Skip to main content

Advertisement

Log in

Electrochemical Degradation of 4-Fluorophenol in a Moveable Pd-Polypyrrole Catalyst-Mediated Reactor

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electrochemical redox is an effective method to degrade halogenated organic pollutants (HOPs). Herein, highly dispersed Pd-polypyrrole (Pd-PPy) catalysts were synthesized by a facile one-step polymerization method. The morphology and phase structure of the catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical redox of 4-fluorophenol (4-FP) was conducted in a single-chamber reactor with Pd-PPy as a moveable catalyst. The effects of the initial solution pH, constant current, and supporting electrolyte on the degradation of 4-FP were investigated. The removal efficiency of 4-FP was 84.6% after 2 h under an initial solution pH of 2.5 and an applied current density of 2.0 mA/cm2. The mechanism of 4-FP degradation was inferred, including the defluorination of 4-FP on the cathode and oxidation of 4-FP and phenol on the anode. The degradation of 4-FP in the Pd-PPy-mediated reactor showed lower energy consumption and higher removal efficiency. The degradation efficiency of 4-FP had almost no change after 20 cycles of experiments, which indicates the good durability of the prepared Pd-PPy catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Wu, G. Zhao, Y. Lei, P. Li, Distinctive tin dioxide anode fabricated by pulse electrodeposition: high oxygen evolution potential and efficient electrochemical degradation of fluorobenzene. J. Phys. Chem. C 115, 3888–3898 (2011)

    Article  CAS  Google Scholar 

  2. Y. Xu, T. Ge, H. Ma, X. Ding, X. Zhang, Q. Liu, Rh-Pd-alloy catalyzed electrochemical hydrodefluorination of 4-fluorophenol in aqueous solutions. Electrochim. Acta 270, 110–119 (2018)

    Article  CAS  Google Scholar 

  3. A. Harsanyi, G. Sandford, Organofluorine chemistry: applications, sources and sustainability. Green Chem. 17, 2081–2086 (2015)

    Article  CAS  Google Scholar 

  4. Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, Current contributions of organofluorine compounds to the agrochemical industry, iScience. 23, 101467 (2020)

  5. X. Zhang, T. Lai, R. Kong, Biology of fluoro-organic compounds, Fluorous. Chemistry 308, 365–404 (2011)

    Google Scholar 

  6. R. Francke, R. Reingruber, D. Schollmeyer, S. Waldvogel, Highly fluorinated 2,2’-Biphenols and related compounds: relationship between substitution pattern and herbicidal activity. J. Agric. Food Chem. 61, 4709–4714 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. L. Hollaender, W. Kossack, M. Kollosche, W. Wirges, F. Kremer, R. Gerhard, Influence of the remanent polarisation on the liquid crystal alignment in composite films of ferroelectric poly (vinylidene fluoride-trifluoroethylene) and a cyanobiphenyl-based liquid crystal. Liq. Cryst. 43, 1514–1521 (2016)

    Article  CAS  Google Scholar 

  8. Y. Wang, Y. Guo, Y. Ren, M. Fu, J. Zhu, Study on polyvinylidene fluoride as alignment layer in twist-nematic liquid crystal display. Liq. Cryst. 45, 857–863 (2018)

    Article  CAS  Google Scholar 

  9. T. Rybalova, I. Bagryanskaya, C-F...π, F...H, and F...F intermolecular interactions and F-aggregation: role in crystal engineering of fluoroorganic compounds, Journal of Structural Chemistry. 50, 741–753 (2009)

  10. D. O’Hagan, Understanding organofluorine chemistry: an introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Q. Zhang, P. Xu, H. Qian, F. Yang, Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: assessment based on multivariate statistical approach and human health risk, Science of the Total Environment. 741, 140460 (2020)

  12. Z. Wang, J. DeWitt, C. Higgins, I. Cousins, A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 52, 3325–3325 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. G. Kennedy Jr., Toxicology of fluorine-containing monomers. Crit. Rev. Toxicol. 21, 149–170 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. S. Chu, R. Letcher, D. McGoldrick, S. Backus, A new fluorinated surfactant contaminant in biota: perfluorobutane sulfonamide in several fish species. Environ. Sci. Technol. 50, 669–675 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. L. Ravichandran, K. Selvam, M. Swaminathan, Highly efficient activated carbon loaded TiO2 for photo defluoridation of pentafluorobenzoic acid. J. Mol. Catal. A: Chem. 317, 89–96 (2010)

    Article  CAS  Google Scholar 

  16. F. Zhu, Y. Wu, Y. Liang, H. Li, W. Liang, Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni, Chemical Engineering Journal. 389, 124276 (2020)

  17. J. Cheng, C.D. Vecitis, H. Park, B.T. Mader, M.R. Hoffmann, Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: kinetic effects of matrix inorganics. Environ. Sci. Technol. 44, 445–450 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. C. Amorim, A. Duque, C. Afonso, P. Castro, Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor. Bioresour Technol 144, 554–562 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Chen, Y. Liu, W. Wei, B. Ni, Recent advances in electrocatalysts for halogenated organic pollutant degradation, Environmental Science. NANO 6, 2332–2366 (2019)

    CAS  Google Scholar 

  20. J. Niu, Y. Li, E. Shang, Z. Xu, J. Liu, Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146, 526–538 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. R. Baumgartner, K. Mcneill, Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environ. Sci. Technol. 46, 10199–10205 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. X. Shu, Q. Yang, F. Yao, Y. Zhong, X. Li, Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chem. Eng. J. 358, 903–911 (2018)

    Article  Google Scholar 

  23. E. Escobedo, J. Kim, D. Oh, K. Cho, Y. Chang, Electrocatalytic dehalogenation of aqueous pollutants by dealloyed nanoporous Pd/Ti cathode. Catal. Today 361, 63–68 (2021)

    Article  CAS  Google Scholar 

  24. Z. Lou, Z. Wang, J. Zhou, C. Zhou, J. Xu, X. Xu, Pd/TiC/Ti electrode with enhanced atomic H* generation, atomic H* adsorption and 2,4-DCBA adsorption for facilitating electrocatalytic hydrodechlorination, Environmental Science. NANO 7, 1566–1581 (2020)

    CAS  Google Scholar 

  25. R. Mao, H. Liu, J. Lan, H. Ning, X. Zhao, Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H. Environ. Sci. Technol. 50, 3829–3837 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Xu, Z. Yao, Z. Mao, M. Shi, B. Liu, Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction, Applied Catalysis B: Environmental. 277, 119057 (2020)

  27. B. Huang, H. Yin, X. Cao, C. Lei, W. Chen, Insights into electroreductive dehalogenation mechanisms of chlorinated environmental pollutants. ChemElectroChem 7, 1825–1837 (2020)

    Article  Google Scholar 

  28. M. Chen, S. Shu, J. Li, X. Lv, G. Jiang, Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction, Journal of Hazardous Materials. 389, 121876 (2019)

  29. A. Brzózka, A. Jeleń, A. Brudzisz, M. Marzec, G. Sulka, Electrocatalytic reduction of chloroform at nanostructured silver electrodes. Electrochim. Acta 225, 574–583 (2017)

    Article  Google Scholar 

  30. Y. Xu, H. Ma, T. Ge, Y. Chu, C.A. Ma, Rhodium-catalyzed electrochemical hydrodefluorination: a mild approach for the degradation of fluoroaromatic pollutants. Electrochem. Commun. 66, 16–20 (2016)

    Article  CAS  Google Scholar 

  31. K. Zhu, C. Sun, H. Chen, S. Baig, X. Xu, Enhanced catalytic hydrodechlorination of 2,4-dichlorophenoxyacetic acid by nanoscale zero valent iron with electrochemical technique using a palladium/nickel foam electrode. Chem. Eng. J. 223, 192–199 (2013)

    Article  CAS  Google Scholar 

  32. F. Wang, Y. Sun, Y. He, L. Liu, J. Xu, X. Zhao, G. Yin, L. Zhang, S. Li, Q. Mao, Highly efficient and durable MoNiNC catalyst for hydrogen evolution reaction. Nano Energy 37, 1–6 (2017)

    Article  Google Scholar 

  33. Z. He, J. Sun, J. Wei, Q. Wang, C. Huang, J. Chen, S. Song, Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination. J. Hazard. Mater. 250, 181–189 (2013)

    Article  PubMed  Google Scholar 

  34. G. Jiang, X. Shi, M. Cui, W. Wang, S. Zhang, Surface ligand environment boosts the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. ACS Appl. Mater. Interfaces. 13, 4072–4083 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Wang, C. Cui, G. Zhang, Y. Xin, S. Wang, Electrocatalytic hydrodechlorination of pentachlorophenol on Pd-supported magnetic biochar particle electrodes, Separation and Purification Technology. 258, 118017 (2021)

  36. J. Niu, Y. Bao, Y. Li, Z. Chai, Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes. Chemosphere 92, 1571–1577 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. J. Zhou, Z. Lou, K. Yang, J. Xu, Y. Li, Y. Liu, S.A. Baig, X. Xu, Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: adsorption and dechlorination activity. Appl. Catal. B 244, 215–224 (2019)

    Article  CAS  Google Scholar 

  38. J. Zhou, Z. Lou, J. Xu, X. Zhou, K. Yang, X. Gao, Y. Zhang, X. Xu, Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst. Chem. Eng. J. 358, 1176–1185 (2019)

    Article  CAS  Google Scholar 

  39. J. Zhou, Z. Lou, Z. Wang, C. Zhou, C. Li, S.A. Baig, X. Xu, Electrocatalytic dechlorination of 2,4-DCBA using CTAB functionalized Pd/GAC movable granular catalyst: role of adsorption in catalysis, Chemical Engineering Journal. 414, 128758 (2021)

  40. G. Bagdziunas, Theoretical design of molecularly imprinted polymers based on polyaniline and polypyrrole for detection of tryptophan. Molecular Systems Design and Engineering 5, 1504–1512 (2020)

    Article  CAS  Google Scholar 

  41. Z. Sun, H. Shen, X. Wei, X. Hu, Electrocatalytic hydrogenolysis of chlorophenols in aqueous solution on Pd58Ni42 cathode modified with PPy and SDBS. Chem. Eng. J. 241, 433–442 (2014)

    Article  CAS  Google Scholar 

  42. G. Ciric-Marjanovic, Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013)

    Article  CAS  Google Scholar 

  43. H. Li, L. Shen, S. Liu, L. Zhang, Preparation of rod-shaped polythiophene-coated polystyrene nanocomposite particles. Colloid Polym. Sci. 292, 3319–3326 (2014)

    Article  CAS  Google Scholar 

  44. Z. Sun, G. Song, R. Du, X. Hu, Modification of a Pd-loaded electrode with a carbon nanotubes-polypyrrole interlayer and its dechlorination performance for 2,3-dichlorophenol. RSC Adv. 7, 22054–22062 (2017)

    Article  CAS  Google Scholar 

  45. X. Wei, L. Zeng, W. Lu, J. Miao, R. Zhang, M. Zhou, J. Zhang, A polypyrrole-modified Pd-Ag bimetallic electrode for the electrocatalytic reduction of 4-chlorophenol [J]. Catalysts 9(11), 931–936 (2019)

    Article  CAS  Google Scholar 

  46. X. Wan, X. Wei, J. Miao, R. Zhang, J. Zhang, Q. Niu, Pd-Ni/Cd loaded PPy/Ti composite electrode: synthesis, characterization, and application for hydrogen storage [J]. Int. J. Energy Res. 43(8), 3284–3329 (2019)

    Article  CAS  Google Scholar 

  47. J. Li, C. Luan, Y. Cui, H. Zhang, L. Wang, H. Wang, Z. Zhang, B. Zhao, H. Zhang, X. Zhang, X. Cheng, Preparation and characterization of palladium/polyaniline/foamed nickel composite electrode for electrocatalytic dechlorination. Sep. Purif. Technol. 211, 198–206 (2019)

    Article  CAS  Google Scholar 

  48. J. Zhang, X. Wei, J. Miao, R. Zhang, J. Zhang, M. Zhou, W. Lu, Enhanced performance of an Al-doped SnO2 anode for the electrocatalytic oxidation of organic pollutants in water, Materials Today Communications. 24, 101164 (2020).

  49. Y. Xue, X. Lu, X. Bian, J. Lei, C. Wang, Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol. J. Colloid Interface Sci. 379, 89–93 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. X. Shen, F. Xiao, H. Zhao, Y. Chen, C. Fang, R. Xiao, W. Chu, G. Zhao, In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-fenton process. Environ. Sci. Technol. 54, 4564–4572 (2020)

    Article  CAS  PubMed  Google Scholar 

  51. Z. Sun, X. Wei, H. Shen, X. Hu, Preparation and evaluation of Pd/polymeric pyrrole-sodium lauryl sulfonate/foam-Ni electrode for 2,4-dichlorophenol dechlorination in aqueous solution. Electrochim. Acta 129, 433–440 (2014)

    Article  CAS  Google Scholar 

  52. W. Prissanaroon, N. Brack, P. Pigram, J. Liesegang, T. Cardwell, Surface and electrochemical study of DBSA-doped polypyrrole films grown on stainless steel. Surf. Interface Anal. 33, 653–662 (2002)

    Article  CAS  Google Scholar 

  53. X. Wei, X. Wan, Z. Sun, J. Miao, R. Zhang, Q. Niu, Understanding electrocatalytic hydrodechlorination of chlorophenols on palladium-modified cathode in aqueous solution. ACS Omega 3, 5876–5886 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. U. Patel, S. Suresh, Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Sep. Purif. Technol. 61, 115–122 (2008)

    Article  CAS  Google Scholar 

  55. D. Ghernaout, M. Naceur, A. Aouabed, On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination 270, 9–22 (2011)

    Article  CAS  Google Scholar 

  56. C. Sun, Z. Lou, Y. Liu, R. Fu, X. Zhou, Z. Zhang, S. Baig, X. Xu, Influence of environmental factors on the electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on nTiN doped Pd/Ni foam electrode. Chem. Eng. J. 281, 183–191 (2015)

    Article  CAS  Google Scholar 

  57. G. Lowry, M. Reinhard, Pd-catalyzed TCE dechlorination in water: effect of H2 (aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution. Environ. Sci. Technol. 35, 696–702 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. G. Jiang, M. Lan, Z. Zhang, X. Lv, Z. Lou, Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water. Environ. Sci. Technol. 51, 7599–7605 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21403058, 21576073, and 41601520) and the Key Scientific Research Projects of Higher Education Institutions in Henan Province (20A610001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Wei, Junhui Liu or Shufa Zhu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wei, X., Miao, J. et al. Electrochemical Degradation of 4-Fluorophenol in a Moveable Pd-Polypyrrole Catalyst-Mediated Reactor. Electrocatalysis 13, 81–90 (2022). https://doi.org/10.1007/s12678-021-00696-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00696-1

Keywords

Navigation