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TECHNICAL NOTE
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Abstract
The mountain gorilla (Gorilla beringei beringei) is one of two endangered subspecies of eastern gorilla. The principle 
approach to monitoring the two extant mountain gorilla populations has been to use fecal surveys to obtain DNA profiles 
for individuals that are then used for capture-recapture-based estimates of abundance. To date, 11 to 14 microsatellites have 
been used for this purpose. To adapt to ongoing changes in genotyping technologies and to facilitate the analysis of fecal 
DNA samples by multiple laboratories, we developed a panel of single nucleotide polymorphism (SNP) markers that can be 
used for future gorilla monitoring. We used published short read data sets for 3 individuals to develop a suite of 79 SNPs, 
including two sex markers, for a Fluidigm platform. This marker set provided high resolution to differentiate individuals and 
will facilitate future monitoring, leaving room for additional SNPs to be included in a 96-assay format.
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The mountain gorilla (Gorilla beringei beringei) is one of 
two subspecies of eastern gorilla, and is currently recognized 
as endangered by the IUCN (Hickey et al. 2018). Today, 
two isolated populations of mountain gorilla remain, one in 
Bwindi Impenetrable National Park, Uganda and Sarambwe 
Nature Reserve, Democratic Republic of Congo (DRC) and 
the other in the Virunga Massif of Uganda, Rwanda, and 
DRC. Since the early 2000s, monitoring the abundance of 
these populations has involved regular noninvasive fecal 
DNA surveys (e.g., Guschanski et al. 2009). Genetic analy-
ses are used to identify individuals from fecal DNA samples, 
which enable mark-recapture analyses to estimate total num-
bers of individuals within the population (Roy et al. 2014; 

Hickey and Sollman 2018). In past surveys, microsatellite 
markers have been used for this purpose (Guschanski et al. 
2009; Roy et al. 2014; Hickey and Sollman 2018; Granjon 
et al. 2020). Although these markers performed adequately 
in the past, the technology required to support their use is 
becoming obsolete and will eventually be unsupported (von 
Thaden et al. 2017). Additionally, microsatellites are chal-
lenging to calibrate between laboratories. Therefore, we 
developed a set of 79 SNPs with high resolution to differen-
tiate even close relatives that can be used by any participat-
ing laboratory for future surveys of these and other eastern 
gorilla populations.

To discover SNPs, we obtained raw sequencing reads 
from entire genomes (80–98 Gbp each) of 3 female moun-
tain gorillas from the Virunga Massif (none were avail-
able from Bwindi): Turimaso (ENA No. ERS525618), 
Maisha (ENA No. ERS525616), and Uririmo (ENA No. 
ERS525617) (Xue et al. 2015). We aligned trimmed reads to 
the western lowland gorilla (Gorilla gorilla gorilla) genome 
(gorGor5; Gordon et al. 2016) using bwa-mem (Li 2013), 
and called variants using freeBayes (v0.9.21-19-gc003c1e; 
Garrison and Marth 2012), which resulted in identification 
of 12,894,536 variable sites (i.e., SNPs). We then filtered 
SNPs using vcftools (Danecek et al. 2011), retaining bial-
lelic SNPs with 3 of each allele (–mac 3) and with read 
depths ranging 20‒40x (–minDP 20, –maxDP 40); the 
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average read depths of genomes were ~ 25‒30x, so our nar-
row depth range ensured removing sequence repeats and 
low-coverage sites. We further removed sites that were het-
erozygous in all 3 individuals, ensuring that all remaining 
sites had a representative of all 3 possible genotypes, result-
ing in 132,958 sites. We then mapped contigs to the human 
genome to obtain orthologous positions, and removed all 
sites that were on gorilla contiguous sequences < 3 Mbp long 
(Gordon et al. 2016), leaving 115,106 sites with locations 
on chromosomes that were known with high confidence. 
Finally, we selected 129 candidate SNPs that were distrib-
uted approximately evenly across the chromosomes (i.e., 37 
Mbp [range: 16.5–58.5 Mbp] apart on average). To facilitate 
primer design, we also limited selection to SNPs for which 
the regions flanking them for 200 bp in 3’ and 5’ directions 
included no other known SNPs or indels (i.e., based on the 
unfiltered vcf file).

To design 2 sex markers (i.e., bringing the total to 131 
candidate SNPs), we used sequences from human X chromo-
some and Y chromosome introns of the amelogenin and zinc 
finger genes (Kim et al. 2010). We used basic local align-
ment search tool (BLAST) in Genbank to obtain gorilla Y 
chromosome sequences that were orthologous to the Y chro-
mosome introns of the amelogenin gene (Genbank accession 
Nos. FJ532255.1) and the zinc finger genes (AH014841.2 
ZFY). However, this procedure produced no X chromo-
some orthologs for gorillas. Therefore, we used the human 
sequences for these X chromosome loci as references to 
extract reads from a female gorilla whole genome sequence 
(Turimaso) using bwa-mem. We manually aligned reads and 
BLAST product sequences, respectively, for gorilla X and Y 
chromosome paralogs of these genes to verify that the same 
3 SNPs differing between human X and Y chromosome 
introns also differed between the gorilla X and Y chromo-
somes. However, we also discovered 3 additional variants in 
gorillas corresponding to sites in the published human SNP 
primers, which required us to redesign primers specifically 
for gorillas.

We used Fluidigm’s D3 Assay Design Tool (https://​d3.​
fluid​igm.​com) in conjunction with the flanking sequences 
for the 131 SNPs (Supporting Information, Supporting text 
1) to design primers, which we ordered from Fluidigm 
(Fluidigm, San Francisco USA; Supporting information, 
Table S1). We used a set of 561 DNA samples extracted 
from mountain gorilla feces collected from nests in Bwindi 
during 2018 that had been individually identified with 
microsatellites and which included ≥ 1 sample from each 
of 450 putative individuals (i.e., all but one of 451 identi-
fied in the survey; Hickey et al. 2019; Hu 2020). This sam-
ple set included arbitrarily selected duplicates of the same 
DNA extracts and extracts from multiple fecal samples 
assigned with microsatellites to the same individual. After 
screening all candidate SNPs against 94 of these samples, 

we retained 96 of the SNPs for further evaluation against 
the remaining 467 samples. From the 96 loci screened 
against the entire samples set, we selected 79 SNP loci 
based on consistent cluster separation and high call rates.

We used the 96.96 Fluidigm Dynamic Arrays with 
integrated fluidic circuits (IFCs) run on the Biomark HD 
system, initially following the manufacturer’s guidelines, 
except that we used 18 specific target amplification (STA) 
PCR cycles (instead of 14) during a pre-amplification step 
to increase the concentration of marker-specific DNA to 
be used as template for the allele specific (ASP) reactions 
(von Thaden et al. 2017), and we diluted the STA PCR 
product 1:10 rather than 1:100 before adding to the ASP 
reactions; finally, we used 45 cycles instead of 38 cycles 
in the ASP PCR reaction. We called genotypes using Flui-
digm SNP Genotyping Analysis Software v4.3.2. We esti-
mated heterozygosity, unbiased probabilities of identity 
(PID) and identity of siblings (PIDsibs) in Gimlet (v. 1.3.3; 
Valière 2002).

Based on the 79 final loci, we obtained > 95% call rates 
on 488 of the 561 (87%) fecal DNA samples. For 475 geno-
types where both sex markers (GorAmelo2-CG, GorZF1-
CT) yielded genotypes, 471 pairs (99.16%) agreed, of which 
468 of these samples (99.14%) also agreed with sexes typed 
from the microsatellite study (Hickey et al. 2019), suggest-
ing < 1% sex-typing error rate. Based on 21 pairs of repli-
cate genotypes (same fecal extract), the overall agreement 
was 98.6% (SD = 0.007%), indicating a genotyping error 
rate < 2%. Similarly, 41 pairs of fecal samples previously 
determined based on microsatellites to be from the same 
individual matched at 99.3% (SD = 0.027) of their SNP 
alleles on average. Conversely, pairwise comparisons among 
genotypes from 424 putative distinct individuals (as identi-
fied through microsatellites) matched at 73.9% (SD = 0.038) 
of alleles on average. These metrics, along with the aver-
age expected and observed heterozygosity (0.34 and 0.33, 
respectively) and the combined PID and PIDsibs (1.6 × 10–23 
and 2.2 × 10–12, respectively; Supplementary information, 
Table S2), indicate high resolution to differentiate indi-
viduals from the Bwindi population. Because the markers 
were designed using genomes of mountain gorillas from 
the Virunga Massif and because we did not screen mark-
ers on the basis of polymorphism in the Bwindi population, 
they should perform as well or better on gorillas from the 
Virunga population, for example exhibiting polymorphism 
in the 15 SNPs that were monomorphic in the Bwindi popu-
lation. Despite ascertainment bias favoring the Virunga pop-
ulation in particular and mountain gorillas in general, these 
markers also would likely perform well for eastern lowland 
(G. b. graueri), and possibly western (G. gorilla) gorillas as 
well, due to their higher effective population sizes (Xue et al. 
2015), although empirical confirmation would be necessary.

https://d3.fluidigm.com
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12686-​021-​01217-4.
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