Skip to main content

Advertisement

Log in

Highly Active Nickel–Iron Nanoparticles With and Without Ceria for the Oxygen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Anion exchange membrane water electrolysis (AEMWE) is an attractive technology for hydrogen (H2) production. This process, however, is kinetically hindered by the oxygen evolution half-cell reaction (OER). Nickel (Ni)-based materials in combination with iron (Fe) have been considered a promising option to enhance activity toward OER in alkaline media. Studies have also shown that incorporating ceria (CeO2) into electrocatalysts can help promote the OER. This study investigates the OER activity of bimetallic Ni–Fe spherical nanoparticles, with and without ceria, synthesized by chemical reduction in ethanol using sodium borohydride. First, the iron content is studied for Ni100−xFex / 50 wt% CeO2 (x = 0, 5, 10, 20, 40 at%); then, the ceria content is studied for the best two iron compositions, namely, Ni80Fe20 / y wt% CeO2 and Ni90Fe10 / y wt%CeO2 (y = 0, 5, 7, 10, 20, and 50 wt%). Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) characterization show spherical particles 4–6 nm in size, where Ni and Fe are co-distributed, and ceria is separately agglomerated. Electrochemical characterization in 1 M KOH shows that at 10 mA cm−2, the Ni80Fe20 catalyst achieved the lowest overpotential for OER of 269 mV, which is better performing than the iridium black benchmark, as well as similar NiFe materials reported in literature. Stability testing indicates that the Ni90Fe10 catalyst is the most stable material with almost no change in overpotential over 12 h at 10 mA cm−2. This study shows that the addition of CeO2 to the catalysts does not significantly improve or impede OER activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Mazloomi, C. Gomes, Renew. Sustain. Energy Rev. 16, 3024 (2012)

    Article  CAS  Google Scholar 

  2. D.M.F. Santos, C.A.C. Sequeira, Quim. Nova 36, 1176 (2013)

    Article  CAS  Google Scholar 

  3. M.K. Cho, A. Lim, S.Y. Lee, H. Kim, S.J. Yoo, Y. Sung, H.S. Park, J.H. Jang, J. Electrochem. Sci. Technol. 8, 183 (2017)

    Article  CAS  Google Scholar 

  4. I. Vincent, D. Bessarabov, Renew. Sustain. Energy Rev. 81, 1690 (2018)

    Article  CAS  Google Scholar 

  5. H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernäcker, T. Weißgärber, L. Röntzsch, J. Meier-Haack, Sustain. Energy Fuels 4, 2114 (2020)

    CAS  Google Scholar 

  6. R. Phillips and C. W. Dunnill, RSC Adv. 6, 100643 (2016)

  7. M. K. Cho, H. Park, S. Choe, S. J. Yoo, J. Y. Kim, H.-J. Kim, D. Henkensmeier, S. Y. Lee, Y. Sung, H. S. Park, and J. Hyun Jang, J. Power Sources 347, 283 (2017)

  8. M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 38, 4901 (2013)

    Article  CAS  Google Scholar 

  9. G. Li, L. Anderson, Y. Chen, M. Pan, P.A. Chuang, Sustain. Energy Fuels 2, 237 (2018)

    Article  CAS  Google Scholar 

  10. N. Alzate-Carvajal, L.M. Bolivar-Pineda, V. Meza-Laguna, V.A. Basiuk, E.V. Basiuk, E.A. Baranova, ChemElectroChem 7, 428 (2020)

    Article  CAS  Google Scholar 

  11. O. Diaz-Morales, D. Ferrus-Suspedra, M.T.M. Koper, Chem. Sci. 7, 2639 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. Fabbri, T.J. Schmidt, ACS Catal. 8, 9765 (2018)

    Article  CAS  Google Scholar 

  13. M.E.G. Lyons, M.P. Brandon, Int. J. Electrochem. Sci. 3, 1386 (2008)

    CAS  Google Scholar 

  14. J.O.M. Bockris, J. Chem. Phys. 24, 817 (1956)

    Article  CAS  Google Scholar 

  15. E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Catal. Sci. Technol. 4, 3800 (2014)

    CAS  Google Scholar 

  16. M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.J. Zou, Z.L. Wang, Nano Energy 37, 136 (2017)

    Article  CAS  Google Scholar 

  17. H. Bode, K. Dehmelt, J. White, Electrochim. Acta 11, 1079 (1966)

    Article  CAS  Google Scholar 

  18. E. Cossar, A.O. Barnett, F. Seland, E.A. Baranova, Catalysts 9, 814 (2019)

    Article  CAS  Google Scholar 

  19. M. Gong, H. Dai, Nano Res. 8, 23 (2015)

    Article  CAS  Google Scholar 

  20. L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, J. Am. Chem. Soc. 134, 17253 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. X. Li, F.C. Walsh, D. Pletcher, Phys. Chem. Chem. Phys. 13, 1162 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. S. Lee, L. Bai, X. Hu, Angew. Chemie - Int. Ed. 59, 8072 (2020)

    Article  CAS  Google Scholar 

  23. D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M. Cheng, D. Sokaras, T. Weng, R. Alonso-mori, R.C. Davis, J.R. Bargar, J.K. Nørskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc. 137, 1305 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. N. Li, D.K. Bediako, R.G. Hadt, D. Hayes, T.J. Kempa, F. Von Cube, D.C. Bell, L.X. Chen, D.G. Nocera, Proc. Natl. Acad. Sci. U. S. A. 114, 1486 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Xiao, H. Shin, W.A. Goddard, Proc. Natl. Acad. Sci. U. S. A. 115, 5872 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Xu, M.B. Stevens, M.R. Cosby, S.Z. Oener, A.M. Smith, L.J. Enman, K.E. Ayers, C.B. Capuano, J.N. Renner, N. Danilovic, Y. Li, H. Wang, Q. Zhang, S.W. Boettcher, ACS Catal. 9, 7 (2019)

    Article  CAS  Google Scholar 

  27. T. Tian, M. Zheng, J. Lin, X. Meng, Y. Ding, Chem. Commun. 55, 1044 (2019)

    Article  CAS  Google Scholar 

  28. M. Yu, G. Moon, E. Bill, H. Tüysüz, A.C.S. Appl, Energy Mater. 2, 1199 (2019)

    CAS  Google Scholar 

  29. S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, J. Phys. Chem. C 119, 7243 (2015)

    Article  CAS  Google Scholar 

  30. F. Song, X. Hu, Nat. Commun. 5, 4477 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. X. Yu, M. Zhang, W. Yuan, G. Shi, J. Mater. Chem. A 3, 6921 (2015)

    Article  CAS  Google Scholar 

  32. B.M. Hunter, J.D. Blakemore, M. Deimund, H.B. Gray, J.R. Winkler, A.M. Múller, J. Am. Chem. Soc. 136, 13118 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Q. Chen, R. Wang, M. Yu, Y. Zeng, F. Lu, X. Kuang, X. Lu, Electrochim. Acta 247, 666 (2017)

    Article  CAS  Google Scholar 

  34. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, A.C.S. Chem, Rev. 116, 5987 (2016)

    CAS  Google Scholar 

  35. H.A.E. Dole, E.A. Baranova, ChemCatChem 8, 1977 (2016)

    Article  CAS  Google Scholar 

  36. A. Trovarelli, P. Fornasiero (eds.), Catalysis by Ceria and Related Materials, 2nd edn. (Imperial College Press, London, 2013)

    Google Scholar 

  37. M.B. Watkins, A.S. Foster, A.L. Shluger, J. Phys. Chem. C 111, 15337 (2007)

    Article  CAS  Google Scholar 

  38. H.T. Chen, Y.M. Choi, M. Liu, M.C. Lin, ChemPhysChem 8, 849 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. M. Fronzi, S. Piccinin, B. Delley, E. Traversa, C. Stampfl, Phys. Chem. Chem. Phys. 11, 9188 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. J.-X. Feng, S.-H. Ye, H. Xu, Y.-X. Tong, G.-R. Li, Adv. Mater. 28, 4698 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Z. Chen, C.X. Kronawitter, X. Yang, Y.W. Yeh, N. Yao, B.E. Koel, Phys. Chem. Chem. Phys. 19, 31545 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic, J. Jin, A.T. Bell, J.M. Gregoire, Energy Environ. Sci. 7, 682 (2014)

    Article  CAS  Google Scholar 

  44. J.A. Haber, C. Xiang, D. Guevarra, S. Jung, J. Jin, J.M. Gregoire, ChemElectroChem 1, 524 (2014)

    Article  CAS  Google Scholar 

  45. T. Audichon, S. Morisset, T.W. Napporn, K.B. Kokoh, C. Comminges, C. Morais, ChemElectroChem 2, 1128 (2015)

    Article  CAS  Google Scholar 

  46. D.A. Corrigan, J. Electrochem. Soc. 134, 377 (2006)

    Article  Google Scholar 

  47. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. M. Alsabet, M. Grden, G. Jerkiewicz, Electrocatalysis 2, 317 (2011)

    Article  CAS  Google Scholar 

  49. E. Cossar, M. S. E. Houache, Z. Zhang, and E. A. Baranova, J. Electroanal. Chem. 870, 114246 (2020)

  50. M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135, 12329 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, Y. Liang, ACS Catal. 6, 580 (2016)

    Article  CAS  Google Scholar 

  52. M. Görlin, P. Chernev, J.F. De. Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 138, 5603 (2016)

    Article  PubMed  CAS  Google Scholar 

  53. M. Gorlin, J.F. De. Araujo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 139, 2070 (2017)

    Article  PubMed  CAS  Google Scholar 

  54. M. Wang, J. Jiang, L. Ai, A.C.S. Sustain, Chem. Eng. 6, 6117 (2018)

    CAS  Google Scholar 

  55. J.W.D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T.F. Jaramillo, Nat. Energy 1, 16053 (2016)

    Article  CAS  Google Scholar 

  56. L.J. Enman, M.S. Burke, A.S. Batchellor, S.W. Boettcher, ACS Catal. 6, 2416 (2016)

    Article  CAS  Google Scholar 

  57. P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A.N. Singh, A.M. Harzandi, K.S. Kim, Energy Environ. Sci. 13, 3447 (2020)

    Article  CAS  Google Scholar 

  58. Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D.G. Evans, X. Duan, Chem. Sci. 6, 6624 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, Y. Tsuji, ACS Catal. 10, 1886 (2020)

    Article  CAS  Google Scholar 

  60. F. Dionigi, P. Strasser, Adv. Energy Mater. 6, 1600621 (2016)

    Article  CAS  Google Scholar 

  61. J. Kim, D.H. Youn, K. Kawashima, J. Lin, H. Lim, C.B. Mullins, Appl. Catal. B Environ. 225, 1 (2018)

    Article  CAS  Google Scholar 

  62. M. Görlin, P. Chernev, P. Paciok, C.-W. Tai, J.F. De. Arau, T. Reier, M. Heggen, R. Dunin-borkowski, P. Strasser, Chem. Commun. 55, 818 (2019)

    Article  Google Scholar 

  63. Y. Pi, N. Zhang, S. Guo, J. Guo, X. Huang, Nano Lett. 16, 4424 (2016)

    Article  CAS  PubMed  Google Scholar 

  64. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135, 8452 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. Y. Zhao, N.M. Vargas-Barbosa, E.A. Hernandez-Pagan, T.E. Mallouk, Small 7, 2087 (2011)

    Article  CAS  PubMed  Google Scholar 

  66. Y. Kuroda, T. Nishimoto, and S. Mitsushima, Electrochim. Acta 323, 134812 (2019)

  67. F.D. Speck, K.E. Dettelbach, R.S. Sherbo, D.A. Salvatore, A. Huang, C.P. Berlinguette, Chem 2, 590 (2017)

    Article  CAS  Google Scholar 

  68. J.A. Haber, E. Anzenburg, J. Yano, C. Kisielowski, J.M. Gregoire, Adv. Energy Mater. 5, 1402307 (2015)

    Article  CAS  Google Scholar 

  69. M. Favaro, W.S. Drisdell, M.A. Marcus, J.M. Gregoire, E.J. Crumlin, J.A. Haber, J. Yano, ACS Catal. 7, 1248 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This research was conducted as part of the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by grant number RGPNM 477963–2015 under the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers Program. Additional funding was also provided by NSERC’s Alexander Graham Bell Canada Graduate Scholarship — Doctoral (CGS D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Baranova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossar, E., Agarwal, K., Nguyen, V.B. et al. Highly Active Nickel–Iron Nanoparticles With and Without Ceria for the Oxygen Evolution Reaction. Electrocatalysis 12, 605–618 (2021). https://doi.org/10.1007/s12678-021-00674-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00674-7

Keywords

Navigation