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Abstract
In the United States, lung cancer is the second most common type of cancer with non-small cell lung cancer (NSCLC) 
encompassing around 85% of total lung cancer cases. Late-stage patients with metastatic disease have worsening prog-
nosis, highlighting the importance of longitudinal disease monitoring. Liquid biopsy (LBx) represents a way for physi-
cians to non-invasively track tumor analytes, such as circulating tumor cells (CTCs), and understand tumor progression 
in real-time through analyzing longitudinal blood samples. CTCs have been shown to be effective predictive biomarkers 
in measuring treatment efficacy and survival outcomes. We used the third-generation High-Definition Single Cell Assay 
(HDSCA3.0) workflow to analyze circulating rare events longitudinally during treatment in a cohort of 10 late-stage 
NSCLC patients, identifying rare events including circulating cancer cells (i.e., CTCs), and oncosomes. Here, we show (1) 
that there is a cancer specific LBx profile, (2) there is considerable heterogeneity of rare cells and oncosomes, and (3) 
that LBx data elements correlated with patient survival outcomes. Additional studies are warranted to understand the 
biological significance of the rare events detected, and the clinical potential of the LBx to monitor and predict response 
to treatment in NSCLC patient care.

1 Introduction

Non-small cell lung cancer (NSCLC) is a subtype of lung cancer and accounts for 80–85% of total lung cancer cases 
[1]. In the United States, lung cancer is the second most common cancer type [1, 2]. The overall 5-year survival rate 
of NSCLC is around 23% for men and 33% for women, but greatly declines with disease progression [3]. Late-stage 
patients with metastatic disease have worsening prognosis, highlighting the importance for longitudinal monitoring 
to better understand progression and assist in clinical decision making. Current clinical standards for monitoring 
NSCLC include imaging (MRI scans, CT scans, and PET scans) and lung biopsies or thoracentesis, procedures that are 
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invasive and may add risk and anxiety for the patient. Therefore, there exists a need to monitor patients in a minimally 
invasive, longitudinal manner, which may allow for real-time information on disease progression and response to 
treatment.

Liquid biopsy (LBx) has emerged as a way to enhance understanding of disease progression in NSCLC [4–8]. LBx allows 
for collection of longitudinal samples in a minimally invasive route for analysis of multiple analytes. Within NSCLC, cell-
free DNA (cfDNA) has commonly been used to understand disease progression and patient prognosis [9–12]. CfDNA is 
fragments of DNA found in the blood and has been a source of genomic information on the tumor itself. In a prospec-
tive observational study of over 300 individuals at risk of developing lung cancer, 129 were determined to have lung 
cancer using cfDNA fragments showing that cfDNA fragments from NSCLC patients displayed widespread genome wide 
variations and are associated with decreased overall survival (OS) [13, 14]. CfDNA is primarily used given the rarity of 
circulating tumor cells (CTCs) in NSCLC.

Despite its rarity, CTCs remain a useful prognostic tool and have been indicated as a predictive biomarker associated 
with progression free survival (PFS) and OS for NSCLC patients [4, 7, 8, 15–18]. Currently, the only LBx assay approved 
by the U.S. Food and Drug Administration (FDA) is CellSearch, which is a platform that uses EpCAM enrichment for the 
detection of CTCs in patients with colorectal, breast, or prostate cancer [19]. In NSCLC, CellSearch detected CTCs in only 
around 1/3 of metastatic stage patients at baseline in a study done by Tamminga et al. [20]. While Krebs et al. observed 
that CellSearch CTC number was the strongest predictor of OS in a cohort of 101 stage III and IV NSCLC patients [21]. 
Enrichment based approaches are biased in the type of cells detected based on a predetermined definition of a CTC. 
Other rare cell types, including circulating megakaryocytes and endothelial cells have been linked to survival implica-
tions [22–25] and are found in NSCLC [26, 27]. Herein, we present a single-cell, non-enrichment approach to allow for 
the detection of all rare events found in the blood.

Here, we use the High-Definition Single Cell Assay (HDSCA3.0) for high-throughput analysis of epithelial, mesenchy-
mal, endothelial, and immune cells with detection and characterization of rare events, including CTCs, tumor micro-
environment, and oncosomes (or large extracellular vesicles), from the peripheral blood of patients with stage III-IV 
NSCLC throughout treatment. Using this methodology, we have previously identified and characterized a heterogeneous 
population of rare cells and oncosomes in metastatic castrate resistant prostate cancer [28, 29], colorectal cancer [30], 
breast cancer [31], and urothelial carcinoma [32, 33]. Identification and characterization of a comprehensive profile of 
rare events may be particularly important in NSCLC given the rarity of CTCs. In this study, longitudinal LBx samples were 
collected throughout treatment for 10 patients with the primary goal of understanding the cellular and acellular LBx 
analytes and their dynamics over time for potential utility in clinical monitoring and decision making.

2  Materials and methods

2.1  Study design

This study was a single institution study of 10 patients who were diagnosed with NSCLC with metastatic or unresect-
able disease that was confirmed with pathology. Eligible patients were starting a first or new line of systemic treatment 
at the time of enrollment. Patients did not have any known severe anemia. The study was conducted according to the 
guidelines of the Declaration of Helsinki and approved by the Institutional Review Board at the University of Southern 
California Norris Comprehensive Cancer Center (protocol HS-17-00854 approved on 13 February 2018) and all patients 
provided written informed consent. Patients were able to leave the study at any time at their own request or were able 
to withdraw at the discretion of the investigator for safety, behavioral, or administrative reasons. The reasons for discon-
tinuation were documented.

Patient samples were collected from 1/26/2018 to 5/3/2021. Samples were taken prior to initiation of a new or first 
line therapy, and at follow-up visits coinciding with their treatment schedule to avoid unnecessary blood draws for up 
to 70 weeks, with a maximum of 7 LBx samples each taken approximately 7–12 weeks apart. Patients were monitored 
from the time of enrollment to the date of last follow-up and spanned an average of 314.3 (range 27–548) days. Patients 
were followed for survival analysis in which progression events were confirmed by clinical imaging. A total of 50 normal 
donor (ND) samples from individuals with no known pathology were used for comparative analysis.
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2.2  Blood collection and processing

Peripheral blood samples (average 7 mL) were collected in Cell-Free DNA blood collection tubes (Streck, Omaha, NE) and 
placed in a temperature stabilization box for transport. All samples were processed by the Convergent Science Institute in 
Cancer at University of Southern California within 48 h of collection as described previously [43]. In short, blood samples 
underwent erythrocyte lysis and all the nucleated cells adhered to custom glass slides (Marienfeld, Lauda-Königshofen, 
Germany) with approximately 3 million cells per slide. Cells were then incubated in 7% BSA, dried, and stored at – 80 °C for 
subsequent analysis. WBC counts of the samples were determined automatically prior to processing (Medonic M-series 
hematology Analyzer, Clinical Diagnostic Solutions INC., Fort Lauderdale, FL) allowing for the calculation of cells/mL.

2.3  Immunofluorescent staining

For sample analysis, 2 slides per test were thawed for immunofluorescent staining as previously described [43, 44]. Slides 
were processed at room temperature using the IntelliPATH FLX™ autostainer (Biocare Medical LLC, Irvine, CA, USA). Briefly, 
cells were fixed with paraformaldehyde prior to incubation with 2.5 ug/ml of a mouse IgG1 anti-human CD31:Alexa Fluor® 
647 mAb (clone: WM59, MCA1738A647, BioRad, Hercules, CA) and 100 ug/ml of a goat anti-mouse IgG monoclonal Fab 
fragments (115-007-003, Jackson ImmunoResearch, West Grove, PA), permeabilized using 100% cold methanol, followed 
by an antibody cocktail consisting of mouse IgG1/IgG2a anti-human cytokeratin (CK) 1, 4, 5, 6, 8, 10, 13, 18, and 19 
(clones: C-11, PCK-26, CY-90, KS-1A3, M20, A53-B/A2; C2562, Sigma, St. Louis, MO), mouse IgG1 anti-human CK 19 (clone: 
RCK108, GA61561-2, Dako, Carpinteria, CA), mouse anti-human CD45:Alexa Fluor® 647 (clone: F10-89-4, MCA87A647, 
AbD Serotec, Raleigh, NC), and rabbit IgG anti-human vimentin (Vim) (clone: D21H3, 9854BC, Cell Signaling, Danvers, 
MA). Lastly, slides were incubated with Alexa Fluor® 555 goat anti-mouse IgG1 antibody (A21127, Invitrogen, Carlsbad, 
CA) and 4′,6-diamidino-2-phenylindole (DAPI; D1306, ThermoFisher) prior to mounted with a glycerol-based aqueous 
mounting media. The HDSCA3.0 workflow includes technical controls throughout the pipeline as previously described 
[29, 32, 43]. Controls consisted of ND samples spiked with known cell line cells (SK-BR-3 ATCC: HTB-30 and HPAEC ATCC: 
PCS-100-022) that were processed and analyzed according to standard protocol.

2.4  Detection and classification of rare events

Samples were imaged using automated scanning microscopy at 100 × magnification. Image data sets were analyzed 
using OCULAR (Outlier Clustering Unsupervised Learning Automated Report) to identify rare event candidates using 761 
morphometric parameters [4, 29]. Images of CTC candidates were presented to a hematopathologist-trained technical 
analyst for manual data reduction and phenotype classification. Rare events were classified into 12 categories (8 cellular 
and 4 oncosome categories) based on marker expression in the 4 channels. There were 2 types of circulating tumor cell: 
epi.CTCs and mes.CTCs. Epi.CTCs were classified as containing a nucleus by DAPI morphology, and presenting as CK 
positive, Vim negative, CD45/CD31 negative. Mes.CTCs were classified as Epi.CTCs with Vim expression. Other rare cells 
were described using the positive immunofluorescence marker expression in each of the four channels (for example: 
DAPI|CD45/CD31 = DAPI positive, CD45/CD31 positive, CK negative, Vim negative). Oncosomes were classified as round 
DAPI negative CK positive events with variable Vim and CD45/CD31 expression, and were observed both free floating 
and in close proximity to cells (for example: Onc CK|Vim = Oncosome, CK positive, Vim positive, DAPI negative, CD45/
CD31 negative).

2.5  Statistical analysis

Cohort level comparisons and longitudinal analysis were performed using python (version 3.8.5) and the Scipy library 
(version 1.5.0). Statistical comparisons of analyte enumerations at the cohort level were done using the Wilcoxon rank 
sum test, also known as the Mann–Whitney U test [45, 46]. The Wilcoxon rank sum test was chosen due its non-parametric 
nature and robustness to outliers. Statistical significance was set at a p-value of 0.05.

PFS was set to the length of time from date enrolled to last follow-up with no documented progression events. OS 
was set to the length of time from date enrolled to date of death, or end of study date if there was no date of death. 
Statistical analysis and data visualizations for PFS and OS were created using R software (version 3.6.3) and the survival 
library (version 3.2-7). Kaplan–Meier curves were used to estimate the survival functions [47]. To compare two survival 
functions statistically, the log-rank test was used [48–50]. For kinetic PFS analysis, changes in LBx analyte counts were 
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determined using the change between the two blood draws prior to progression, or the last two draws if there was no 
patient progression. For PFS and OS, we analyzed 16 LBx analytes and groups: total events, total CK expressing cells, total 
rare cells, total oncosomes, and each individual channel-type classification for cells and oncosomes. For PFS-Kinetics, we 
analyzed the change in these 16 factors over time. For each of these factors, analyses were performed at each of the three 
quartiles. Statistical significance was set at a p-value of 0.05. When median survival could not be calculated because the 
cohort did not reach 50% survival during the study, median survival is reported as N/A.

3  Results

3.1  Patient demographics

A total of 10 patients were enrolled into the study at the time of diagnosis prior to first line therapy (n = 7) or at the start 
of their next line of therapy (n = 3). Patient demographics are described in Table 1. An average of 3.7 draws were collected 
per patient and analyzed by the HDSCA3.0 workflow (range: 1–7, median: 3). There was an average of 6.64 million white 
blood cells (WBCs) per mL for patient samples collected (median: 6.25 million, range: 2.5–20.2 million WBCs). An average 
of 1.23 mL of blood was analyzed per test (median: 1.1 mL, range: 0.34–2.8 mL).

3.2  Rare event detection

This study analyzed 42 peripheral blood samples collected from 10 patients with stage III-IV NSCLC. A gallery of rare cells 
and oncosomes are shown in Fig. 1. The identified cellular and oncosome channel-type classifications had considerable 
morphological and biomarker expression heterogeneity (Fig. 2) suggesting that there may be multiple cellular pheno-
types present in each classification group. Oncosomes were detected either alone (n = 1077; 35.97%) or in close proximity 
to cells (n = 1917; 64.03%). Additionally, there was a significant correlation between Onc CK|Vim|CD45/CD31 and total 
oncosomes and a significant correlation between total oncosomes and total cells (Supp. Fig. S1).

3.3  Cohort comparison

To determine if the LBx was distinct in NSCLC patients compared to non-cancerous individuals, the first blood draw col-
lected for each patient was compared to 50 ND draws (Fig. 3). Utilizing the maximum value of specific analytes detected 
in the ND samples as a threshold for positivity we can quantify and reduce the noise related to the LBx profile. For total 
events, 5 (50%) NSCLC patients had positive signal in the LBx, 0 (0%) patients had positive signal by total cells, and all 
(100%) of patients had positive signal using total oncosomes. This suggests that the critical analyte for detecting NSCLC 
in the LBx is the total oncosome population.

Patient samples had a significantly greater count of total events (p-value < 0.0001), total cells (p-value = 0.0139), total CK 
expressing cells (p-value = 0.039), as well as specific cellular and acellular channel-type classifications (p-value < 0.05) com-
pared to the ND samples (Fig. 3d). Patient samples had significantly more DAPI-only cells (p-value = 0.0070), CK|Vim|CD45/
CD31 cells (p-value = 0.0338), and Vim cells (p-value = 0.0355) as compared to NDs. Similarly, Onc CK|Vim|CD45/CD31 
(p-value < 0.0001), Onc CK|Vim (p-value < 0.0001), and Onc CK|CD45/CD31 (p-value = 0.0062) were detected at higher 
levels in NSCLC patient samples compared to ND. Descriptive statistics for Supplemental Table S1.

3.4  Longitudinal analysis of NSCLC cohort

As this study included a longitudinal collection of samples per patient, we explored the dynamics of the LBx profile. 
Enumeration plots for longitudinal patient samples are provided in Fig. 4. Throughout treatment the LBx profile and 
individual analytes fluctuate potentially as a response to treatment. The 10 patients of this study received 16 different 
therapeutic agents after their enrollment in this study in which therapeutic compounds were counted individually if they 
were part of a multi-drug treatment. Therefore, various lines of therapy may affect each patient’s LBx profile. We further 
analyzed the kinetics of the various analytes in reference to patient outcome (see Survival analysis).
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3.5  Survival analysis

To investigate the clinical relevance of the rare events detected in the LBx, we ran PFS and OS analyses of LBx analytes at 
single time points and longitudinally to assess changes over time. All variables analyzed can be found in Supplemental 
Table S2. PFS was reported for all patients, in which 4 patients had progression events. At the time of data analysis, 3 
patients were confirmed to be deceased (Patient 2, Patient 8, and Patient 9).

Table 1  NSCLC patient 
demographic and clinical 
information

N/A Data not available
* Patient 7 diagnosed as stage IA but metastatic at time of enrollment. Clinical TNM stage reported for 
diagnosis and not enrollment

Variables Category Value n (%)

Age Range: 30–81
Median: 61

Gender Female 8 (80%)
Male 2 (20%)

Race Caucasian Non-Hispanic 3 (30%)
Caucasian Hispanic 5 (50%)
African American 2 (20%)

Cancer history Yes 1 (10%)
No 9 (90%)

Family history Yes 2 (20%)
No 8 (80%)

Smoking Yes 3 (30%)
No 6 (60%)
N/A 1 (10%)

Disease stage IIIA 1 (10%)
IIIB 1 (10%)
IV* 8 (80%)

Clinical T staging T1B 3 (30%)
T2A 1 (10%)
T3 3 (30%)
T4 2 (20%)
N/A 1 (10%)

Clinical N staging N0 3 (30%)
N2 2 (20%)
N3 4 (40%)
N/A 1 (10%)

Clinical M staging M0 3 (30%)
M1A 1 (10%)
M1B 2 (20%)
M1C 3 (30%)
N/A 1 (10%)

Histological subtype Adenocarcinoma 9 (90%)
Adenosquamous carcinoma 1 (10%)

Death Yes 4 (40%)
N/A 6 (60%)

Prior Therapy Carboplatin and Taxol 1 (10%)
Carboplatin and Pemetrexed 1 (10%)
Pemetrexed 1 (10%)
None 7 (70%)
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PFS was performed using the first draw collected from each patient. Patients with total events, total cells, or total 
oncosomes above a threshold (162.91, 51.56, 101.85 respectively) at baseline had a longer PFS than those below 
(p-value = 0.02). Specific phenotypic classification of rare cells and oncosomes were also correlated to PFS: Onc 
CK|Vim|CD45/CD31, CK|Vim|CD45/CD31 cells, Vim only cells, and CK|CD45/CD31 cells (Supplemental Table S2). Further 
analysis was used to evaluate the importance of rare event kinetics with patient PFS. The change between the two 
draws are represented as a positive number if there was an increase, and a negative number if there was a decrease 

Fig. 1  Representative images of rare events detected in the NSCLC patient blood samples. Images taken at 100x magnification. (a–h) Rare 
cells and (i–l) oncosomes. DAPI: blue, cytokeratin (CK): red, Vim: white, CD45/CD31: green (a): Epithelial like CTCs (Epi.CTCs), (b): CK|CD45/
CD31 cell, (c): CK|Vim|CD45/CD31 cell, (d): Vim|CD45/CD31 cell, (e): Vim only cell, (f): CD45/CD31 cell, (g): DAPI only cell, (h): Mesenchymal 
like CTCs (Mes.CTCs), (i): Onc proximal to cell, (j): Onc alone

Fig. 2  Morphometrics of rare events detected in peripheral blood of NSCLC patients. Probability density distribution plots for morphometric 
parameters across channel-type classifications for cells (a–e) and oncosomes (f–j). (a&f) eccentricity, (b&g) area, (c&h) median CK signal 
intensity, (d&i) median Vim signal intensity, (e&j) median CD45/CD31 signal intensity
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over time. Interestingly, only the change in total oncosome count during therapy was significantly correlated to PFS 
(p-value = 0.02). Patients with a decrease greater than 31.31 oncosomes/mL over time had significantly shorter PFS 
than those less than 31.31 oncosomes/mL. Lastly, patients with first draw total oncosome greater than 61.70 events/
mL (n = 7) had a longer OS than those who had less than 61.70 events/mL (n = 3; p-value = 0.01).

Fig. 3  Comparison of rare events detected in the first draws from NSCLC patients and ND by HDSCA3.0. A enumeration plot for total events 
per mL, B total oncosome counts per mL, and C relative frequency of each rare event classification for patient samples vs ND samples. D Box 
plot depicting differences in logarithmic scale of patients’ first draws as compared to 50 NDs. Factors of significance are marked with red 
asterisks (*) and outlined by the top bar



Vol:.(1234567890)

Research Discover Oncology          (2024) 15:142  | https://doi.org/10.1007/s12672-024-00984-4

Fig. 4  Enumeration frequency plots for all analyzed patient samples presented longitudinally. Patient draws are separated by dashed lines. 
A Total rare event enumerations (events/mL), B cellular enumerations (cells/mL) and C oncosome enumerations (oncosomes/mL)
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4  Discussion

The LBx has the potential to significantly advance patient care by addressing current clinical challenges in NSCLC as 
a minimally invasive approach to monitoring disease progression. In the stage III-IV NSCLC cohort presented here, 
we have identified several LBx analytes unique to the cancer patient as compared to NDs. Survival analysis indicates 
that a single draw, as well as longitudinal sampling, can inform prognosis. We observed a high inter- and intra-patient 
heterogeneity suggesting either biological variability in disease or noise due to other conditions. A larger study is 
necessary to further sample the patient population and evaluate potential signal against disease specific control. 
Additionally, molecular analysis is required to understand the biological significance of the detected rare events. The 
data presented here supports the potential clinical utility of the LBx in disease detection and longitudinal monitoring 
of late-stage NSCLC patients on therapy.

CTC detection rate has varied significantly in NSCLC due to use of different techniques for CTC isolation and enu-
meration, variable thresholds to discriminate between high- and low-risk patients, and the enrollment of heterogene-
ous and often small cohorts of patients. Most CTC detection methods use biomarker or size-based enrichment. Recent 
studies suggest a CTC sensitivity rate of 31.7–78% using CellSearch in late-stage NSCLC [17, 20]. This detection rate 
is usually lower in early-stage NSCLC, however, there have been limited studies that utilize CTC detection in local-
ized disease settings [8, 34]. The rare cell population detected in this study showed considerable heterogeneity in 
biomarker expression and morphology. The CTC population (epithelial like CTC [epi.CTC] and mesenchymal like CTC 
[mes.CTC]) was determined to be minimally detected in our patient cohort and negligible in relation to predicting 
survival outcomes. This is supported by prior research [21, 35, 36] which found that the presence of EpCAM negative 
CTCs were found to be associated with shorter survival. Expanding beyond the conventionally defined epithelial 
positive CTC, and seeking to characterize and understand all subpopulations of rare cells may be critical for under-
standing the development and progression of disease in NSCLC. Further characterization and understanding of each 
rare cell population identified in this study is warranted.

This study demonstrates a higher incidence of oncosomes compared to NDs. Further, oncosomes were more 
prevalent than epi.CTCs and mes.CTCs and determined to be associated with patient PFS and OS. Interestingly, 
oncosomes were found to correlate with survival both at a single timepoint and over time. Given the rarity of CTCs in 
NSCLC, the detection of oncosomes through the enrichment-free approach used here is a promising new LBx analyte 
with potential implications for clinical care. Research has suggested that oncosomes may be capable of spreading 
tumor promoting material [37], play a role in creating tumor favorable surroundings [38], and aid in the movement 
of tumor and endothelial cells [39]. Furthermore, a previous paper [28] using similar methodology as presented here 
found and characterized oncosomes (previously referred to as large extracellular vesicles, LEVs) levels in metastatic 
castrate resistant prostate cancer. Gerdtsson et al. found that oncosomes were 1.9 times as frequent as CTCs, and 
that LEVs were identified in 73% of CTC-negative LBx samples. In a more recent paper using the similar methodology 
as presented here [31], Setayesh et al. analyzed oncosomes in a cohort of breast cancer patients and observed that 
tracking tumor associated oncosomes allowed for the stratification of early stage breast cancer from NDs, alluding 
to the clinical utility of these biomarkers. Although the characterization of oncosomes is not yet complete, data sug-
gests these acellular events are important biomarkers for detection and monitoring of disease and further analyses 
are warranted.

While changes in CTC counts can be associated with patient response [4, 17, 21, 40], it is important to understand 
CTC dynamics with a clinical timeframe in mind. In a previous publication using a similar methodology as the study 
here, Shishido et al. found that an increase in CTC counts within the first 3 months of treatment indicated a better 
PFS as compared to patients with a stable or decreasing CTC profile [4]. This suggests that an increasing CTC pro-
file could suggest response to treatment, while an increase later in the line of therapy may be indicative of tumor 
growth. Furthermore, factors such as therapy type may also be important for understanding CTC kinetics and their 
relationship with patient survival. The 10 patients of this study received 16 different therapeutic agents after their 
enrollment in this study. Each of these therapeutic agents may have a treatment-unique effect on the patient’s LBx 
profiles. Understanding how the various treatments pathways affect disease can be interesting and can shed light 
on the relationship between rare cell and oncosome groups in clinical response to specific treatment paths.

Circulating tumor DNA (ctDNA) isolated from cfDNA has emerged as another useful analyte, though the sensitiv-
ity in detecting NSCLC varies depending on the technology (targeted vs. untargeted) and patient cohort tested. In 
advanced NSCLC, ctDNA can be used to identify oncogenic driver mutations which may inform treatment decisions 
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using targetable therapy or in real-time monitoring during a patient’s treatment course to determine efficacy or 
mechanisms of resistance. A meta-analysis of several studies with various ctDNA analysis methodologies found an 
overall sensitivity of 65.7% and specificity of 99.8% for targeted mutation detection [41]. Beyond targeted mutational 
analyses, structural analysis via copy number alterations and fragmentation of ctDNA can be utilized to detect and 
monitor NSCLC [42]. Multi-analyte platforms allow for a more comprehensive view of the disease for each patient 
[13] and combining ctDNA analysis with the cellular analysis conducted in this study may provide new insight into 
disease progression and biological understanding.

This study demonstrates the utility of an unbiased rare event detection approach to LBx analysis. For the first time, 
we demonstrate a cancer unique LBx profile that includes multiple types of circulating rare cells and oncosomes from 
the peripheral blood of NSCLC patients. Given the challenges in detecting CTCs, the presence of oncosomes and their 
association with patient survival outcomes warrants future larger cohort studies. Further downstream analyses of the 
LBx analytes by genomics and proteomics would provide additional insight into the biological function of each cellular 
and acellular event and potential relation to disease state.
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