Characterization of $\mathbf{1 5}$ novel microsatellite loci for Cypripedium calceolus (Orchidaceae) using MiSeq sequencing

Julita Minasiewicz • Joanna M. Znaniecka

Received: 2 February 2014/ Accepted: 24 March 2014/Published online: 2 April 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract

Lady's slipper orchid (Cypripedium calceolus) serves as a flagship species for plant conservation in many European countries. Its populations are threatened by overcollecting and loss of suitable habitat. Information on local and regional genetic structure can help to develop appropriate conservation strategies. A total of fifteen novel microsatellite markers were developed using MiSeq sequencing. All loci found to be polymorphic, with the number of alleles per locus ranging from 2 to 8 . Observed heterozygosity ranged from 0.19 to 0.89 . The developed microsatellite markers will be useful to analyze genetic diversity and genetic structure of C. calceolus populations.

Keywords Genetic diversity • Genetic structure • Microsatellites • Orchidaceae

Lady's slipper orchid (Cypripedium calceolus L.) is one of the largest and the most spectacular elements of European flora. This Euro-Asiatic species has suffered a marked decrease of localities and area occupied (Terschuren 1999). It is legally protected in all European countries, and listed in various national conventions and directives (Terschuren 1999). Studies of genetic diversity and fine-scale spatial genetic structure in relation to habitat management will improve management strategies of this vulnerable species.

[^0]Two, out of four recently published microsatellite loci for C. calceolus, may pose scoring problems (Pedersen et al. 2012). Therefore a higher number of variable loci is needed to estimate genetic structure and distinguish close relatives. Here we report the isolation and characterization of polymorphic loci that will be useful in future population genetic studies.

Seeds of C. calceolus were collected from population Bukówki (Poland) and asymbiotically germinated in in vitro culture. Total genomic DNA was isolated from three seedlings using procedure described by Bekesiova et al. (1999). Extracted DNA was used for a library preparation with a NEBNext ${ }^{\circledR}$ DNA Library Prep Master Mix Set for Illumina. The sequencing was performed on the MiSeq Benchtop Sequencer (Illumina) using the $2 \times 250 \mathrm{bp}$ read mode. The obtained data (10,19 Mega reads) was assembled using CLCGenomicWorkbench (CLCBio) into 513,225 contigs and the microsatellites were then detected using QDD 2.1 Beta (Meglecz et al. 2010). A total of 22,162 contigs contained at last one microsatellite of which 53 loci were selected for initial screening. We screened 32 plants from two Polish populations (Bukówki and Prokowo) for polymorphisms at these loci. All forward primers were tagged with M13(-21) (5^{\prime}-TGTAAAACGACGGCCAGT- 3^{\prime}) at the 5^{\prime} end. The $10 \mu \mathrm{~L}$ PCR volume contained: $4.5 \mu \mathrm{~L} \mathrm{MyTaq}^{\mathrm{TM}} \mathrm{HS}$ Mix (Bioline), $0.4 \mu \mathrm{M}$ of both forward and reverse primers, $0.2 \mu \mathrm{M}$ dye labelled primer, $0.3 \% \mathrm{DMSO}, 1.2 \mu \mathrm{~L}$ water and $1 \mu \mathrm{~L}$ DNA template ($\sim 50 \mathrm{ng}$). The following PCR conditions were used: 2 min initial denaturation at $96^{\circ} \mathrm{C}$, followed by 35 cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s} /$ primer specific annealing temperature for $30 \mathrm{~s} / 72{ }^{\circ} \mathrm{C}$ for 45 s . Next, the reaction was paused at $72^{\circ} \mathrm{C}$ and fluorescently labelled (6FAM, NED, PET or VIC) M13 primer was added. Amplification was then continued for the next 10 cycles
Table 1 Characteristics of 15 loci for Cypripedium calceolus

Locus	Primer pair sequence ($5^{\prime}-3{ }^{\prime}$)	Repeat motif	T_{m}	Size range (bp) ${ }^{\text {a }}$	Accession no	All $\mathrm{N}_{\text {A }}$	Prokowo				Bukówki			
							N	$\mathrm{N}_{\text {A }}$	H_{O}	$H_{\text {E }}$	N	$\mathrm{N}_{\text {A }}$	H_{O}	$H_{\text {E }}$
Ccal _5	CCACAAAGCCACACTACATAACA	(AG) ${ }_{9}$	62	141-143	KJ130946	2	16	2	0.44	0.34	16	1	0.00	0.00
	TGTAAGGGTGATCTTGGAAAGC													
Ccal _7	TAAGCACTTCTTGGGAGGCA	$(\mathrm{AGT})_{12}$	60	195-207	KJ130947	4	15	4	0.53	0.60	16	3	0.81	0.58
	GAGGTTGAGCACAAGAAAGAAA													
Ccal _9	AGAAGAGATGTGGGAAGCCC	$(\mathrm{AT})_{10}$	59	122-124	KJ130948	2	14	2	0.43	0.46	16	2		0.50
	CTTCCAAGCTCCAGCTACCA													
Ccal_19	CGAGCCTCTCGACAACATCT	$(\mathrm{AT})_{10}$	60	291-293	KJ130949	2	11	1	0.45	0.43	16	2	0.50	0.52
	TGGTGGTTGTTTGGTGTGAA													
Ccal_24	GGCTTATAGAGAGAGAGGCTATGG	$(\mathrm{ATC})_{13}$	59	118-123	KJ130950	5	16	4	0.87			5	0.87	0.72
	CATGGGAGCTGACTCATCAT													
Ccal_25	CAGCATTTTGCTCAATGTCTTT	$(\mathrm{ATC})_{16}$	60	162-180	KJ130951	8	16	5	0.87	0.76	16	7	0.69	0.78
	CAGATAATGGCCCTTTGGTC													
Ccal_31	GGCAATGTCATTAGGGGAAG	$(\mathrm{AT})_{10}$	62	115-119	KJ130952	3	16	2	0.19	0.27	16	2	0.12	0.12
	GGGGTTCAAGTAGCATAAGACAA													
Ccal_34	CATGGAAGGGAATAACATCCT	$(\mathrm{AT})_{10}$	58	128-136	KJ130953	4	15	3	0.47	0.37	16	3	0.50	0.43
	TGCAATTCCATGTACTTGTTCATTA													
Ccal_39	TTCTCCTCAAAGAATGATTCCA	$(\mathrm{AC})_{15}$	59	154-164	KJ130954	6	8	5	0.89	0.67	8	5	0.75	0.70
	CCATTGGGCAATTCACTCAT													
Ccal_47	AAGGCTCAAGATCCCAAGGA	$(\mathrm{AAC})_{11}$	60	127-136	KJ130955	4	15	3	0.33	0.34	15	3	0.33	0.34
	ATCATTATGGTTGTCTCTTTATCGTT													
Ccal_48	CAATAAGCTAAGTGAGTAGCAGGTTG	$(\mathrm{AAC})_{12}$	61	141-150	KJ130956	4	15	4	0.27	0.24	15	4	0.27	0.24
	AGGTTCTTCCTTTCACTTCACTACC													
Ccal_49	TGGAAGGGTCATGTTACTAGCAG	$(\mathrm{AAG})_{13}$	58	115-143	KJ130957	6	16	4	0.69	0.66	15	6	0.93	0.76
	TGGTGATGACACAACTAACTCCA													
Ccal_50	GAGAAGGGATTCAATAGGTTTGG	$(\mathrm{AAG})_{10}$	60	122-134	KJ130958	6	16	3	0.56	0.47	16	5	0.53	0.67
	AAGTTCCTTCTCATTTCTAGCTCTC													
Ccal_51	CCCTCCACCCATTCTCTAGC	$(\mathrm{AAG})_{8}$	60	174-177	KJ130959	2	15	2	0.33	0.28	15	2	0.33	0.28
	ATCTGTTGAAGGTGTTCGGC													
Ccal_53	CСTACCTCCACCCTGACACA	$(\mathrm{AAG})_{13}$	60	164-185	KJ130960	6	8	4	0.50	0.61	9	4	0.33	0.57
	TGAGGCCTAGGCTAGCAAGT													

N number of individuals analyzed, N_{A} number of alleles per locus, H_{O} observed heterozygosity, H_{E} expected heterozygosity
according to Arruda et al. (2010) with 15 min of final extension at $72{ }^{\circ} \mathrm{C}$. Samples were run on an ABI 3730 DNA Analyzer and analyzed with GeneMarker 2.2.0 (SoftGenetics) using GS-500 (LIZ) as a size standard.

The number of alleles per locus, departures from HardyWeinberg equilibrium (HWE), and heterozygosity for two Polish populations were calculated in GenAlEx (Peakall and Smouse 2012). The presence of linkage disequilibrium (LD) was tested in Arlequin (Excoffier and Lischer 2010). Presence of null alleles and scoring errors were checked using Micro-Checker version 2.2.3 (Van Oosterhout et al. 2004). The statistical significances in multiple statistical tests were adjusted by the Bonferroni corrections (Rice 1989). A set of 18 SSR was polymorphic. Three of them showed evidence for presence of null alleles and were excluded. Remaining loci showed no evidence of LD after sequential Bonferroni correction. Number of alleles per locus for remaining 15 SSR ranged from 2 to 8 (Table 1) with mean of 4.3. In the studied populations, the mean N_{A} ranged from 3.27 to 3.6 . Observed $\left(H_{\mathrm{o}}\right)$ and expected $\left(H_{\mathrm{e}}\right)$ heterozygosity ranged from 0.19 to 0.89 and 0.12 to 0.71 respectively. None of the loci showed deviation from Hardy-Weinberg equilibrium. The 15 polymorphic SSR loci reported in this study will be useful for assessing genetic diversity, population structure and parentage analysis.

Acknowledgments This work was supported by the Polish National Science Centre grant No. 3984/B/PO1/2010/39.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Arruda MP, Gonçalves EC, Schneider MPC, da Costa da Silva AL, Morielle-Versute E (2010) An alternative genotyping method using dye-labeled universal primer to reduce unspecific amplifications. Mol Biol Rep 37:2031-2036. doi:10.1007/s11033-009-9655-7
Bekesiova I, Nap JP, Mlynarova L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep 17:269-277. doi:10.1023/A: 1007627509824
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564-567. doi:10.1111/j. 1755-0998.2010.02847.x
Meglecz E, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26(3):403-404. doi:10.1093/bioinformatics/btp670
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537-2539. doi:10.1093/bioinformatics/bts460
Pedersen HA, Rasmussen HN, Kahandawala IM, Fay MF (2012) Genetic diversity, compatibility patterns and seed quality in isolated populations of Cypripedium calceolus (Orchidaceae). Conserv Genet 13:89-98. doi:10.1007//s10592-011-0267-0
Rice WR (1989) Analyzing tables of statistical test. Evolution 43:223-225. doi:10.2307/2409177
Terschuren J (1999) Action plan for Cypripedium calceolus in Europe. Nature and Environment no. 100. Council of Europe Publishing, Strasbourg
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotypig errors in microsatellite data. Mol Ecol Notes 4:535-553. doi:10.1111/j.1471-8286.2004.00684.x

[^0]: J. Minasiewicz (\boxtimes)

 Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
 e-mail: biojm@ug.edu.pl; biojm@univ.gda.pl
 J. M. Znaniecka

 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk - Medical University of Gdańsk, Gdańsk, Poland

