respective PRS. The authors concluded that the polygenic 
background leading to the common complex form of a dis-
ease may influence one or more of the molecular pathways 
affected by corresponding monogenetic mutations.

Applying a PRS to another disease can also augment 
studies of the effectiveness of drug treatment. Several PRSs, 
including those for attention deficit hyperactivity disorder and 
coronary artery disease, were found to be associated with the 
treatment success of antidepressants in major depressive dis-
order (Amare et al. 2019; Fabbri et al. 2021; Meerman et al. 
2022). Higher PRS values consistently co-occurred with more 
treatment-resistant symptoms. Finally, PRSs can be tools to 
study the interaction between genetics and environment or 
lifestyle. This was exemplified by a study by Ye et al. (2021) 
that revealed a statistical interaction on triglyceride levels 
between lifestyle on the one hand, and a PRS for coronary 
artery diseases, atrial fibrillation and type 2 diabetes on the 
other. Bolli et al. (2021) discovered an interaction on coronary 
artery disease risk between a disease-specific PRS and low-
density lipoprotein cholesterol level.
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Outlook

It is likely that, in the future, PRSs will be proposed more 
and more often for the prognosis and diagnosis of common 
complex diseases, and for treatment decision making. This 
growing popularity of PRSs is not only due to the fact that 
the required SNP genotyping has become increasingly 
cheaper. Obviously, PRSs represent a rather efficient, and 
hence attractive, way to take the genetic background of 
patients into account in efforts to improve the performance 
of the predictive statistical models used in medical care.

Conclusions

• Current PRSs have limited capability for individual risk 
prediction.

• Exceptions are likely due to a specific genetic architecture 
of the disease in question, such as the strong effect of the 
HLA locus in the case of type 1 diabetes.

• Adding a PRS to a clinical score increases the AUC by 
about 10% on average, depending upon disease, clinical 
score and age.

• Some PRSs may be clinically useful for screening and 
therapeutic decision making.

• Assessment of the cost-effectiveness of a PRS in clinical 
practice requires estimation, in randomized trials, of the 
corresponding number needed to screen, or to treat.
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