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insight into sex chromosome turnover rates (Charlesworth 
and Mank 2010; Kitano and Peichel 2012). Further, in the 
field of population genetics they allow the inference of sex-
specific demographic events due to their sex-specific inheri-
tance, for instance the comparison of mitochondrial and Y 
chromosome markers can reveal sex-specific migration rates 
(Petit et al. 2002; Wilson Sayres 2018). Lastly, sex ratio is 
a key component ecological and demographic studies, par-
ticularly when females and males differ in life-history traits 
(e.g. Tsai et al. 2014; Pillans et al. 2021). In species with a 
heterogametic sex, markers on sex chromosomes provide a 
way to identify sex from DNA samples when sexual dimor-
phism is absent and destructive sampling is not an option, 
e.g. for Threatened species (Stovall et al. 2018; Suda et al. 
2019) or when sampling in no-take zones.

Despite the importance of SLMs, only a few methods 
and tools exist to identify them in non-model species. Most 
approaches are focussed on presence-absence and heterozy-
gosity patterns of Restriction-site-Associated DNA sequenc-
ing (RADseq) data to differentiate the heterogametic (XY 
or ZW) from the homogametic (XX or ZZ) sex (Gamble 
and Zarkower 2014; Fowler and Buonaccorsi 2016; Gamble 
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Abstract
Identifying sex-linked markers from genomic data has both theoretical and applied importance, especially in conserva-
tion. Yet, few methods and tools exist to detect such markers from Restriction-site-Associated DNA sequencing reads and 
even fewer tools can identify sex-linked markers from existing genotyped data. Here, we describe a new R function that 
can identify sex-linked markers in species with partially non-recombining sex chromosomes. We test the accuracy and 
speed of our function with an example dataset from a species of conservation concern, the White Shark, Carcharodon 
carcharias. We further compare our method against other approaches and find that our method detects more sex-linked 
markers that can be reliably mapped to reference genomes. Overall, we provide a conservation and fisheries-relevant tool 
that can reliably and efficiently assign sex from genetic data in species with a heterogametic sex and we demonstrate its 
utility by developing a sex-identification PCR test for White Sharks.
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2016; Hill et al. 2018). Most of the workflows following 
this approach use demultiplexed FASTQ files and are based 
in Stacks or RADtools (see Gamble and Zarkower 2014; 
Fowler and Buonaccorsi 2016), which can be computa-
tionally intensive, or the faster RADSex software (based in 
C++; Feron et al. 2021). Currently, the only methods that 
can identify SLMs from genotyped single nucleotide poly-
morphism (SNP) data are outliers detection methods (e.g. 
BayeScan; Foll and Gaggiotti 2008) where the data is parti-
tioned by sex (e.g. Benestan et al. 2017; Trenkel et al. 2020).

Many elasmobranchs (sharks and rays) are threatened 
with extinction (Dulvy et al. 2014, 2021). Their slow life 
history, low fitness and low connectivity between popula-
tions, which is often male biased (see Phillips et al. 2021), 
has instigated many conservation genomic studies in elas-
mobranchs (see Ovenden et al. 2018; Green et al. 2022; 
Devloo-Delva et al. 2023a). However, to date, no studies 
have used these available genomic resources to investigate 
the value of SLMs for sex identification and population 
genetics. In this study, we introduce a tool that can anal-
yse the existing genomic data, such as RADseq, Diver-
sity Arrays Technologies (DArTseq), and genotyping by 
sequencing (GBS) to look for differential signals between 
heterogametic and homogametic individuals and identify 
SLMs on the sex chromosomes.

Specifically, we have designed a function, ‘sexy_mark-
ers’, as part of the radiator package (Gosselin et al. 2020) 
in the R environment (R Core Team 2020) which tests three 
different scenarios to find markers on the sex chromosomes 
under the assumption that one sex is heterogametic (see 
Supplementary Material Sect. 1): (i) markers are only pres-
ent in females or males, (ii) markers are homozygous in one 
sex while exhibiting an intermediate range of heterozygos-
ity in the other sex, (iii) markers have double the read depth 
in females or males. Here, the first scenario identifies mark-
ers on the sex chromosome unique to the heterogametic sex 
and the latter two detect markers on the sex chromosomes 
shared by the heterogametic and homogametic sexes. This 
function also allows the re-assignment of genetic sex when 
markers on the heterogametic sex chromosome are identi-
fied. The function is based on a visual identification of SLMs 
from genotyped RAD-type data after minimal data-quality 
filtering. Radiator is developed to import bi-allelic SNP data 
from vcf and csv files from several genotype callers: DArT-
soft14, Stacks, GATK, platypus, samtools and ipyrad.

We demonstrated the workflow and accuracy of this 
function using a White Shark example (Carcharodon carch-
arias, listed as Vulnerable to extinction; Rigby et al. 2019), 
with a DArTseq dataset of 558 individuals and 23,393 SNPs 
(Bruce et al. 2018; Hillary et al. 2018). We further com-
pare our function to alternative approaches that use geno-
typed SNP data as input (i.e. fixed allele differences): ‘gl.

report.sexlinked’ from dartR package (Gruber et al. 2018; 
Mijangos et al. 2022), OutFLANK (Whitlock and Lotterhos 
2015), and PCadapt (Luu et al. 2017). These outlier meth-
ods identify markers with differences in allele frequencies 
between the sexes, i.e. at homologous regions between the 
sex chromosomes (Robledo-Ruiz et al. 2023). The SLMs 
were validated using polymerase chain reactions (PCR) with 
primers designed from SLMs that were mapped to the refer-
ence genomes from Marra et al. (2019) and the Vertebrate 
Genome Project (VGP; https://vgp.github.io/genomeark/; 
NCBI RefSeq accession GCF_017639515.1). Autosomal 
primers in the beta-actin gene were also designed from the 
reference genome to act as a positive control between sexes. 
Primer sequences and PCR conditions are described in the 
Supplementary Material (Sect. 4).

Overall, we found nine Y-linked and 406 X-linked mark-
ers using the ‘sexy_markers’ function in less than 5 min 
computation time. The nine heterogametic SLMs allowed 
us to assign sex to 43 individuals with unknown visual sex 
and showed a 6.7% phenotypic – genotypic sex discrepancy 
across the 402 sexed sharks that passed quality filtering. The 
latter is most likely explained by human error, although her-
maphroditic elasmobranchs have been described sporadi-
cally (reviewed in Adolfi et al. 2019). Further, the outlier 
methods identified 131 and 2720 SLMs for OutFLANK and 
PCadapt respectively (10 markers in common), but only 
PCadapt had 16 markers in common with the ‘sexy_mark-
ers’ approach (see Supplementary Material Sect. 2). We 
were able to confidently blast 179 SLMs (seven Y-linked 
and 172 X-linked markers) to 49 scaffolds from the Marra et 
al. (2019) genome, of which 47 SLMs mapped to five scaf-
folds (i.e. putative sex scaffolds). Eight Y-linked and 215 
X-linked markers had confident BLAST hits (see Supple-
mentary Material Sect. 3) to eight scaffolds from the VGP 
genome, with the majority (199 SLMs) mapping to three 
scaffolds. Overall, we conclude that 48% of the 415 identi-
fied SLMs were located in close proximity on putative sex 
chromosome scaffolds. These markers were considered as a 
reference to test the accuracy of the ‘sexy_markers’ function 
with suboptimal data (Fig. 1). By randomly sampling 6, 12, 
24, 48, 72, 96, 120, 144, 252 and 348 individuals for 200, 
1000, 2000, 5000, 7500, 10000, 12500, 15000, 17500 and 
20000 markers, we showed that too few individuals (< 100) 
and too few markers (< 10,000 or 50% of the total data) will 
identify false positive SLMs (i.e. not in common with the 
SLMs from the full data; Fig. 1A-B). This result was more 
pronounced when the female:male sex ratio was skewed 
(2:1 or 1:2; Fig. 1C-F). The Y- and X-linked markers were 
validated through multiplex PCR (Fig. 2; Supplementary 
Material Sect. 4). PCR results showed that males amplified 
for the Y-chromosome fragments, while X and beta actin 
fragments were present in both sexes. The same individuals 
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that had a phenotypic – genotypic sex mismatch based on 
the heterogametic SLMs (70 base pairs) also showed this 
discrepancy for the Y-chromosome fragment (655 base 
pairs; Fig. 2).

In general, these results confirm that the White Shark 
has partially non-recombining sex chromosomes (X and Y), 

males being the heterogametic sex. This is the first study 
to validate male heterogamety in the White Shark with suf-
ficiently high sample size (n = 558); an observation also 
obtained using karyotyping (Maddock and Schwartz 1996), 
where the authors suggested the White Shark and several 
other elasmobranchs possess X and Y sex chromosomes, 

Fig. 1 Robustness test for the 
‘sexy_markers’ R function on 
White Shark, Carcharodon 
carcharias, data. The heatmaps 
show data with varying numbers 
of markers and individuals, and 
a female:male (F-M) sex ratio 
of 1:1 (A,B), 1:2 (C,D) or 2:1 
(E,F). Each square is coloured 
according to correctly identified 
sex-linked markers (A,C,E) or 
false positive detections (B,D,F).
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takes genotyped SNP data as input (whereas other software 
require demultiplexed FASTQ files), which allows a more 
versatile use of previously published datasets for compara-
tive studies. Finally, we developed a quick (~ 2-hour) PCR 
assay to identify the sex of sampled White Sharks. This 

albeit with low samples sizes (n = 1). Further, we showed 
the utility and robustness of the ‘sexy_markers’ function 
for species with distinct sex chromosomes, where species 
with larger non-recombining regions have a higher chance 
of finding Y/W-linked markers. Importantly, the function 

Fig. 2 PCR results of Y- and X-chromosome amplicons between 
female (F) and male (M) White Sharks, Carcharodon carcharias, 
showing 655 and 164 base pairs (bp) fragments, respectively. Con-
served beta-actin amplicons (287 bp) serve as a positive control. PCR 
products were visualised on a 2% agarose gel, stained with SYBR 
safe (Invitrogen, USA) and a TriDye 1 kb DNA ladder (New England 

BioLabs, UK) for size reference. The first row shows males that were 
identified as males by both visual assignment and PCR assay. The sec-
ond row shows females that were identified as females by both visual 
assignment and PCR assay. The last row shows the individuals that had 
a discrepancy between phenotypic and genotypic sex
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tool will prove useful for sex identification in species that 
do not display obvious morphological differences between 
sexes. For instance, most juvenile sharks without developed 
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method. Future studies include applying the R function on 
other species, as well as utilising the sex-linked markers for 
population genetic studies.
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