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Abstract
Exosomes are small extracellular vesicles (30–150 nm) that are formed by endocytosis containing complex RNA as well 
as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. 
According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are 
very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released 
under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, 
including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastroin-
testinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, 
or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because 
the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies 
have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in 
gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physi-
ological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In 
addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, 
and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.
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1  Introduction

Based on size, extracellular vesicles are classified into three groups: exosomes (30–150 nm), microvesicles (100–1000 
nm), and apoptotic bodies (> 1000 nm) [1]. Exosomes are extracellular vesicles that were first described by Harding et al. 
in 1983, and confirmed by Johnstone et al. in 1987 [2]. Extracellular vesicles are surrounded by a lipid bilayer membrane 
and originate from multivesicular bodies secreted by various types of cells. Exosomes are formed via endocytosis and 
can be derived from most mammalian cells, including cytotoxic T cells, B lymphocytes, platelets, dendritic cells (DCs), 
mast cells, adipocytes, neurons, endothelial cells, and epithelial cells (Fig. 1) [3]. Depending on the cellular source and 
the environmental conditions to which exosomes are subjected, the membrane content and composition are highly 
heterogeneous and dynamic [4]. The release of exosomes occurs both under physiological and pathological conditions. 
In addition to cells, exosomes are also isolated from sources such as bovine milk [5, 6] and are present in almost all body 
fluids, including saliva, semen, plasma, human breast milk, amniotic fluid, bronchoalveolar lavage, cerebrospinal fluid 
bile, synovial fluid, urine, tears, nasal secretions, and pleural effusions [3]. Depending on cellular origin, exosomes can 
contain different components such as proteins, nucleic acids, and lipids; because of this diverse composition, they have 
the potential to regulate the expression of various genes [7]. Initially, exosome production was mainly considered as 
part of a process to dispose of cellular waste products; however, various other functions emerged over the years [8]. For 
example, exosomes play a critical role in intercellular communication (in addition to established mechanisms such as 
direct cell–cell contact and transfer of secreted molecule) [9], and can be used in gene therapy and drug delivery [10]. 
For example, exosomes derived from raw bovine milk were tested as carriers of extracellular RNAs aimed at delivering 
hsa-miR148a-3p to liver (HepG2) and intestinal (Caco-2) cell lines. The results showed that this cost-effective source can be 
used as a nanocarrier of functional microRNAs (miRNAs) in RNA-based therapy [6]. Compared to viral vectors/liposomes, 
exosomes are less immunogenic and have the ability to cross major physiological barriers such as the blood–brain barrier, 
making them an attractive option as biomarkers and therapeutic agents [11]. Furthermore, exosomes are vital in antigen 
presentation and immune system activation [7], properties that can be utilized in vaccination [8]. Effective application of 
exosomes has also been reported in the diagnosis and therapy of several diseases, particularly cancers [12]. Exosomes 



Vol.:(0123456789)

Discover Oncology          (2024) 15:162  | https://doi.org/10.1007/s12672-024-01024-x	 Review

can affect cancer progression via various mechanisms, including angiogenesis, modulation of immune response, metas-
tasis, drug resistance, and tumor growth or development [1, 3]. Gastrointestinal (GI) cancers are among the deadliest 
cancers and can develop in the upper parts of the GI tract, e.g., the esophagus and stomach, or in other organs such as 
the liver, pancreas, small intestine, and colon [13]. Gastric malignancy is the fourth most prevalent cancer and the most 
common cause of cancer-related deaths in recent years.. Despite significant advancements in various treatment strate-
gies such as chemotherapy, radiotherapy, immunotherapy, and surgery, tumor metastasis and/or recurrence are still the 
most common causes of cancer death, which is due to poor prognosis in this field [14]. Based on the current literature, 
timelier (i.e., early) diagnosis and increased knowledge of risk factors would significantly benefit cancer survival. Thus, 
there is an urgent need for new non-invasive diagnostic methods to improve early cancer diagnosis and prognosis 
[15]. For example, the survival rate of patients with colorectal cancer (CRC), one of the most common cancers with high 
mortality rate, would be significantly increased by early diagnosis [16]. As indicated, exosomes have been reported as 
a novel approach in the diagnosis and treatment of cancers [17], especially in gastrointestinal cancers [16], and their 
role as diagnostic biomarkers or drug carriers is well studied [12]. Exosomes containing lncRNA RPPH1, derived from 
tumor cells, were shown to be important in early diagnosis of CRC [18]. In another study, the disbalance of exosomes 
containing miR-217 was considered a diagnostic biomarker in gastric cancer [19]. Recent work indicated that exosomes 
containing miR-9-3p or miR-21 can act as biomarkers for early detection of metastasis in liver cancer (HCC), a malignant 
cancer that has no specific symptoms in the early stages [20]. In this review, we describe the functional and mechanistic 
roles of exosomes in the development and progression of gastrointestinal cancers. In addition, we discuss the potential 
clinical and biomedical applications of exosomes in gastrointestinal cancers.

2 � Exosome biogenesis, functions, mechanisms, and applications

2.1 � The biogenesis of exosomes

Exosome biogenesis starts with double invasion of the plasma membrane by endocytosis, followed by formation of the 
primary endosome, which matures into a secondary endosome or multivesicular body (MVB) (Fig. 2), which itself contains 

Fig. 1   Schematic figure of the effect of exosomes on gastrointestinal cancer. Small extracellular vesicles are surrounded by a lipid bilayer 
membrane and are secreted by various types of cells, including cytotoxic T cells, B lymphocytes, platelets, dendritic cells (DCs), mast cells, 
adipocytes, neurons, endothelial and epithelial cells originate. Exosomes are isolated from sources such as saliva, plasma, milk, amniotic 
fluid, synovial fluid, urine, tears, nasal secretions and pleural effusion. Depending on the cell source and environmental conditions, the exo-
some content is different and may include DNA, RNA, polypeptide, CD molecules, etc., which have the potential to regulate the expression 
of various genes and interfere in cellular mechanisms. These characteristics can be used to carry drugs or therapeutic agents and also as 
biomarkers in gastrointestinal cancer
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intraluminal vesicles (ILVs) [21]. The formed MVB has two possible fates: it can combine with lysosomes and destroy its 
cargo, or merge with the cell membrane and release its ILVs into the extracellular environment [22]. The stages of exosome 
formation in MVBs include the entry of specific lipids and proteins into the endosomal membrane as well as the entry of 
molecules into primary ILVs and the subsequent separation of ILVs. The exact process of cargo sorting is still unknown; 
however, two main mechanisms have been identified for the entry of the cargo into the exosome. The first depends on 
‘endosomal sorting complexes required for transport’ (ESCRT), which takes place on the cytosolic side of the MVB mem-
brane and recognizes transport, trans-Golgi network, and cell surface proteins; these proteins are then ubiquitinated 
and directed into the exosome. The second mechanism is independent of ESCRT, and relies on the lipid content of the 
endosomal membrane [23, 24]. Studies have shown that ESCRT components play an important role in the formation of 
MVB and ILV. This complex contains thirty different types of proteins, including those classified into ESCRT-0, -I, II, and 
-III [8], VPS4 (vacuolar protein sorting-associated protein) [25], VTA1 (vesicle trafficking 1) [21], and Alix (apoptosis-linked 
gene 2-interacting protein X) [26]. The main function of ESCRT is to include and sort specific components in ILVs that are 
supposed to be converted into exosomes [8]. The reaction of ESCRT-0 with phosphatidyl inositol triphosphate, located 
on the endosomal membrane, activates ESCRT-0 and binding to ubiquitination proteins, leading to the recruitment of 
ESCRT-II components. The involvement of ESCRT-1 and -II signals the beginning of budding towards the inside of the MVB. 
Near the bend of the membrane of the forming ILVs, ESCRT-II activates the components of ESCRT-3, which with its ATPase 
enzymes causes the separation of ESCRT subsets and vesicles. Recent studies reported that inhibition of the expression 
of specific ESCRT components, such as tumor susceptibility gene 101 (TSG101) or hepatocyte growth factor-regulated 
tyrosine kinase substrate (HRS), decreases the amount of exosome production and secretion [8, 20, 21, 27, 28]. As indi-
cated, the second pathway of MVB formation is ESCRT-independent and relies on the lipid composition of the endosomal 
membrane. Thus, the formation, loading, and release of exosomes is highly dependent on ceramides produced as a result 
of sphingomyelinase activity [23, 29]. Other proteins involved in the process of exosome biogenesis include syndecan 
heparan sulfate proteoglycans and their cytoplasmic adaptor syntenin, sytenin1, syndecan-1, tetraspanins (CD9, CD63, 
and CD82), Ras-related protein GTPase Rab (Rab27a, Rab27b), and SNARE (soluble N-ethylmaleimide–sensitive factor 
(NSF) attachment protein receptor] [1, 23, 30].

2.2 � Functions of exosomes

Exosomes were traditionally considered as cellular waste. Recently, however, exosomes have been demonstrated to play 
various biological and pathological roles. Depending on their cellular origin, they can have different compositions and, 
therefore, fulfil distinct functions [15, 30]. Exosomes are present in most body fluids and can transport various types 
of cargo affecting cellular activities [20]. Exosomes can be related to various types of diseases. The evidence shown an 

Fig. 2   (I) The biogenesis and composition of exosomes. Biogenesis is divided into three stages: (i) endocytosis, (ii) endosome formation, 
and (iii) exocytosis. The endosome is formed by endocytosis and then transforms into a late endosome that contains multivesicular bod-
ies (MVBs). MVBs secrete small vesicles (exosomes) to the extracellular membrane. (II) The released exosomes can then target cells through 
three major pathways: endocytosis, fusion, and ligand-receptor interactions
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increase in exosome secretion in cancer patients. Cancer cell-derived exosomes can play an essential role in tumorigenesis 
and tumor growth. They can also integrate with cells at specific locations, creating a pre-metastatic niche facilitating 
metastasis and cancer progression. In addition, exosomes have been shown to be important in cancer drug resistance, 
angiogenesis, and immune escape. Furthermore, because they transport various molecules such as nucleic acids and 
proteins [8], exosomes have been linked to the development of cancers [23, 31]. Some exosomes contain non-coding 
RNAs (miRNA let-7) and can cause cancer progression; e.g., exosomes secreted from human gastric cancer cell line 
can activate the AKT signaling pathway and increase proliferation [32]. Moreover, exosomes derived from liver cancer 
cells cause tumor growth by establishing communication between cancer cells and activating the hedgehog signaling 
pathway [33]. Thus, based on the available literature, it appears that specific exosome cargo could be crucial in cancer 
formation, and particularly in tumorigenesis [23, 34]. Understanding the effects of exosomes on cancer development 
and progression would help us to develop therapeutic strategies specifically aimed at impacting exosome formation, 
release, and receptor cell uptake. Exosomes are considered as a suitable option for gene therapy due to their ability to 
transfer nucleic acids, without activating the host’s immune system or causing (cellular) toxicity [35, 36]. Recently, the 
diagnostic aspects of exosomes have also been investigated. Thus, different patterns of exosomal microRNAs and RNAs in 
patients and healthy people would allow the use of exosomes as diagnostic biomarkers; for example, reduced expression 
of exosomal miR_92 can be indicative of hepatocellular carcinoma and leukemia [37]. Exosomes also play a role in the 
transfer of various substances or cell signals involved in cancer progression (e.g., KRAS mutation in pancreatic cancer). 
Furthermore, exosomes can serve as drug delivery systems, considering their high half-life, ability to target specific 
cells, biocompatibility, and non-toxicity [8, 38]. With regards to the role of dendritic cells (DCs) in antigen presentation, 
exosomes can act as antigens for DCs, which in turn can activate the immune system against cancers and regulate 
immune responses. The ability of exosomes to promote or suppress cancers, and their effective role in immunotherapy 
should qualify exosomes as targets/tools of interest in novel therapeutic strategies in the near future. Some studies 
have already shown that exosomes derived from NSCLC tumors can help DC maturation by increasing the expression of 
Rab27a and upregulation of MHC, thereby promoting the proliferation of CD4 + T cells [20].

2.3 � Role of exosome in GI cancer progression

As indicated, exosomes can contribute to the development of cancer through various mechanisms, which we will discuss 
in the following sections.

2.3.1 � Exosome and tumorigenesis

LncRNA HEIH, which is released by gastric cancer (GC) cells, can play a role in tumorigenesis. Exosomes secreted from a 
SGC-7901 cell line caused the propagation of BGC-823 and SGC-7901 cells via activation of the Akt signaling pathway 
[39]. Cancer exosome mirs have also been implicated in tumorigenesis. Importantly, exosomal miR biogenesis has been 
described, for example, this is the case for miR_Let7, which increases metastasis in GC [7, 14, 30, 40]. The role of exosomes 
in relation to cancer is summarized in Fig. 3.

2.3.2 � Exosome and tumor growth

Both cancer- and microenvironment-derived exosomes can be involved in tumor growth. Cancer cells try to grow 
and survive through various mechanisms; the enhancing effects of exosomes on cancer cell growth have been widely 
reported in various cancers. For example, cancer cells can absorb exosomes that contain heat shock proteins (HSP), such 
as HSP90 and HSP70, which promotes their proliferation and inhibits apoptosis [41]. Colon cancer cell-derived exosomes 
containing the ΔNp73 gene are able to induce proliferation of recipient cells. Furthermore, tumor-derived exosomes are 
multiplied by mRNAs and eventually cause tumor growth in CRC. Other work showed that cancer-derived exosomes 
impact tumor growth of hepatocellular carcinoma (HCC) through the regulation of TAK1 expression. In addition, the 
loss of miR320a-containing exosomes derived from cancer-related fibroblasts (CAF) induced proliferation of HCC cells 
[23, 30, 42].
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2.3.3 � Exosomes and angiogenesis

Tumor growth and metastasis importantly rely on angiogenesis for supply of nutrients and oxygen. Exosomes act 
as mediators between tumor cells and vascular endothelial cells, and play a role in cancer progression as carriers of 
angiogenic factors. In addition, tumor-derived exosomes greatly affect metastasis through vascular remodeling [43]. 
They can also interfere with the integrity of endothelial cells; e.g., exosomal miR-105 increased vascular permeability and 
metastasis by reducing ZO-1 protein expression (44). It has been demonstrated that some exosome miRs are involved in 
the angiogenic process. For example, in CRC, miR-9 can promote angiogenesis and enhance endothelial cell migration 
by inhibiting the expression of suppressor of cytokine signaling 5 (SOCS5) [45]. Another study found that exosomes from 
colon cancers and pancreatic adenocarcinoma increase metastasis and angiogenesis by carrying tetraspanin 8 [46]. Thus, 
exosomes can affect angiogenesis in two ways, either by directly delivering angiogenic factors to endothelial cells or 
via exosomal miRNAs [7, 8, 20, 23, 30].

2.3.4 � Exosomes and metastasis

Tumor metastasis involves cancer cells migrating to distant points and is one of the leading causes of cancer-related 
death. The higher the percentage of tumor malignancy, the more likely it is for cancer cells to invade and migrate to 
other organs and metastasize [14, 30]. Exosomes have been suggested to impact tumor metastasis in three main ways:

1.	 Tumor-derived exosomes can increase cancer cell invasion and metastasis by acting on the extracellular matrix (ECM).
2.	 Exosomes can loosen the tight connections between (endothelial) cells, which increases the penetration of tumor 

cells.
3.	 Exosomes can increase the metastasis and invasion of cancer by enhancing epithelial-mesenchymal transition (EMT) 

[47–50].

Recent studies have shown that GC cells can induce the penetration of peritoneal mesostromal cells (PMCs) by releasing 
exosomes containing Wnt3a. PMCs then invade the stomach wall and provide the basis for metastasis [51]. In addition, 
it was demonstrated that GC cell-derived exosomes carrying EGFR are transferred to liver cells and increase hepatocyte 
growth factor (HGF) by inhibiting miR-26a, thereby favoring metastasis [30]. Other work showed that exosomes harboring 
miR-221/222 stimulate GC cells to migrate [52]. Further supporting a role for exosomes in metastasis, gastrointestinal 

Fig. 3   The roles of exosomes in cancer. Exosomes can be used as agents against cancer. For example, they can carry and deliver theranostic 
agents (diagnostic and therapeutic agents simultaneously in one platform), cancer diagnostic agents (important biomarkers), and conven-
tional chemotherapy drugs. Conversely, exosomes may also cause tumorigenesis or cancer progression as destructive agents, and certain 
exosomes have been found to play a role in drug resistance, immune escape, tumor progression, and development of pre-metastatic niches
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stromal tumor cells release exosomes containing protein tyrosine kinases to convert smooth muscle progenitor cells 
into a premetastatic site [42].

2.3.5 � Exosomes and drug resistance

One of the most critical obstacles in cancer treatment is drug resistance; recent studies have indicated that exosomes may 
play a role in this process through various mechanisms. Tumor cells can spread drug resistance by secreting exosomes that 
may transfer proteins, miRNAs, and/or long non-coding RNAs to other (recipient) cells [20, 30]. Tumor-derived exosomes 
can also transfer multidrug resistance (MDR) by impacting the expression of multidrug resistance proteins (MRP) as 
determinants of cancer drug resistance [20, 42]. Recent studies reported that miRNAs of exosomes derived from cancer 
stem cells (CSC), including the highly expressed miR-210 in pancreatic CSC exosomes, can participate in the transfer of 
resistance to sensitive cancer cells [20].

2.3.6 � Exosomes and immune escape

Exosomes can affect the formation, maturation, and anticancer activity of immune cells by transferring suppressive 
proteins. In addition, they can transfer DNA, mRNA, and/or miRNA, and increase cancer progression via reprogramming 
the function of the response cells [30]. For example, tumor cells induce apoptosis in T lymphocytes by releasing exosomes 
containing cell death receptors [14]. In addition, exosomal miR-24-3p can inhibit the proliferation and differentiation 
of T cells by silencing FG11 expression (30). Exosomes can also suppress cell differentiation (e.g., from myeloid to DC), 
reduce immune system activation, and facilitate immune evasion. A recent study showed that exosomes derived from 
NPC cells interfere with T cell function by regulating miRNAs [42]. Moreover, GC-derived exosomes play a role in regulating 
the immune system to promote development of GC. In fact, this regulation is done through Noncoding RNAs (ncRNAs). 
ncRNAs represent a substantial portion of the content within exosomes, and certain ncRNAs with biological functions are 
specifically packaged into these extracellular vesicles. Recent studies have unveiled the critical roles played by exosome-
derived ncRNAs in the tumorigenesis, progression, and drug resistance of gastric cancer (GC). Moreover, the regulation 
of exosomal ncRNA expression levels has the capacity to either promote or suppress the advancement of GC [14].

2.4 � The application of exosomes

2.4.1 � Exosomes as biomarkers

Exosomes have emerged as important diagnostic and prognostic biomarkers in several cancers (Table 1), and can be 
considered for many therapeutic purposes. In addition, tumor-derived exosomes can be utilized as vaccines in clinical 
and preclinical studies. Because exosomes are present in virtually all body fluids and may contain various bioactive 
molecules, it is much easier to detect cancer. Indeed, evaluating the expression of exosomal miRNAs has been used 
as a tool for diagnosing cancer progression in several cancers, including GC, in which lncRNA was identified as a new 
exosomal biomarker [42]. Several other exosomal miRNAs, i.e., miR 150-3p, miR-145-3p, miR-139-3p, and Let-7b-3p, have 
emerged as diagnostic biomarkers in colon cancer [53]. Urinary exosomal lncRNA, which includes PCAT-1, MALAT1 and 
SPRY4-IT1, serves as a biomarker for the detection and recurrence prediction of bladder cancer [12]. Exosomal miRNAs can 
also indicate metastasis in GC (e.g., miR-101-3p, miR-10b-5p, and miR-143-5p) [14]. In addition to miRNAs and lncRNAs, 
exosomes may contain other cargo helpful for cancer diagnosis; for example, the exosomal protein glypican-1 (GPC-1) 
is a biomarker for the diagnosis of pancreatic cancer [3].

2.4.2 � Exosomes and drug delivery

Exosomes can potentially be used as drug carriers to treat various diseases. Due to their characteristics such as biocom-
patibility and biodistribution, they are suitable carriers for various substances. For example, the transfer of exosome-
derived siRNA can cause specific gene silencing and induce cancer cell death [42]. Exosomes have several advantages 
over some other carriers (e.g., Liposomes and synthetic nanocarriers), including a higher drug delivery efficiency and 
the ability to prevent macrophage phagocytosis with limited immunogenicity. Thus, exosomes increase the half-life 
of the drug, do not cause toxicity, are accurate in cell targeting, and promote endocytosis, all of which facilitates the 
drug delivery process. Exosomes carrying nucleic acids, such as the highly expressed let-7 and several other miRs, can 
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act as tumor suppressors. For example, exosomal miR-335-5p can reduce the size of liver tumors [54], and miR-145-5p 
(by activating the Smad3 pathway) inhibits pancreatic cancer cells multiplication [55]. In addition, chemical anticancer 
drugs, such as paclitaxel (PTX) and doxorubicin, can be carried by exosomes as well [12, 56]. Considering exosomes can 
identify specific cells, exosomal delivery of therapeutic compounds can be more effective and precise than with other 
biocarriers such as liposomes. Therefore, exosome therapy is not only suitable for diagnostic analysis but also promising 
in cancer treatment [12].

3 � Exosomes as a biomarker for the diagnosis of gastrointestinal malignancies

3.1 � Exosome proteins as biomarkers in GC

Some of the housekeeping protein markers used to distinguish exosomes from other extracellular vesicles include 
tumor susceptibility gene 101 (TSG101), ALG-2-interacting protein X (ALIX), CD63, CD81, and HSP70; these proteins are 
important in the biogenesis of exosomes [57]. In this section, however, we will discuss exosomal protein biomarkers that 
have been specifically linked to gastrointestinal cancers. Frizzled family proteins are important Wnt pathway receptors and 
can contribute to the development of cancer stem cells. In particular, Frizzled-10 (FZD-10) plays a role in gastrointestinal 
cancers and has been detected on the surface of exosomes derived from cells of these cancers [58]. Thus, a recent study 
utilizing Au nanoparticles (surface-functionalized with a FZD10 protein primary antibody) and a transmission electron 
microscopy (TEM) grid detected FZD10 protein on the surface of gastrointestinal cancer cell-derived exosomes [59]. 
Others studied exosomes isolated from the blood of cancer patients and healthy donors using atomic force microscopy 
(AFM) to detect exosomes positively expressing the surface marker CD41 [60]. The GPC-1 protein has been identified as 
an exosomal marker in pancreatic, breast, and colorectal cancer [58]. In addition, CD9 and CD147 have been found to 
be highly expressed in exosomes isolated from the serum of CRC patients. It should be noted, however, that exosomal 
surface expression of CD47 decreased after tumor surgery in these patients [61]. Costa Silva et al. demonstrated that 
pancreatic ductal adenocarcinoma (PDAC)-derived exosomes play a role in the development of hepatic pre-metastatic 
niches. Further investigations showed that these exosomes highly expressed macrophage migration inhibitory factor 
(MIF). Based on these results, the authors suggested that MIF positive exosomes could serve as biomarkers to indicate 
the development of PDAC liver metastasis [62].

Table 1   Exosomes as biomarkers

Exosome biomolecules biomolecules Type of cancer References

Exosome proteins FZD-10 gastrointestinal [59]
CD41 gastrointestinal [60]
(GPC-1) pancreatic, breast, and colorectal cancer (CRC) [58]
CD9 CRC​ [61]
CD147 CRC​ [61]
MIF pancreatic ductal adenocarcinoma (PDAC) [62]

Exosomal lipids linoleic acid (LA), γ-linolenic acid 
(GLA), and arachidonic acid

(AA)

colon adenocarcinoma Caco-2 [58]

Eicosapentaenoic acid (EPA) and 
Alpha-linolenic acid (ALA)

human colon epithelial cells (HCEC-1CT) [58]

Exosome RNAs miR-10b CRC​ [75, 76]
miR-21-3p and miR-769-3p Metastatic CRC​ [77]
miR-1246 CRC​ [78]
miR-21 hepatocellular carcinoma [79]
hTERT mRNA pancreatic cancer [80]
miR-21 gastric cancer (GC) [81]
ZFAS1 GC [82]
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3.2 � Exosomal lipid profiles as biomarkers

Lipid metabolism is important in the carcinogenesis of many cancers, especially CRC [63–65]. For example, 
lysophosphatidylserine abundance is significantly increased in colon cancer tissues as compared to surrounding normal 
tissues [66]. Pro-inflammatory stimuli promote a microenvironment favoring cancer development [67]. Lipidomic 
evaluation of tissue inflammation revealed a significant relationship between the change in the structure of membrane 
lipids and the development of inflammation, implying some of these lipids associated with inflammation can serve 
as biomarkers [68, 69]. One study found that the lipid structure of the exosomal membrane is affected by the cells 
from which exosomes are extracted. In an in vitro study related to prostate cancer, it was demonstrated that the lipid 
composition of exosomes is similar to the membrane structure of cancer cells from which they were derived [58]. Recently, 
the lipid profile of exosomes extracted from human colon adenocarcinoma Caco-2 and human colon epithelial cells 
(HCEC-1CT) was evaluated. Exosomes derived from Caco-2 cells exhibited a distinct lipid profile, with high amounts of 
linoleic acid (LA), γ-linolenic acid (GLA), and arachidonic acid (AA). In addition, exosomes from HCEC-1CT cells showed 
higher amounts of omega-3 fatty acids, including eicosapentaenoic acid (EPA) and alpha-linolenic acid (ALA), as compared 
to those derived from Caco2 cells. The results indicated a proinflammatory role of omega-6 in CRC tumorigenesis, as 
evidenced by high n-6/n-3 and AA/EPA ratios in Caco2 cells [69, 70].

3.3 � Exosomal RNAs as biomarkers

Several studies have investigated the effects of RNAs delivered by exosomes in tumorigenesis and cancer spread. For 
example, long non-coding (Lnc) RNAs such as Lnc-sox2ot, Lnc-h19, and LncRNA-ARSR, which have been identified in 
exosomes, are involved in the progression of tumors [71–74]. Dysregulation of miRNAs delivered by exosomes has been 
associated with gastrointestinal malignancies. MiR-10b-containing exosomes, which are secreted in the CRC tumor 
microenvironment by cells like cancer-associated fibroblasts (CAF), can increase the expression of transforming growth 
factor-beta (TGF-β) and smooth muscle (SM) α-actin, ultimately promoting the growth of CRC cells [75, 76]. Exosomal 
delivery of miR-21-3p and miR-769-3p has been shown to play a role in CRC metastasis to the lung through the activation 
of fibroblasts in the tumor microenvironment and lung tissue; this process occurs through the formation of premetastatic 
niches, and the secretion of these types of exosomes increases following p53 R273H mutation [77]. Cooks et al. reported 
that miR-1246-enriched exosomes are secreted from CRC cells that have mutations in p53, and contribute to CRC 
progression and metastasis. Therefore, these exosomes are important in the diagnosis of this type of CRC [78]. MiRNA-
21-containing exosomes may be involved in the development of hepatocellular carcinoma through the conversion of 
normal hepatic stellate cells (HSCs) to CAFs. This cellular transformation (associated with tumorigenesis) is induced by 
exosomal targeting of phosphatase and tensin homologue (PTEN), and the subsequent secretion of factors such as TGF-β, 
fibroblast growth factor-2 (FGF-2), and endothelial growth factor (VEGF) [79]. Transcription of enzyme telomerase (hTERT 
mRNA) delivered by exosomes can cause the transformation of normal fibroblasts into telomerase-positive cells; this 
affects the microenvironment of pancreatic cancer, which can be important in terms of cancer metastasis [80]. MiR-21 has 
been identified in exosomes associated with GC cells. Considering it regulates the important PTEN/PI3K/AKT signaling 
pathways, this micronucleic acid can be effective in apoptosis inhibition and cisplatin resistance [81]. LncRNA ZFAS1 is 
another important RNA identified in GC-derived exosomes, and has been shown to impact MAPK signaling, EMT, cell cycle 
progression, as well as cancer growth and metastasis. Based on the results of this study, it is concluded that ZFAS1, plays 
a role in GC progression and metastasis. Therefore, it has been suggested that ZFAS1 can be considered as a diagnostic 
and prognostic biomarker in this cancer [82]. In addition to preclinical studies, several clinical trials evaluating exosomes 
as biomarkers and diagnostic factors for gastrointestinal cancers have been conducted (summarized in Table 2).

4 � Utilizing exosomes as therapeutic agents in cancer treatment

The role of exosomes as therapeutic agents depends on their original parental cells [83]. The most commonly used 
exosomes in cancer treatment are those secreted by mesenchymal stem cells (MSCs), DCs (dexosomes), and cancer 
cells [84]. Several studies have focused on exosomes derived from these sources, revealing that exosomes are fre-
quently involved in cancer progression [84]. Exosomes have been employed as carriers of therapeutic agents, espe-
cially for the targeted delivery of small molecules. Their small size allows exosomes to penetrate the tumor tissue 
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through the enhanced permeability and retention (EPR) effect [85] (schematic representation in Fig. 4). In several 
recent studies, exosomes have been designed and evaluated as theranostic nanostructures [86, 87]. Due to favorable 
characteristics such as excellent biocompatibility, high effectiveness, and minimal immunogenicity, exosomes are 
considered suitable nanocarriers for drug delivery cancer-related studies [88]. For example, exosome-delivered drugs 
such as doxorubicin (Dox) reduce cytotoxicity in sensitive body organs [89]. In addition, several studies confirm the 
efficiency of exosomes in drug delivery against gastrointestinal cancers. Pascucci et al. designed a treatment method 
based on MSC-derived exosomes carrying paclitaxel (PAC) in the tumor microenvironment. They demonstrated that 
exosomal release increased the anti-proliferative activity of PAC, effectively reducing the proliferation of cancer cells in 
pancreatic adenocarcinoma [90]. Others investigated the effectiveness of exosomes carrying anti-miR-214 in reversing 
chemoresistance to cisplatin in GC. This in vitro, showed that the exosomes could sensitize GC cells to cisplatin [91].

Exosome scaffold proteins have also emerged as promising molecules; for instance, they can be applied to improve 
the recognition of tumor cells by the immune system. For example, an exosome scaffold protein characterized from 
cloned cancer exosomes contained SIRP α (signal regulatory protein α), an antagonist of CD47 on tumor cells that 
has been proposed as a therapeutic tool to increase tumor cell phagocytosis by bone marrow-derived macrophages. 
In vivo studies show that tumor growth is reduced following this phagocytosis. In addition, protein delivery through 
exosome scaffold proteins is more effective as compared to that via protein-scaffold-based nanocages such as ferritin-
SIRP α [92]. Another study investigated exosomes isolated from A33-positive LIM1215 cells and, after Dox loading, 
surface-functionalized with superparamagnetic iron oxide nanoparticles (SPIONs) coated with A33 antibody to target 
CRC. The findings revealed that the A33Ab-superparamagnetic nanoparticle-Exo/Dox platform can effectively prevent 
the growth of colon cancer cells [93]. Several ongoing clinical trial studies evaluating exosomes for gastrointestinal 
cancer treatment are listed in Table 3.

5 � Exosomes as biological drug carriers

In recent years, exosomes had a significant impact on the diagnosis and prognosis of numerous diseases, includ-
ing diabetes, Parkinson’s, Alzheimer’s, cancer, and infectious diseases, as a result of the advancements made and 
the enormous increase in the number of various types of drug carrier systems available for use in clinical settings. 
The last several decades have seen increased interest in nanoparticles (e.g., polysomes, micelles, and liposomes) as 
drug carriers in clinical research. These nanoparticles are characterized by few undesirable side effects, a variety of 

Fig. 4   Exosomes containing 
therapeutic agents. Depend-
ing on the cellular source, 
exosomes can contain various 
therapeutic agents. Exosomes 
can effectively reach tumor 
cells through surrounding 
abnormal blood vessels, 
and have been utilized as a 
therapeutic approach against 
cancer
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medicinal substance delivery capabilities, large drug encapsulation, high efficacy, as well as low toxicity, and have the 
capacity to maintain drug concentrations, prevent drug degradation, interact with their biological environment, and 
increase drug absorption of the desired tissue. Exosomes are nanoparticles produced by cells that can outperform 
these ‘traditional’ nanocarriers. If these delivery systems are carefully developed in accordance with the target and 
route of administration, they could address some of the problems associated with the delivery of active molecules, 
such as peptides, proteins, genes, and oligonucleotides.

5.1 � Targeted delivery

High toxicity, multiple drug resistance, non-specific targeting, and poor stability are typical examples of the drawbacks 
encountered in drug delivery research [94]. Using immature DCs, Alvarez et al. were the first to show that exosomes 
can deliver medicines in a targeted manner [95, 96]. Exosomes can protect drugs from breakdown by the extracellular 
environment and are crucial in both physiological and pathological processes. Compared to other pharmaceutical 
systems (e.g., liposomes, lipid nanoparticles, viral vectors), exosomes have benefits to ensure efficient delivery, 
including better biocompatibility, lower immunogenicity and cytotoxicity in normal tissues, increased stability due 
to surface expression of CD55 and CD59, small size, the ability to cross the blood–brain barrier, high specificity for 
binding to the target cell, and a longer half-life. Additionally, Additionally, exosomes rely on a natural mechanism 
for the transport and delivery of specific drugs [97–99]. Although inconsistent results can be obtained by variations 
in the cells of origin, separation techniques, or specific protein/lipid surface profiles, exosomes generally perform 
better than conventional synthetic drug administration techniques [100, 101].

The cellular resistance to therapeutics is one of the major problems in treating gastrointestinal (GI) cancer. Despite the 
fact that the precise mechanisms underlying drug resistance are still incompletely understood, a number of contributing 
factors have been identified. Exosomes have been linked to targeting GI cancer invasion, angiogenesis, and treatment 
resistance [102–104]. Thus, exosomes can mediate endocytosis of specific medications into cancer cells [58], and can be 
genetically modified to express peptides or ligands on their surface to facilitate this process. Such modifications improve 
targeting and specificity by transferring certain exosome receptors and shortening the time it takes for exosomes to reach 
the therapeutic concentration in the intended tissues, collectively resulting in enhanced drug performance and better 
therapeutic effects [105]. Exosomes released by MSCs from healthy tissue may slow the growth of tumors by obstructing 
signaling pathways involved in oncogenic reprogramming. On the other hand, exosomes generated from tumor cells can 
cause malignancy and subsequent cancer of recipient cells [106]. Other work further supported the notion that targeted 
exosomes can be employed as an effective drug delivery method, demonstrating HER2 + cells take them up more readily 
than HER2- cells [107]. One of the main treatments for advanced stomach cancer is chemotherapy, Of course, it can also 
face challenges. The requirement for high dosages, low therapeutic indices, and maximum therapeutic concentrations, in 
addition to side effects, sensitive immunological responses, and the presence of mucosal physiological barriers represent 
some of the therapeutic challenges. It has been well documented that the necessary high medicine dosages can lead to 
drug resistance [99]. Exosomes fulfil a vital function in the detection and treatment of stomach cancer [108]. Exosomal 
circRNAs are highly promising therapeutic agents with anticancer effects, as indicated by their roles in controlling tumor 
growth, metastasis, angiogenesis, metabolism, and dissemination of GI cancers [109]. The development of targeted therapy 
has been considered for the treatment of gastric cancer; thus, gastric cancer exosomes have been reported to have high 
target efficacy, albeit with relatively low efficiency. Tian et al. developed a straightforward technique to produce high-
performance gastric cancer hybrid exosomes as a possible drug carrier for targeted therapy of gastric cancer (HGCE). 
In vitro and in vivo studies demonstrated that Dox-loaded HGCE (Dox/HGCE) exhibited good anticancer efficacy as well 
as high and specific activity for gastric cancer cells (SGC 7901), indicating the therapeutic potential of this delivery system 
[110].

The importance of exosomes in GC suggests they could represent therapeutic targets. Proton pump inhibitors 
(PPIs) regulate the HIF-1-FOXO1 axis to stop stomach cancer from spreading. A high dose of PPI can inhibit GC 
malignancy and control the microenvironment surrounding the tumor. PPIs improve the effects of anticancer 
medications in GC cells by reducing stomach acid production. PPIs may be helpful as a therapeutic strategy for the 
treatment of GC considering they inhibit GC cells from releasing exosomes and prevent them from producing CAFs 
[111, 112]. Another study used exosomes as nanocarriers to transport circDIDO1 to GC cells; results showed that 
circDIDO1 can counterbalance the effects of miR-1307-3p overexpression in GC by serving as a miRNA sponge to 
stimulate SOCS2 expression, which in turn prevents the proliferation of GC cells [113]. Hosseini et al. looked at the 
targeted administration of Dox-loaded HEK293-derived exosomes functionalized with an anti-nucleolin (AS1411) 
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aptamer for the treatment of CRC. The results showed that this functionalization markedly enhanced the binding 
affinity and uptake rate in nucleolin-positive cancer cells, suggesting Dox loading of AS1411-functionalized exosomes 
could serve as a potential cancer treatment approach in clinical settings [114]. Bagheri et al. looked at the potential 
of Dox-loaded exosomes produced by MSCs as a versatile tool for treating CRC and platform for therapeutic use. 
In vitro data demonstrated that DOX@exosome-apt delivers Dox to MUC1-positive cancer cells in a highly effective 
manner. Additionally, a single intravenous dose of DOX@exosome-apt significantly suppressed tumor growth as 
compared to free Dox in an in vivo study utilizing BALB/c mice and the C26 ectopic model (mouse colon cancer). 
Ex vivo fluorescence imaging further validated the beneficial biodistribution of DOX@exosome-apt by showing 
higher tumor accumulation and quicker liver clearance when compared to DOX@exosome and free Dox. Thus, MUC1 
aptamer-functionalized exosomes can be used therapeutically to deliver Dox to colon cancer in a flexible and safe 
manner [102].

5.2 � Co‑delivery therapy

According to recent studies, gene therapy or a cocktail of medications can be used to more effectively target pathways 
associated with cancer [115, 116]. Natural therapies can improve sensitivity to chemotherapy and strengthen immunity 
because they are risk-free and rarely cause harm. Widely biodistributed medications show both beneficial off-target effects 
and anticancer consequences. Combination drug therapy has been shown to be effective because the suppression of 
numerous mechanisms or junctions leads to the activation of a single mechanism. The benefits of combination therapy are 
supported by clinical trials showing synergistic effects [117–119]. Accumulating evidence suggests that combining (natural) 
chemotherapy sensitizers with chemotherapeutic agents can reduce drug-associated side effects and battle multidrug 
resistance (MDR) [120]. Co-delivery of various medications via a drug carrier may improve treatment for malignancies by 
synchronizing medication exposure and promoting synergistic pharmacological activity in tumor cells [121]. In addition, 
this approach allows for optimal loading capacity, stability, release kinetics, biocompatibility, and tumor targeting [122], 
and may effectively reduce toxicity, minimize adverse drug reactions, and overcome MDR, which is a significant obstacle 
to the long-term efficacy of chemotherapeutic agents. Furthermore, co-delivery systems can benefit controlled release 
in cancer treatment protocols, decreasing side effects of prescribed medications, and improving treatment effectiveness 
[123]. Selecting appropriate nanocarriers for efficient encapsulation of natural active substances and chemotherapy drugs 
is a significant issue [124]. Liposomes, micelles, nanoparticles, and inorganic nanoparticles are just a few of the co-delivery 
systems that have become available as a result of the advent of nanotechnology to battle tumor MDR. To prevent MDR, these 
nanocarriers are co-loaded with chemotherapeutics and natural products, limiting drug efflux and/or enhancing intracellular 
drug accumulation in either an active or passive manner. Understanding the features of the individual carriers, which all 
have distinct nanostructures, materials, and preparation procedures, will help with the design of co-delivery nanocarriers 
[125]. Ideally, these co-delivery systems should be able to encapsulate hydrophobic as well as hydrophilic medications, and 
transport both conventional chemotherapies and cellular regulatory molecules like nucleic acids [126]. Despite the significant 
advancements in nanotechnology, there are still a number of issues that need to be resolved in order to create the ideal 
drug delivery system. These include those related to encapsulating drugs with a variety of solubilities and physicochemical 
properties, increasing drug concentration in tumor tissues, and controlling their sequential drug release [127]. Theoretically, 
considering multiple cargo delivery capabilities of natural intercellular delivery systems would qualify exosomes as ideal 
nanoplatforms for the development of novel integration techniques [128]. Surprisingly, only a relatively small number of 
papers have reported on exosomes as co-delivery systems. Qi Zhan et al. described a novel combination gene/chemistry 
anticancer method in which blood exosomes were developed as a nanoplatform for the targeted and effective delivery of 
hydrophobic medicines and nucleic acids to tumor cells. This study demonstrated that these vesicles could efficiently and 
flexibly transport hydrophobic drugs like Dox and cholesterol-modified miR-21i by fully utilizing their original lipid bilayer 
structure. The addition of L17E peptides maximized the effectiveness of cargo delivery by hastening the endocytic absorption 
and endosomal egress of exosome-encapsulated payloads. This co-delivery nanosystem was able to preferentially accumulate 
in tumors because of the clusters of superparamagnetic nanoparticles and nanoscale size. In mice carrying the U87 gene 
that were systemically fed D-Exos/miR21i-L17E, tumor suppression was significantly enhanced with only moderate side 
effects. This is the first example of the use of blood exosomes in combined cancer chemo- and gene-therapy; by substituting 
a therapeutic medication combination and considering a range of tumor suppressor pathways, this constructed exosome-
based nanosystem could be considered for a wide range of medicinal applications [129]. Recent work proposed a viable way 
to overcome drug resistance in CRC and boost the effectiveness of cancer treatment by simultaneously delivering functional 
miR-21 inhibitory oligonucleotide (miR-21i) and 5-fluorouracil (5-FU) using exosomes. This exosome-based 5-FU and miR-21i 
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co-delivery system promoted cellular uptake and reduced the expression of miR-21 in 5-FU resistant HCT-1165FR cell lines 
expressing the Her2 gene. Downregulation of miR-21induced cell cycle arrest, lowered tumor growth, increased apoptosis, 
and rescued the expression of PTEN and hMSH2. Importantly, as compared to either mono-therapy, combined delivery of 
miR-21i and 5-FU effectively reversed drug resistance and increased the cytotoxicity in 5-FU-resistant colon cancer cells [130]. 
Exosomes containing oxaliplatin and PGM5-AS1 can also reverse drug resistance, offering another method for treating CRC 
[131]. Others developed tumor-derived exosomes for co-delivering aggregation-induced emission luminogens (AIEgens) 
and PPIs. This combined therapy was designed to promote AIEgens-based photodynamic therapy (PDT) via PPI-mediated 
inhibition of cell glutamine metabolism. Evaluation in a MGC803 gastric cancer subcutaneous model revealed that this 
exosome-based co-therapy can effectively prevent tumor growth and promote tumor immunogenic death [132].

6 � Exosomes as vaccines against cancer

Over the past half-century, therapeutic cancer vaccines (TCVs) have been investigated as a potential immunotherapeutic 
approach to treat cancer by stimulating CD8 + cytotoxic T cells to generate tumor-specific responses. TCVs have gained 
renewed enthusiasm due to their potential to improve the efficacy of checkpoint inhibition [133]. They target antigens 
specifically associated with malignant cells, resulting in fewer side effects and increased safety compared to existing 
cancer treatments. TCVs can be administered through various techniques using different antigens, adjuvants, and delivery 
vectors [134]. These techniques include peptide-, DNA/RNA-, and cell transfer-based cancer vaccines, each with its own 
advantages and disadvantages. Additionally, adoptive cell immunotherapies (ACTs) such as CAR-T and TIL have shown 
to be excellent antitumor therapies with strong and highly personalized immunogenic profiles. However, they are 
costly, time-consuming, and labor-intensive. [135–139]. Exosome vaccines have been introduced as a new platform 
for more efficient delivery of tumor-associated antigens, showing better efficacy than ACTs in eradicating tumors in a 
T cell-dependent and MHC-restricted manner. Exosomes combine processed peptides derived from antigenic material 
expressing surface MHC I/II and deliver functional peptide-MHC complexes to naive target cells, stimulating the expansion 
of peptide-specific clonal T cells and promoting tumor cytotoxicity through MHC-I and MHC-II antigen processing. 
Exosomal vaccines have shown superior efficacy compared to ACTs in eradicating tumors in a T cell-dependent and 
MHC-restricted manner [140, 141]. Understanding how exosomes activate antitumor immunity is crucial for advancing 
this promising immunotherapy. Exosomes deliver processed peptides expressing surface MHC I/II, stimulating target 
cells and promoting T cell activation [142, 143]. Several studies demonstrated that the best model of using exosomes is to 
load DCs with tumor antigens and subsequently extract the produced exosomes [144]. Loading DCs with tumor antigens 
and extracting the produced exosomes has been identified as an effective model. Exosomes stimulate the expansion of 
peptide-specific clonal T cells, promote CD8 + T cell maturation, and activate NF-κB in macrophages for tumor cytotoxicity 
through MHC-I. Additionally, antigen processing through MHC-II leads to more efficient activation of CTLs. Studies 
have demonstrated that different exosomes can effectively stimulate naive T cell proliferation and differentiation into 
cytotoxic T lymphocytes, leading to stronger killing activities against tumor cells [141, 144, 145]. A study examining 
DC-OVA-derived exosomes (EXODC) showed that EXODC can more effectively stimulate naive OVA-specific CD8 + T 
cell proliferation and differentiation into cytotoxic T lymphocytes in vivo as compared to EG7 tumor cell line-derived 
exosomes (TEXEG7); the stronger killing activities by EXODC against lung tumor cells were attributed to the expression 
of co-stimulatory molecules such as CD40 and CD80 [146]. Other work demonstrated that heat shock protein-70 (Hsp70)-
enriched tumor exosomes increased the expression of MHCII and induced strong Th1 immune responses, eliminating 
CT26 (mouse colon carcinoma cells) cancer cells in allogeneic hosts [147]. These findings suggest that Hsp70 exosomes 
can be used as an innovative vaccination for the management of CRC [148, 149]. In a phase I clinical trial, ascites-derived 
exosomes (Aex) were used in combination with granulocyte–macrophage colony-stimulating factor (GM-CSF) in 40 
patients with CRC. The results showed that treatment with the combined vaccine, but not Aex alone, triggered a specific 
anti-tumor CTL response, and was safe and well tolerated. Thus, immunotherapy using Aex in combination with GM-CSF 
could be considered as an effective vaccine in the treatment of patients with metastatic CRC [150]. The exosomes in 
addition of induction of strong immune responses, eliminate cancer cells, and modulate tumor progression. Furthermore, 
exosomes interact with immune cells to induce anti-metastatic effects and trigger specific anti-tumor CTL responses. In 
preclinical and clinical trials, exosomes have shown promise as cell-free anti-cancer vaccines. The potential of exosome-
based cancer immunotherapy is highly promising and warrants further clinical validation [151].
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7 � Conclusion

Recognition of the utilization of small extracellular vesicles for diagnostic and therapeutic purposes is fast growing. 
We will have an opportunity to advance the therapeutic use of exosomes as we learn more about their biogenesis and 
function. Furthermore, recent research has unequivocally established the value of exosomes as both natural drug delivery 
vehicles and biomarkers for disease diagnosis. Further advancement in the applicability of exosomes depends on the 
development of more precise and trustworthy separation techniques. In this regard, it is essential to combine basic 
science research with cutting-edge technology. For example, the use of exosomes as natural nanocarriers can have high 
potential in personalized treatments. To achieve this attractive goal, future research is required to fully understand the 
nature of exosomes in terms of their membrane composition and cargo. After identification of the desired properties of 
the exosome, it can be engineered in accordance with the therapeutic goals for treatment of various cancers, including 
gastrointestinal cancers. However, many challenges remain for the widespread use of exosomes in the clinic. Indeed, 
it is still incompletely understood how exosomes interact with the TME. In addition, it is unclear which cellular source 
of exosomes is safest and most efficient for the delivery of therapeutic agents, and techniques for targeting exosomes 
for clinical applications have not yet been optimally developed (there is a need for sensitive and accurate platforms). 
There are a multiple exosomal nucleic acids and proteins that can be used as biomarkers to detect cancers, selecting 
the best one is difficult. To facilitate the widespread clinical use of exosomes, it is necessary to be able to isolate and 
purify exosomes in a fast and cost-effective way. Furthermore, the clinical applicability of exosomes strongly relies on 
whether or not the many preclinical in vitro and in vivo findings can be successfully translated into clinical trial outcomes. 
Conceivably, in anticipation of clinical trial results and development of high-throughput technologies, exosomes have 
the potential to greatly improve and revolutionize cancer diagnosis as well as treatment strategies in the not-so-distant 
future.
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