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Abstract
A recent eDNA-metabarcoding study assessing fish diversity in the Upper Volga catchment did not detect sterlet at any of the 
sampled stretches, despite recent sightings that suggest its presence. We designed a TaqMan qPCR protocol to test for sterlet 
in selected eDNA samples from that study. In-silico and in-vitro tests confirm the protocol’s high sensitivity and specificity 
to sturgeon taxa and potentially paddlefishes. Using this assay, sterlet were not detected in 26 eDNA samples from the Volga 
headwaters, agreeing with the metabarcoding results.
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Assessing presence and distribution of freshwater species 
using environmental DNA (eDNA) is developing into a 
powerful conservation management tool (Deiner et al. 2017; 
Ruppert et al. 2019). Taxon-specific qPCRs are widely used 
to assess fish presence (e.g. Carim et al. 2016; Jensen et al. 
2018; Roy et al. 2018) and can be more sensitive than meta-
barcoding (Harper et al. 2018). The sterlet Acipenser ruthe-
nus is listed as vulnerable by the IUCN with a decreasing 
population trend. Main threats involve habitat fragmenta-
tion and loss and overexploitation (IUCN 2019). Using an 
eDNA-metabarcoding approach, Lecaudey et al. (2019) 
identified 23 fish species in the Upper Volga catchment. 
However, the sterlet, a species of conservation interest in 
this area (Schletterer 2006; Schletterer et al. 2018), was not 
detected.

To evaluate the metabarcoding results, we designed a 
TaqMan-qPCR assay to detect sterlet from environmental 

samples. Other sturgeon qPCR protocols (Farrington and 
Lance 2014; Bergman et  al. 2016; Pfleger et  al. 2016; 
Yusishen et al. 2018) focused on North American species 
and were optimized on the respective local fish community. 
We designed TaqMan primers (AruF: 5′-TCT​ACC​GTC​ACC​
CAG​GTC​AT-3′; AruR: 5′-CGC​CTG​TTA​AGG​TTG​TGT​
TCT​TTT​-3′) and probe (AruPr: 5′-FAM-GAG​AGG​TAC​
AGC​TCT​CTT​G-MGB-Q500-3′) in the 16S rRNA gene 
using the DECIPHER package (Wright et al. 2014; Wright 
2015). We utilized the reference database of Lecaudey et al. 
(2019) containing 150 sequences of 45 native and invasive 
fishes, covering 19 Palearctic fish families, including sterlet 
and Russian sturgeon A. gueldenstaedtii (Supplemental 1). 
Primers and probe were quality-checked with MultiplePri-
merAnalyzer (Thermo Fisher Scientific). For in-silico assay 
testing, we performed a PrimerBlast search (Ye et al. 2012) 
yielding most significant hits with Acipenser sp. (up to 1 
mismatch), with best hits on the target species, A. ruthe-
nus (no mismatch). There were two additional hits (2 mis-
matches in the forward primer) for beluga (Huso huso) and 
American paddlefish (Polyodon spathula). Both of these 
latter species do not occur in our study area (IUCN 2019). 
Furthermore, sterlet is the only Acipenser species currently 
occurring in the Upper Volga (Schletterer et al. 2018), there-
fore, a positive signal would indicate this species’ presence. 
Primer and probe concentrations were optimized via a qPCR 
reaction-series using sterlet tissue extract (approx. 20 ng/
µl) as template, varying both primer concentrations from 
200 to 800 nM (in 200 nM steps) and probe concentrations 
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from 100 to 400 nM (in 100 nM steps). Final qPCR reac-
tions consisted of 10 µl 2x TaqMan Environmental Master 
Mix 2.0 (Thermo Fisher Scientific), 800 nM of forward and 
reverse primer, respectively, 200 nM of probe, 2 µl template 
and ddH2O up to a final volume of 20 µl. A standard curve 
was generated for assay efficiency evaluation (from 109 to 
100 copies/µl, six replicates each), showing a limit of quan-
tification at 104 copies/µl, a limit of detection at 103 copies/
µl, an R2-value of 0.998 and a reaction efficiency of 99.6% 
(Supplemental 2). For in-vitro testing, we ran qPCRs on tis-
sue extracts from four sturgeons (A. ruthenus, A. sturio, A. 
gueldenstaedtii and A. baerii), and eight teleost species from 
six families (Anguilla anguilla, Ballerus ballerus, Ballerus 
sapa, Leuciscus aspius, Cobitis sp., Salmo trutta, Silurus 
glanis, Thymallus thymallus). Cycling conditions consisted 
of an initial denaturation of 95 °C for 10 min followed by 50 
cycles of 95 °C for 15 s and 60 °C for 1 min, performed on 
a Corbett Rotor-Gene RG-3000 (Qiagen) in standard speed 
mode. Amplification was observed for Acipenser species 
only. For in-situ verification, we sampled five fish tanks of 
a local hatchery and pet shop harboring three different Aci-
penser species (Supplemental 3). All fish-tank eDNA sam-
ples showed positive amplification in all PCR replicates and 
Sanger sequencing confirmed amplification of only target 
species.

Finally, we assayed 26 samples from five locations col-
lected by Lecaudey et al. (2019) (Table 1, Supplemental 4). 
In the Upper Volga, sterlet is present in the Ivankovskoe 
and Uglich reservoirs (Supplemental 5). Formerly com-
mon in the Volga headwaters (Grazianov 1907), the ster-
let is reported by anglers to be rare upstream of Tver. In 
August 2005, sterlet was documented 50–100 km upstream 
of Rzhev (Schletterer 2006) and in 2016, they were stocked 
in the Tvertsa River (Supplemental 5).

No amplification was observed from any eDNA sam-
ples corroborating the results of Lecaudey et al. (2019). 
The non-detection could be caused by seasonal migrations 
during summer months (Kubala et al. 2019, Sorokin et al. 
2002), orvery low abundances (“rarely caught andin sin-
gle instances”—Sorokin et al. 2002), that may have led to 

eDNAconcentrations below the detection threshold of the 
assay. One sampling replicate consisted of 250 ml of filtered 
water and replicates were kept separate for analyses. This 
volume falls below generally recommended sample volumes 
(e.g. Wilcox et al. 2018) and might have led to a very low 
sterlet DNA concentration in the individual extractions (elu-
tion volume 100 µl each). We therefore recommend a larger 
filtered water volume (> 1 l) per sampling replicate when 
applying this protocol for a scarce species such as sturgeon 
in large lowland rivers.

The main intention of this assay was to detect sterlet in 
the headwaters of the Volga, excluding cross-amplification 
from teleosts and lampreys. In-silico and in-vitro tests show 
that it will also detect other Palearctic Acipenser species 
and potentially the two Huso species. This assay might also 
be suitable for detecting other Palearctic sturgeon species, 
but would need further testing for specificity and sensitivity.
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Table 1   Details on the locations 
of eDNA samples tested for 
sterlet with the newly developed 
protocol

Details on sampling protocol are given in Supplemental 4
a Locations with recently documented sterlet presence (Supplemental 5). Therefore, all available eDNA 
samples were surveyed

River Location GPS coordinates Sampling date Number of 
eDNA samples 
tested

Volga Staritsa 56° 30′ 44.1′′ N 34° 55′ 33.2′′ E 13.08.2017 3
Volga Rzhev 56° 15′ 31.7′′ N 34° 19′ 12.2′′ E 13.08.2017 8a

Volga Tver Migalovo 56° 50′ 53.7′′ N 35° 46′ 40.9′′ E 17.08.2017 3
Tudovka Molodoy Tud 56° 25′ 16.9′′ N 33° 36′ 28.4′′ E 13.08.2017 4
Tvertsa Mel’nikovo 56° 56′ 35.0′′ N 35° 47′ 00.1′′ E 18.08.2017 8a
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