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Abstract

Background The prevalence and mortality of bladder cancer (BLCA) present a significant medical challenge. While the
function of senescence-related genes in tumor development is recognized, their prognostic significance in BLCA has
not been thoroughly explored.

Methods BLCA transcriptome datasets were sourced from the TCGA and GEO repositories. Gene groupings were deter-
mined through differential gene expression and non-negative matrix factorization (NMF) methodologies. Key senes-
cence-linked genes were isolated using singular and multivariate Cox regression analyses, combined with lasso regres-
sion. Validation was undertaken with GEO database information. Predictive models, or nomograms, were developed by
merging risk metrics with clinical records, and their efficacy was gauged using ROC curve methodologies. The immune
response’s dependency on the risk metric was assessed through the immune phenomenon score (IPS). Additionally, we
estimated IC50 metrics for potential chemotherapeutic agents.

Results Reviewing 406 neoplastic and 19 standard tissue specimens from the TCGA repository facilitated the bifurca-
tion of subjects into two unique clusters (C1 and C2) according to senescence-related gene expression. After a stringent
statistical evaluation, a set of ten pivotal genes was discerned and applied for risk stratification. Validity tests for the
devised nomograms in forecasting 1, 3, and 5-year survival probabilities for BLCA patients were executed via ROC and
calibration plots. IC50 estimations highlighted a heightened responsiveness in the low-risk category to agents like cis-
platin, cyclopamine, and sorafenib.
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Conclusions In summation, our research emphasizes the prospective utility of risk assessments rooted in senescence-
related gene signatures for enhancing BLCA clinical oversight.

Keywords Bladder cancer - Senescence-associated genes - Transcriptomic analysis - Prognosis - Immunotherapy

1 Introduction

Bladder cancer (BLCA) ranks prominently among the most frequently diagnosed malignancies within the urological
system, accounting for an estimated 540,000 novel cases on a yearly global scale [1, 2]. The aggressive nature of specific
bladder tumor variants, notably muscle-invasive bladder cancer, is characterized by profound invasiveness, leading
to a heightened mortality risk associated with this ailment [3, 4]. Within oncological practice, there exists a steadfast
commitment to the tenet of prompt disease identification and timely therapeutic interventions [5, 6]. Yet, BLCA often
manifests insidiously, eluding early symptomatic detection. Consequently, a significant proportion of patients present at
advanced stages, characterized by extensive tumor cell infiltration and migration, which frequently hinders therapeutic
efficacy and clouds prognosis. It becomes imperative, therefore, to innovate and integrate new prognostic markers to
tailor therapeutic strategies for patients diagnosed at advanced BLCA stages [7, 8].

In this context, our research endeavors to delve into the implications of genes associated with cellular senescence.
Defined as an irreversible cessation of the cell cycle over time, cellular senescence embodies a decline in cellular function
that is ubiquitous across organisms. Cells in this arrested phase resist proliferative cues while concurrently manifesting
DNA aberrations. Such senescence acts as a safeguard, curtailing the propagation of DNA-compromised cells and thus,
serving an integral role in tumor suppression [9, 10].

In our study, we conducted a detailed analysis of BLCA patient transcriptome datasets from TCGA and GEO to under-
stand the role of senescence-related genes in the disease’s progression. Leveraging these insights, in conjunction with
pertinent clinical markers, we've crafted and subsequently validated a prognostic algorithm. In addition, we examined
the potential signaling pathways of senescence-associated genes, the differences in immune cell infiltration in the tumor
microenvironment, the level of somatic mutations, and the differences in risk scores and sensitivity to various chemo-
therapy drugs.

2 Materials and methods
2.1 Collection of multi-omics data

Pertaining to BLCA studies, we sourced both neoplastic and non-neoplastic bladder tissue datasets from GSE31684 and
TCGA-BLCA repositories. After excluding entries lacking comprehensive clinical details, we aggregated 93 malignant
samples from the GSE31684 dataset. From the TCGA-BLCA repository, we assimilated an additional 406 tumor samples
alongside 19 healthy counterparts. Subsequently, we acquired the transcriptomic signatures of these curated samples. To
ensure the accuracy of our gene expression analysis from TCGA and GEO datasets, we implemented crucial normalization
and batch effect correction steps. Raw data were first normalized with the DESeq2 package to adjust for library size and
composition, enabling proper gene expression comparison. For batch effect correction, we used the Combat algorithm
from the sva package, targeting both known and unknown batch variables. A thorough review of prevailing academic
publications combined with insights from the Genecards database led us to discern 434 prospective genes associated
with cellular senescence (Refer to Table S1). To identify differentially expressed genes (DEGS), criteria were established
with a false discovery rate (FDR) below 0.05 and a |[log2Fold Change (FC)| value surpassing 1.

2.2 Non-negative matrix factorization (NMF) method for tumor subtyping

Tumor classification was executed via the Non-Negative Matrix Factorization (NMF) method, superseding the con-
ventional hierarchical clustering approach [11]. Utilizing the “NMF” function within the R package, we derived clusters
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from intrinsic tumor sample characteristics, generating associated biological correlation coefficients. Survival trajec-
tories for groups C1 and C2 were assessed and juxtaposed against the conventional categorizations within the tumor
microenvironment.

2.3 Profiling of tumor microenvironment infiltrating cells

The depiction of the tumor’s immune milieu was constructed from the prevalence of nine unique immune and stromal
cell subsets. These subsets include macrophages, dendritic cells, neutrophils, natural killer (NK) cells, CD4+ T cells, CD8+
T cells, B cells, fibroblasts, and endothelial cells. The presence of infiltrative cells was determined by contrasting scores
across two categories, rooted in the cellular constituents of the microenvironment.

2.4 Creation of senescence-related genes signature

Following the deployment of univariate Cox regression, genes associated with senescence were delineated. To mitigate
potential overfitting, these genes underwent further analyses via lasso regression and subsequent multivariate Cox
regression. In tandem, an examination of the genes’ prognostic attributes was conducted. The risk score for individual
samples was ascertained through the formula “RiskScore = eSi(Coefi * Expi)” [12]. Using the median of these risk scores as
a demarcation, samples were classified either within a high-risk stratum (HRG) or a low-risk stratum (LRG). Subsequent
assessments included a review of the overall survival metrics for HRG and LRG. Distinct survival trajectories for HRG and
LRG, in relation to the genes under observation, were separately charted [13].

2.5 Nomogram formulation and verification
For the identification of prime prognostic markers, we executed receiver operating characteristic (ROC) evaluations on
both risk scores and clinical indices for the initial, third, and quintennial years. Leveraging the “rms” and “regplot” tools

within the R framework, a graphical representation was fashioned, and the model’s alignment was appraised via a cali-
bration trajectory.

2.6 Categorization of senescence-associated genes based on functionality

For the functional classification of genes within both the HRG and LRG, we utilized Gene set enrichment analysis (GSEA)
[14]. The eight most pronounced outcomes (P < 0.05) were then visualized for further study.

2.7 Evaluation of risk characteristics and clinical variables

The distribution pattern of clinical attributes within the HRG and LRG was outlined, and the proportion of patients within
the clinical variable subsets were exhibited.

2.8 Procurement and analysis of epigenetic mutation data
Relevant somatic alteration data was sourced from the TCGA-BLCA repository. We enumerated the twenty most com-
monly occurring genes exhibiting somatic deviations. Grounded on TMB risk and the bifurcation of samples into HRG

and LRG, patients were classified into four primary cohorts. The survival likelihood for each cohort was assessed inde-
pendently, leading to the generation of respective survival trajectories.

2.9 Exploration of the relationship between risk scores and immune infiltration

To delineate the association between risk scores and immune infiltrating cells, we implemented tools such as XCELL,
TIMER, QUANTISEQ, MCP COUNTER, EPIC, CIBERSORT, and CIBERSORT-ABS [15].
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Fig. 1 A lllustrates the expression levels of senescence-associated genes across various TCGA-BLCA samples. B Volcano plot depicting dif- »
ferentially expressed genes. C Clustering map derived through NMF algorithm. D, E Assessment of performance and stability pertaining to
clusters through multiple methods. F Notable variance in overall survival observed between C1 and C2. G Significant disparity in progres-
sion-free survival between C1 and C2. H Distribution of C1 and C2 across immune molecule subtypes C1-C6

2.10 Gene set variation analysis (GSVA)

We used the KEGG database for the analysis of the main gene pathway, evaluating the activation status of its signature
and metabolic pathways [16]. Each sample underwent GSVA normalization for each gene set, allowing us to determine
the relative activity of pathways, immune markers, and immune checkpoints.

2.11 Predicting patient response to immunotherapy and chemotherapy

Genes pertinent to immune checkpoint modulation were pinpointed, and their expression dynamics were scrutinized
in relation to the risk score. Leveraging the Immunophenoscore [17], we gauged the immunogenicity of tumors across
both high and low-risk groups based on these gene profiles.

Drawing from TCGA-BLCA datasets, we structured a cellular expression evolutionary diagram. To probe into the
genomic susceptibility of tumors to drugs, we employed the “pRRophetic” toolset within R, enabling insights into tissue
responsiveness to diverse therapeutic agents [12, 18].

2.12 Statistical methods

For multigroup data analyses, we invoked the Kruskal-Wallis evaluation, whereas binary group comparisons were facili-
tated using the Wilcoxon assessment. The Kaplan-Meier log-rank approach was chosen to assess survival trajectories.
To discern associations between risk score divisions and somatic mutation occurrences, a chi-square assessment was
conducted. Meanwhile, the Spearman methodology facilitated the determination of correlation indices. Results pro-
cured from the CIBERSORT methodology with a P-value below 0.05 underwent subsequent scrutiny. The benchmark for
deeming statistical significance was earmarked at P <0.05. All statistical undertakings were orchestrated within the R
computational environment.

3 Results
3.1 Batch effect mitigation and data normalization

From the TCGA-BLCA dataset, we secured 406 neoplastic tissue specimens, coupled with their clinical data, and an addi-
tional 19 typical tissue specimens. Following the rectification of batch discrepancies, we instituted data standardization
procedures. Setting our criteria at FDR < 0.05 and an absolute value of log2 (FC) surpassing 1, we discerned 115 genes
with differential expression (Fig. 1A, Table S2). Figure 1B depicts a volcano plot illustrating all DEGs based on our selec-
tion criteria, emphasizing their significance and expression changes.

3.2 Application of NMF in analyzing molecular subtypes of senescence-associated genes

Transcriptomic data from TCGA-BLCA were analyzed using the NMF clustering technique, with cophenetic and RSS
parameters directing the process to ensure stability and optimal clustering outcomes. The optimal cluster num-
ber was identified as K= 2, facilitating the segregation into two distinct subgroups, namely C1 and C2 (Fig. 1C-E,
Table S3). When evaluating survival curves, C1 samples manifested enhanced survival probabilities in contrast to
C2 samples (Fig. 1F, G). We categorize tumor samples into six immune subtypes to elucidate the tumor microen-
vironment'’s complexity: wound healing (C1), IFN-y dominant (C2), inflammatory (C3), lymphocyte depleted (C4),
immunologically quiet (C5), and TGF- dominant (C6). Such analysis also illuminated the correlation between C1 and
C2 clusters and the conventional immune classifications (Immune C1-C6) (Fig. 1H) [19]. Notably, marked variations
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Fig.2 A-G Highlights the differential manifestations of C1 and C2 at the immune cellular level within the tumor microenvironment

in the composition of immune and stromal cell infiltrations between C1 and C2 were discerned (Fig. 2A-F). This
underscores that the molecular categories arising from clustering based on senescence-associated genes seem
intricately connected to diverse cell infiltrations within the tumor milieu.

3.3 Construction and validation of prognostic models for senescence-associated genes

Starting with 115 differentially expressed genes, identified by stringent criteria of an abso-
lute log2 fold change>1 and an adjusted P-value (FDR) < 0.05, we further refined our analy-
sis to focus on their prognostic significance. Through the application of univariate Cox regres-
sion, 18 genes of pronounced prognostic relevance were discerned (P <0.05, Table S4, Fig. 3A). To
counteract potential overfitting, these genes underwent lasso and multivariate COX regression evaluations,
pinpointing ten pivotal genes (CALR, HLA-G, HMGA1, HMGA2, RAD54B, JUN, MOV10, PTGER3, PTGER4, UGCG) in
BLCA with diagnostic significance (Fig. 3B, C). The formulation for RiskScore was: (0.3286 * CALR) — (0.3575 * HLA-
G) +(0.2063*HMGA1) + (0.2359* HMGA2) — (0.3606 * RAD54B) + (0.1659 * JUN) — (0.2371 * MOV10) + (0.3914 * PTGER3-
)—(0.1126 * PTGER4) — (0.3114 * UGCG). The coefficients for each gene in the RiskScore formula were derived using a
multivariate Cox proportional hazards regression model. This model assesses the independent effect of each gene's
expression level on patient survival, assigning a weighted coefficient that quantifies its impact, as exemplified by
the coefficient 0.3286 for CALR.

Using the median of the derived risk scores, tumor specimens were delineated into a high-risk category (HRG)
and a counterpart low-risk category (LRG). Subsequent survival evaluations indicated superior outcomes for the
LRG (Fig. 3D, E). Similar RiskScore distribution trends were observed in both GEO and TCGA cohorts, as illustrated in
Fig. 3F-K. This consistency across different datasets reinforces the robustness and generalizability of our RiskScore
as a prognostic tool in bladder cancer.
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3.4 Development of a risk nomogram

ROC curve analyses were executed, producing areas under the curve values of 0.705, 0.708, and 0.717, highlighting
noteworthy prognostic potential (Fig. 4A). An encompassing evaluation over 5 years, factoring in risk score, age,
gender, tumor gradation, and clinicopathological staging (Fig. 4B-D), posited the risk score as a paramount predictor
in comparison to other clinical parameters. Both univariate and multivariate Cox regression investigations validated
age, disease stage, and risk score as standalone predictors of prognosis in BLCA patients (Fig. 4E, F). Leveraging the
deduced risk scores and clinical metrics, a predictive nomogram was constructed to forecast survival probabilities
at 1, 3, and 5-year intervals (Fig. 4G). The fidelity of this model was accentuated by the accompanying calibration
plots (Fig. 4H) [20, 21].

3.5 Examination of the function of senescence-associated genes

Through Gene Set Enrichment Analysis (GSEA), we explored the functional roles associated with the elevated and
diminished expressions of the ten pivotal genes. Using KEGG enrichment evaluation, it was discerned that enhanced
expression levels of HMGA2 and MOV10 were affiliated with pathways such as Versus-Host-Disease and Receptor-
Interaction, among others. Augmentation of the Olfactory-Transduction pathway appeared to influence the surge in
RAD54B expression. Enhanced expressions of PTGER3 and PTGER4 were speculated to correlate with the activation
of pathways like Neuroactive-Ligand-Receptor-Interaction and other relevant signaling processes (Fig. 5A-J).

3.6 Connection of risk factors with clinicopathological parameters

Clinicopathological parameters were displayed for both the HRG and LRG (Fig. 6A), and proportional diagrams were
plotted to depict the clinical variables in both groups (Fig. 6B-F), unveiling significant differences between the HRG
and LRG. Notably, the high-risk group was more frequently associated with advanced tumor stages (T3-T4), metastatic
involvement (M1), and lymph node positivity (N+), as detailed in the proportional comparisons of Fig. 6C-F. These
trends underscore the prognostic implications of the risk score in correlating with more aggressive disease features.

3.7 Tumor mutational burden related clinical features

The analysis of survival curves revealed an extended overall survival for patients possessing elevated TMB (P < 0.001,
Fig. 6G). By integrating both TMB and risk evaluations, patients were stratified into four distinct categories. There
were marked prognostic variations between the HRG and LRG within both high and low TMB classifications (P < 0.001,
Fig. 6H), suggesting the predictive prowess of the risk metric in gauging the efficacy of immunotherapy.

To delve into the relationship between risk evaluations and genetic aberrations, we delineated waterfall plots
highlighting the top 20 frequently mutated genes (Fig. 61, J). A survey of significant gene alterations revealed a pre-
dominant mutation rate for KMT2D in the HRG (30% vs 21%) and for MUC16 in the LRG (22% vs 26%). Such insights
hold potential value for integrating senescence in BLCA therapeutic strategies [22, 23].

3.8 Exploration of risk characteristics within the immune microenvironment

We further explored the association between the risk score and immune cell infiltration employing seven unique
analytical approaches (Fig. 7A). we observed notable variances across databases, including discrepancies in CD8+ and
CD4+T cell prevalence. While the EPIC analysis highlighted the predominance of CD4+ T cells in the tumor microen-
vironment, contrasting findings were observed when analyzing data from other platforms, where CD8+ T cells also
showed significant infiltration patterns. This discrepancy underscores the complexity of the tumor immune landscape,
suggesting that both cell types play crucial roles in bladder cancer’s immune contexture. The ESTIMATE [24] assess-
ment revealed an ascending trajectory in both stromal and estimate scores across the HRG and LRG groups (Fig. 7B).
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Fig.3 A Forest plot revealing the Univariate Cox regression analysis results pertaining to 18 senescence-associated genes and overall sur- »
vival. B, C LASSO coefficient profiles for the 18 genes, characterized by vertical lines corresponding to tenfold cross-validation values. Ten
cross-validations employed for tuning parameter selection in lasso regression, with vertical lines indicating the optimal data based on the
minimum criterion and 1 standard error criterion. The left vertical line represents the 14 genes finally identified. D Kaplan-Meier curve anal-
ysis conducted on the TCGA database, highlighting the survival disparity between the HRG and LRG. E Kaplan-Meier curve analysis per-
formed on the GEO database, indicating survival differences between HRG and LRG. F Validation of prognostic risk scores in the GEO cohort.
G Risk score distribution for the polygenic model in the GEO cohort. H Survival status and duration for BLCA patients in the GEO cohort. |
Validation of prognostic risk scores in the TCGA cohort. J Risk score distribution for the polygenic model in the TCGA cohort. K Survival sta-
tus and duration for BLCA patients in the TCGA cohort

3.9 Enrichment examination of biological functions and signal pathways

Through gene set variation analysis centered on the ten pivotal genes, we deepened our understanding of the
biological functions associated with distinct risk classifications (Fig. 7C, D). Observations highlighted an augmented
activation of the PPAR signaling pathway in subjects within the LRG, while pathways like the RIG-I-Like-Receptor and
NOD-Like-Receptor exhibited enhanced activity in those categorized as HRG.

3.10 Prognostication of patient outcomes following immunotherapy

Subsequent detailed analysis pinpointed 47 genes associated with checkpoint blockade. The inclusion of immune-related
genes in our senescence-focused analysis is predicated on the emerging evidence that senescence can influence the
tumor immune microenvironment. To elucidate this relationship, we specifically curated a set of immune-related genes
known to interact with senescent cells or pathways, thus providing a comprehensive view of how senescence may
modulate immune evasion and therapy response. The majority manifested a negative association with the risk score and
were deemed significant (Fig. 7E). Prognostic models presented diminished IPS scores for those in the high-risk category,
hinting that such patients might not be optimal recipients for PD-1 and CTLA-4 immunotherapies (Fig. 7F). This robust
data suggests a noteworthy linkage between risk scores and immunotherapy responses, endorsing its potential use in
forecasting prognosis.

3.11 Forecasting chemotherapeutic responsiveness

Through the application of the pRRophetic algorithm, we assessed the IC50 values for three therapeutic agents (cispl-
atin, cyclopamine, sorafenib) among BLCA patients. Elevated IC50 values were observed for cisplatin, cyclopamine, and
sorafenib within the LRG (P <0.001), indicating a potential diminished drug responsiveness (P <0.001) (Fig. 7G-I). Such
findings may inform tailored drug recommendations for patients based on their specific risk profiles.

4 Discussion

Our research delved profoundly into understanding the prognostic ramifications of genes associated with senescence
in BLCA. Through this endeavor, we pinpointed ten cardinal genes with pronounced prognostic relevance for individu-
als diagnosed with BLCA. This endeavor has enriched our comprehension of BLCA's underlying molecular dynamics
and accentuated the significance of these genes as potential prognostic indicators. It's pertinent to highlight that the
prominence of these senescence-associated genes in BLCA is attributed to their regulatory influence on cellular dynam-
ics, thereby modulating disease trajectory and patient prognoses [25, 26].

To render these discerned genes into a practical diagnostic asset, we amalgamated them to formulate a risk score [27,
28]. Our findings underscore the efficacy of this devised risk score in bifurcating BLCA patients into cohorts of heightened
or diminished risk, furnishing clinicians with a tool to refine prognostic evaluations and therapeutic choices. To ascertain
the model’s resilience and precision, it underwent verification using both the TCGA-BLCA and GEO databases, consist-
ently affirming its predictions across both datasets. Crucially, individuals grouped within the elevated-risk segment
manifested shorter survival times compared to the diminished-risk group, emphasizing the practical utility and promise
of our senescence-associated gene-centric model for optimizing BLCA patient care. To address the clinical applicability
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Fig.4 A-D ROC analysis forecasting 1-year, 3-year, and 5-year overall survival. E Univariate Cox regression analysis results of overall survival.
F Multivariate Cox regression analysis results of overall survival. G Nomograph predicting survival outcomes. H Calibration curve for the

Nomograph

of our risk scoring model, we propose integrating it with current diagnostic workflows, enhancing patient stratification
for tailored treatments. Future studies should focus on validating the model in clinical settings and identifying potential
barriers to its adoption, such as the need for high-throughput genetic testing facilities.

Delving deeper into the intricacies of the identified genes has provided us a clearer picture of their multifarious bio-
logical roles and intertwined signaling pathways. It's noteworthy that augmented expression levels of certain genes,
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Fig. 5 Functional enrichment analysis. A Enrichment gene set for samples expressing high levels of CALR in KEGG. B Enrichment gene
set for samples expressing high levels of HLA-G in KEGG. C Enrichment gene set for samples expressing high levels of HMGA1 in KEGG. D
Enrichment gene set for samples expressing high levels of HMGA2 in KEGG. E Enrichment gene set for samples expressing high levels of
JUN in KEGG. F Enrichment gene set for samples expressing high levels of MOV10 in KEGG. G Enrichment gene set for samples express-
ing high levels of PTGER3 in KEGG. H Enrichment gene set for samples expressing high levels of PTGER4 in KEGG. | Enriched gene set for
RADS54B high-expression samples in KEGG. J Enriched gene set for UGCG high-expression samples in KEGG

namely HMGA2 [29] and MOV10, were seamlessly interlaced with an array of sophisticated biological undertakings and
signaling cascades, encompassing aspects such as cellular senescence, immune modulation, and tumorigenesis. The
extensive scope of their function insinuates a multi-dimensional impact of these genes on the trajectory and perhaps
onset of BLCA. In light of the study by Luo et al. [9], which explored the prognostic value of senescence-related genes in
bladder cancer, our research builds upon and extends these findings. While Luo et al. identified crucial genes within this
context, our analysis introduces additional senescence-associated genes and elaborates on their mechanistic implica-
tions in tumor behavior and immune interactions. This comparative acknowledgment not only situates our work within
the existing research paradigm but also showcases our novel contributions towards refining the prognostic utility of
senescence-related genes in bladder cancer. The integration of our risk score model, predicated on an expanded gene
set, offers a promising avenue for enhancing patient stratification and treatment decision-making.
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Fig.6 A Heatmap depicting the distribution of clinical characteristics and associated risk scores within each sample. Incidence of clinical »
variable subtypes in high and low risk score groups. B WHO grade, C distant metastasis M, D lymph node involvement N, E stage, F T, G
Kaplan—-Meier curve for TMB high and low groups. H Kaplan-Meier curve for patients within TMB high and low risk score groups. | Creation
of HRG oncoPrint. J Creation of low-risk score oncoPrint

Moreover, the constructed risk score model depicted strong correlations with diverse clinicopathological variables,
thereby reinforcing its applicability in a clinical scenario. A salient observation from our investigation was the pronounced
interplay between the risk score and the Tumor Mutational Burden (TMB). Given TMB’s emerging potential as a predic-
tor of immunotherapy responsiveness in BLCA, such an interconnection could have profound implications for tailoring
therapeutic regimens [30, 31]. Furthermore, our data uncovered an intriguing nexus between the risk scores and the
nuances of the immune landscape. Specifically, a counteractive relationship between CD8+ T cell abundance and risk
scores was discerned, suggesting a nuanced crosstalk between cellular senescence, immune dynamics, and cancerous
evolution in BLCA. The documented elevated stromal and immune indices in high-risk cohorts underscore the pivotal
influence of the immune milieu on BLCA's clinical outlook.

To encapsulate, our research illuminates the cardinal influence of genes associated with senescence in the diagnostic
and therapeutic paradigms of BLCA. The correlations unraveled, encompassing clinical trajectories, TMB, and immune
contexts, potentially signal a transition towards bespoke treatment strategies. These profound insights provide a robust
foundation for ensuing studies, with an ambition to elucidate the multifaceted implications of genes tied to senescence
in the realm of BLCA and beyond.

5 Conclusion

We constructed a predictive framework grounded on ten genes linked to senescence, along with clinical risk determi-
nants, proficient in forecasting survival outcomes, immune reactions, and chemotherapeutic responses in BLCA. Multiple
layers of validation underscore its efficacy and promise as a credible instrument for prognostication in BLCA.

6 Limitations

(1) Dataset size and composition: our analysis was primarily conducted using data sourced from the TCGA and GEO
repositories. While these databases are extensive and provide a rich foundation for research, the size and diversity of
the datasets, especially the relatively smaller number of normal tissue samples compared to neoplastic specimens,
may limit the generalizability of our findings across different populations and bladder cancer subtypes. (2) validation
studies: although we have validated our prognostic models using available datasets from GEO, independent validation
studies, particularly prospective studies, are required to further establish the robustness and clinical applicability of our
senescence-associated gene signatures in bladder cancer prognosis.

@ Discover



Discover Oncology

(2024) 15:130

| https://doi.org/10.1007/s12672-024-00987-1

Analysis

B 100
75
é’ Grade
TN AT TTROR | LILACLEINNTY TV A AT AT M TR WA Z w0 I ion oo
[T I COEE CMOUEIN T AL AT ORI A TR T T TR N [ % g [T
I|IIII-IIIIIIII-IIIIIIIIIIIIIII-IIIIIII-I.IIIIIIII-III-IIIIIIIII| N
Risk Age*** Gender Grade™* Stage*** ™ N* g
M high [l <=65 [l FEMALE [l High Grade [l Stage | M To - MO Il No
Wow | >65 B VALE M Low Grade M Stage Il T B V1 N1
unknow M stage Il I T2 unknow [l N2
StagelV | T3 N3
unknow [ T4 unknow 9
unknow v high
C D E F riskScore
100 100 100 100
75 75 75 75
= = N = Stage = =
§’ ™M g’ | g W stace! E’ = :’
z 50 BWw z s By z M stagen Zz 50
8 W 8 W 8 1 stagem 8 = z
& & | K3 & W stoe v & —
25 25 25 25
0 o o o
0 nigh iow high high [ n
riskScore riskScore riskScore riskScore
G H
1.00 1.00
= H-TMB+high risk
== H-TMB+low risk
0.754 0.754 ——— L-TMB+hlgh risk
> ) > ° e | =TAMBLL
3 3
] -+ o
S 0.50 S 0.50
2 2
= =
7] 17
0.251 0.25
p<0.001 p<0.001
i — -
0.001 0.00
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time(years) Time(years)
I Altered in 187 (92.57%) of 202 samples. J Altered in 193 (95.07%) of 203 samples.
1193 3351
o o
’ }w_u_. ’ ]MMLMJA__I‘A
0 94
0 No. of samples 0 N
TP53 47% N TP53 47%
40% . TN 39%
KMTZD F 30% N KMT2D | 01 | DB 21 %
MUC16[I - ] ! H 22% MUC16 F lll 26%
23% ARID1A 1] 1 25%
DM A ' F l I | | 9% [l KDMB6A r | h F r ' F rF 25%
P/KBCA bll 1] IL I LI ” Ih I 19% [l PIK3CA I | ] ‘I ] III 22%
I } % SYNE1 1 | Il I | I r 15%
II III 8% [N lIII Il 1 I I11%
HMC I II IIIIr | IIII F 15%- HMCNT ||| III ll |11 r 13
| |I I I Il | III 6 RYR2 | | || | III Il Il I | Il I13A:
I I ILI II il 12% N | FGFR3 | \ I IJ I I I 15%
II I I [ | I I 14% KMT26 II II II I I |I ] 15%
MACF1 a1 I1 JII I115% [l I I JlIbL | I
00| 11w I l hl ll II II15% Cm EP30 II Il
III|IIIII 1 % I IIJ;III ‘ III II| 12%
FAT4 | IIIII I III 12% . ] FAT4 I Il | IIII 13%
| Ul ul 10% [l G | IIIII r14o
ATM1 “ I I I | [10% II IIIhIII II I II Il 13% -I
osscN [T 1] | I'1712% . OBSCNII [ Y i
Risk Risk
= Missense_Mutation = Frame_Shift_Ins Risk = Missense_Mutation = Frame_Shift_Ins Risk
= Nonsense_Mutation  In_Frame_Del = high = Frame_Shift_Del In_Frame_Del = high
= Frame_Shift_Del = Multi_Hit = low = Nonsense_Mutation = Multi_Hit = low

@ Discover



Analysis

Discover Oncology

(2024) 15:130

| https://doi.org/10.1007/s12672-024-00987-1

Fig. 7 A Spearman analysis on
the correlation between HRG
patients and tumor-infiltrating
immune cells. B ESTIMATE
analysis of the TME score for
HRG and LRG. C Correlation
between KEGG's representa-
tive pathway and risk score.

D Correlation between Hall-
mark’s representative pathway
and risk score. E Correlation
between gene expression
levels at immune checkpoints
and risk scores. F Distribution
chart for IPS scores. G Sensitiv-
ity analysis of cisplatin in high
and low risk score groups.

H Sensitivity analysis of
cyclopamine in high and low
risk score groups. | Sensitivity
analysis of sorafenib in high
and low risk score groups
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