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Abstract
Background Cuproptosis induces proteotoxic stress and eventually leads to cell death. However, the relationship between 
cuproptosis and lncRNAs in cervical cancer has not been fully elucidated. Therefore, we aim to explore the association 
among lncRNAs, cuproptosis and clinical features in cervical cancer.
Methods RNA sequencing, genetic mutations, and clinical data of CESC patients were obtained from TCGA. Cupropto-
sis-associated genes were gathered. WGCNA was used to cluster important modules, and KEGG, GO, GSEA and GSVA 
were used to explore functional and pathway enrichment. The association between immune microenvironment and 
cuproptosis-related lncRNAs was performed by using cibersort algorithm and other platforms, including XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER and EPIC. Fluorescence quantitative PCR was employed to detect the expression of LINC01833 
and LINC02321, and CCK-8 and cell scratch assays were used to assess cell proliferation and migration capabilities after 
LINCRNA interference. 
Results 202 upregulated and 45 downregulated lncRNAs were selected. The survival analysis showed that there was a 
statistically significant difference in survival rates between the high-risk and low-risk groups. The prognosis of tumour 
mutation burden and the degree of immune infiltration were differed noticeably between the high-risk and low-risk 
groups. BHG712, TL-2-105, FR-180204, Masitinib, TAK-715, ODI-027, JW-7-24-2, and OSI-930 had substantially higher IC50 
values in the high-risk group. Notably, we found AL360178.1 was associated with RNF44 E3 ubiquitin ligase expression. 
In cervical cancer cell lines, LINC01833 and LINC02321 displayed significant upregulation. Efficient siRNA transfection led 
to a decreased expression of LINC01833 and LINC02321. This knockdown significantly hindered both cell proliferation 
and migration capabilities in cervical cancer cells compared to the negative control.
Conclusion In conclusion, we constructed five cuprotosis-related lncRNA prognostic models, which may be new tumor 
therapeutic targets for the prevention and treatment of cervical cancer.
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GO  Gene Ontology
GSVA  Gene set variation analysis
KEGG  Kyoto Encyclopedia of Genes and Genomes
lncRNA  Long noncoding RNA
ncRNA  Noncoding RNAs
OSCC  Oral squamous cell carcinoma
piRNA  Piwi-interacting RNA
PCA  Principal component analysis
ROC  Receiver operating characteristic
RNF44  RING Finger 44
SCAT2  S-phase cancer associated transcript 2
siRNA  Small interfering RNA
TMB  Tumor mutation burden
tRNA  Transfer RNA
TCA   Tricarboxylic acid
TME  Tumor microenvironment
WGCNA  Weighted correlation network analysis

1 Introduction

Cervical cancer is one of the most common gynecological malignancies [1, 2]. The most common age of cervical carci-
noma in situ is 30–35 years old, and the invasive cervical carcinoma is 45–55 years old [3, 4]. In recent years, the incidence 
of cervical carcinoma in situ is increasing in younger age [5, 6]. Most cervical cancer patients are associated with HPV 
infection [7]. Due to HPV vaccine and screening, the incidence of cervical cancer has decreased [8]. The prognosis of 
cervical cancer is closely related to clinical stage and pathological type [9]. The early stage of cervical adenocarcinoma 
is prone to lymphatic metastasis, so the prognosis of cervical cancer is worse than that of other gynecological tumors 
[10, 11]. Surgery, radiotherapy and chemotherapy are the main treatments for cervical cancer [5, 12]. But radiotherapy 
and chemotherapy can cause serious side-effects to patients and damage their own body functions [13, 14]. In addition, 
after repeated use of radiotherapy and chemotherapy, patients will develop drug resistance or tolerance, and the treat-
ment effect will gradually decrease [15, 16]. Immunotherapy has been used in cervical cancer patients [17, 18]. There is 
an urgent need for an emerging novel treatment for cervical squamous cell carcinoma (CESC). Therefore, it is of great 
clinical significance to find reliable biomarkers to predict treatment response and prognosis, and to develop effective 
treatment strategies for CESC patients.

Depending on the mechanism of cell death, there are different ways of cell deaths, such as apoptosis, autophagy, 
necrosis, necroptosis, pyroptosis, cuproptosis, netosis, parthanatos and ferroptosis [19, 20]. Cuproptosis is a new type 
of cell death which was first discovered in March 2022 [21]. Copper is an indispensable trace element in all living organ-
isms and is normally maintained at very low levels in mammalian cells [22]. Copper ions directly bind to the thiocty-
lated component of the tricarboxylic acid (TCA) cycle, leading to abnormal aggregation of thioctylated proteins and 
decreased expression of Fe-S cluster proteins [23], which result in a proteotoxic stress response and cell death [24]. This 
novel approach of cell death may provide insight into the development of new therapies for CESC patients. Therefore, 
identifying the essential cuproptosis regulators is crucial for CESC therapy.

Noncoding RNAs (ncRNA) include ribosomal RNA, microRNA, transfer RNA (tRNA), circular RNA (circRNA), small interfer-
ing RNA (siRNA), piwi-interacting RNA (piRNA) and long noncoding RNA (lncRNA). Several reports have shown the critical 
role of miRNAs and circRNAs in cervical tumorigenesis as potential biomarkers and therapeutic targets [25, 26]. LncRNA is 
a noncoding RNA with a length greater than 200 nucleotides [27, 28]. LncRNAs can participate in cancer-related signaling 
pathways by regulating the expression of proto-tumor and tumor suppressor genes, and affect cell proliferation, tumor 
immune evasion, angiogenesis, apoptosis, tumor metastasis and a series of biological processes related to the cancer 
occurrence and development [29–32]. For example, lncRNA799 expression was considerably higher in cervical cancer 
tissue than in adjacent normal tissue, and its overexpression was associated with advanced stage, high SCC-Ag level, 
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lymphatic metastasis, and poor survival [33]. In addition, recent studies have found that the changes of lncRNA expres-
sion and function may be related to apoptosis, autophagy, and ferroptosis [34–36]. One study showed that a lncRNA 
prognostic model associated with ferroptosis can be used to predict prognosis and provide immunotherapeutic targets 
for lung adenocarcinoma [37]. Tumor microenvironment (TME) comprises stromal cells, extracellular matrix, tumor cells 
and blood vessels, which is critically involved in cervical oncogenesis [38]. The role of lncRNAs in regulation of cuproptosis 
and TME has not been fully studied in cervical cancer cells. Therefore, the purpose of this study is to use bioinformatics 
analysis to reveal the relationship between cuproptosis, lncRNAs and clinical features in CESC.

2  Materials and methods

2.1  Data collection

We retrieved the transcriptome sequencing data and clinical information for 306 cervical cancer patients from the TCGA 
database. For further analysis, the 306 cervical cancer patients were randomly divided into the training (n = 153) and 
validation (n = 153) cohorts in a 1:1 ratio.

2.2  Searching for cuproptosis‑related lncRNAs

We collected 19 cuproptosis-related genes according to previous published papers. Using the "limma" package, we 
retrieved the list of cuproptosis-related genes and discovered the cuproptosis-related lncRNAs with |correlation coeffi-
cient|> 0.5 and a p-value < 0.05. After setting a p-value threshold of 0.05, we performed univariate Cox regression analysis 
to screen and detect prognostic cuproptosis-related lncRNAs. All analysis was carried out by R software (Version 4.1.3).

2.3  Prognosis model of cuproptosis‑related lncRNAs

The predictive significance of cuprotosis-related lncRNA characteristics was assessed using univariate and multivariate 
Cox regression analysis. The prognostic model accuracy was assessed using the receiver operating characteristic (ROC) 
curve and c -index. Following this, the data were separated randomly into two groups: the test group and the training 
group. The prognosis of the test group and the training group was then analyzed using a Kaplan–Meier curve. The 
prognostic lncRNAs related to cuprotosis were optimized using minimum absolute contraction and selection operator 
(LASSO) regression analysis, which also served to prevent data overfitting. We categorized the patients with cervical 
cancer into high risk and low risk groups based on the median risk score value of the training set. With the help of the 
"stats" and "Rtsne" R packages, PCA analysis was carried out.

2.4  Construction of nomogram

Nomograms can be used to diagnose or predict disease onset or progression in combination with multiple indicators. 
To further improve the ability to predict long-term survival in CESC patients, a nomogram was constructed using the R 
package "rms" and a number of important clinical parameters and risk models.

2.5  Functional enrichment of cuproptosis‑related lncRNAs

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a comprehensive database integrating genomic, chemical and 
system functional information, aiming to reveal the genetic material and chemical blueprint of living phenomena [39, 40]. 
The Gene Ontology (GO) project is able to describe the biological functions of genes through a common semantic term. 
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Fig. 1  Differential expression of cuproptosis-related lncRNAs. A Heatmap of the differentially expressed genes in cervical cancer. The color scale indicates the 
level of gene expression, with red indicating upregulation and blue indicating downregulation. B Volcano plot showing the differentially expressed genes in 
cervical cancer. The red dots represent upregulated genes, the blue dots represent downregulated genes, and the black dots represent genes with no sig-
nificant difference. C Univariate Cox regression analysis of clinical factors associated with patient survival in cervical cancer. The hazard ratio (HR) and 95% 
confidence interval (CI) are shown for each variable. D Multivariate Cox regression analysis of clinical factors associated with patient survival in cervical cancer. 
The HR and 95% CI are shown for each variable. E LASSO coefficient profiles of the cuproptosis-related lncRNAs. The dotted vertical line represents the optimal 
value of lambda, which was determined using tenfold cross-validation. F LASSO cross-validation plot showing the relationship between the log(lambda) and 
the mean squared error (MSE) of the model. G Kaplan–Meier curves of overall survival in the test group. The red and blue curves represent high- and low-risk 
patients, respectively. H Kaplan–Meier curves of overall survival in the train group. The red and blue curves represent high- and low-risk patients, respectively. I 
Kaplan–Meier curves of overall survival in the combined group. The red and blue curves represent high- and low-risk patients, respectively
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Fig. 2  CUPIncRNA signa-
ture predicts prognosis in 
CESC. A Principal compo-
nent analyses (PCA) of the 
expressions of all CRGs, all 
CUPIncRNA, OS-related CRGs, 
and 5 CUPIncRNAs associ-
ated with prognosis; Principal 
component analysis (PCA) 
plot showing the distribution 
of gene expression patterns 
among all CRGs, all CUPIn-
cRNA, OS-related CRGs, and 
5 CUPIncRNAs associated 
with prognosis. B Distribu-
tion of the risk scores for 
CESC patients, based on the 
expression levels of the 5 
CUPIncRNAs associated with 
prognosis. C Heatmap show-
ing the expression levels of 
the 5 CUPIncRNAs associated 
with prognosis in the test 
and train, survival groups. 
The color scale represents the 
level of gene expression, with 
yellow indicating high expres-
sion and blue indicating low 
expression
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Fig. 3  Prognostic Significance of CUPIncRNAs and Clinical Features in CESC. A Heatmap of five lncRNAs in overall group; Heatmap showing the expression 
levels of the 5 CUPIncRNAs associated with prognosis in the overall survival groups. The color scale represents the level of gene expression, with yellow indi-
cating high expression and blue indicating low expression. B Multivariate Cox regression analysis of age, grade, and risk score showing their independent 
prognostic significance for overall survival in patients with CESC. C Kaplan–Meier curves showing the progression-free survival of patients with CESC, stratified 
by risk score. D C-index values for clinical features, including age, grade, and risk score, indicating their ability to predict overall survival in patients with CESC. 
E Receiver operating characteristic (ROC) curve for the prognosis model based on the 5 CUPIncRNAs associated with prognosis, demonstrating its predictive 
accuracy for overall survival in patients with CESC; Area under the curve (AUC) curve of clinical features; ROC curve for the clinical features, including age, 
grade, and risk score, showing their predictive accuracy for overall survival in patients with CESC
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Fig. 4  Nomograms and Survival Analysis for Predicting Overall Survival in CESC Patients. A, B Nomogram plots for predicting overall survival 
in patients with CESC, based on clinical features, including age, grade, and risk score. C Kaplan–Meier curves showing the overall survival of 
patients with CESC, stratified by clinical features, including age, grade, and tumor stage



Vol:.(1234567890)

Research Discover Oncology          (2024) 15:116  | https://doi.org/10.1007/s12672-024-00964-8

Fig. 5  Clinical Feature Analysis in CESC: Survival and Expression; Kaplan–Meier survival analysis and heatmap of clinical features, including 
T, M, N, age, grade, and tumor stage, in patients with CESC. A Survival analysis of clinical features (T, M and N); Kaplan–Meier curves showing 
the overall survival of patients with CESC, stratified by clinical features. B Heatmap of clinical features; Heatmap showing the expression lev-
els of clinical features, including age, grade, and tumor stage, in patients with CESC. The color scale represents the level of the feature, with 
red indicating high levels and blue indicating low levels
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Fig. 6  Analysis of Gene Expression and Pathway Enrichment. A Histogram showing the distribution of clinical features, including T, M, Grade 
and N, among patients with CESC. B, C Gene Ontology (GO) analysis showing the enriched biological processes, molecular functions, and 
cellular components associated with the differentially expressed genes in CESC. D, E Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis showing the enriched pathways associated with the differentially expressed genes in  CESC32,33. F Gene Set Variation Analysis (GSVA 
showing the enrichment of biological pathways and gene sets in patients with CESC based on their gene expression profiles
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GO analysis mainly includes three levels: molecular function, biological process and cellular component. The package 
"clusterProfiler, ggplot2" was used to explore GO and KEGG functional enrichment analyses. GSEA (gene set enrichment 
analysis) is an unsupervised technique for assessing biological signatures at the gene set level. GSEA was performed on 
each sample in the cohort using the R packages "clusterProfiler", "enrichplot", and "DOSE". Gene set variation analysis 
(GSVA) was used to perform gene set (pathway) -level differential analysis by using the R package GSVA.

2.6  WGCNA

Weighted correlation network analysis (WGCNA) is a systematic biological method used to describe gene association 
patterns between different samples. It can be used to identify highly synergistic gene sets and to identify candidate 
biomarker genes or therapeutic targets based on the interconnectedness of gene sets and the association between gene 
sets and phenotypes. Network construction, gene screening, gene cluster identification, topological feature calculation, 
data simulation and visualization are implemented by R package WGCNA.

2.7  Infiltration of tumor‑infiltrating immune cells

We used the CIBERSORT algorithm to construct a feature matrix from microarray data to describe the expression sig-
natures of 22 immune cell phenotypes, including immune cells with different cell types and functional states. Gene 
expression signature set of 22 immune cell subtypes (LM22) was downloaded from https:// ciber sortx. stanf ord. edu/.

2.8  Tumor microenvironment and immune cell correlation

The immune infiltration scores were calculated using the generally accepted methods, including XCELL, TIMER, QUAN-
TISEQ, MCPCOUNT, EPIC, CIBERSORT, and CIBERSORT-ABS. The Wilcoxon signed-rank test was used to examine differences 
between two risk categories. We used the estimate algorithm to provide scores of tumor purity, stromal cell presence 
levels, and immune cell infiltration levels in tumor tissue. Furthermore, to acquire a better knowledge of the immuno-
logical milieu in different risk groups, we used the ggpubr R package to compare TME scores and immune checkpoint 
activation between risk categories.

2.9  Analysis of tumor mutation burden

Tumor mutation burden (TMB) is defined as the total number of somatic gene coding errors, base substitutions, gene 
insertions, or deletions detected per million bases. TMB is thought to be a key driver in the production of immunogenic 
novel peptides that are expressed on cell membranes via major histocompatibility complexes and influence patient 
responses to immune checkpoint inhibitors. TMB was calculated using the "maftools" package. Furthermore, Pearson 
correlation analysis was used to calculate the association between the risk model and TMB.

2.10  HPA

The HPA database (https:// www. prote inatl as. org/) provided us with an immunohistochemistry expression graph of linked 
genes. Multiple genes are differently expressed in cancer, and many of them influence patient survival.

2.11  Drug sensitivity analysis

Predicting drug susceptibility helps to aid in the selection of potential targeted therapy drugs based on genetic analysis, 
thereby improving the efficiency and precision of treatment. We used the pRRophetic package to predict phenotypes 
from gene expression data (clinical outcomes using Cancer Genome Project (CGP) cell line data) and to predict drug 
sensitivity in external cell lines (CCLE). The correlation between risk score and drug sensitivity was calculated by the R 
package WGCNA according to the expression level and IC50.

https://cibersortx.stanford.edu/
https://www.proteinatlas.org/
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Fig. 7  Analysis of immune 
infiltration and gene expres-
sion profiles in CESC. A Gene 
Set Enrichment Analysis 
(GSEA) analysis; GSEA analysis 
showing the enrichment of 
gene sets related to cuprop-
tosis and immune-related 
pathways in patients with 
CESC. B, C Immune infiltration 
of 22 cells; Bar plots showing 
the relative abundance of 22 
immune cells in patients with 
CESC, based on gene expres-
sion profiles, and their correla-
tion with overall survival
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2.12  Cell culture and transfection

The siRNAs were purchased from GimaGene (China), and their specific sequences are as follows. For LINC01833-siRNA-S, 
the sequence is GGC AUG GUC AGA GAA AGA ATT, and for LINC01833-siRNA-AS, the sequence is UUC UUU CUC UGA CCA UGC 
CTT. For LINC02321-siRNA-S, the sequence is GUU CCU UUC AAC CAG CCA ATT, and for LINC02321-siRNA-AS, the sequence 
is UUG GCU GGU UGA AAG GAA CTT. Transfection was carried out using Lipofectamine 2000 (Thermo, United States) fol-
lowing the manufacturer’s protocol. For a 12-well plate, cells at a growth density of 80–90% were ideal for transfection. 
The day before transfection, cells were plated at a density of 2 ×  105 cells per well.

2.13  Real‑time PCR validation of transfection efficiency

Following PCR amplification, the real-time fluorescence quantitative PCR instrument automatically analyzed the 
results. Threshold and baseline adjustments were made based on negative controls to determine the Ct values for 
each sample. The validity of each Ct value was confirmed using the melt curve analysis. The results were exported, 
and the  2−ΔΔCT method was employed to analyze the differential expression of the target gene between the control 
group and various experimental groups.

2.14  Cell counting kit‑8 (CCK‑8) assay

Cell proliferation ability was assessed using the CCK-8 assay. Hela cells were seeded at a density of 9000 cells per 
well in a 96-well plate and incubated in a cell culture incubator for 24 h. Subsequently, siRNA for LINC01833 and 
LINC02321 were separately transfected, and CCK-8 assays were conducted at 24, 48, and 72 h post-transfection [41].

2.15  Cell scratch assay

HeLa cells were seeded at a density of 1,200,000 cells per well in a 6-well plate and incubated in a cell culture incu-
bator for 24 h. After 24 h, siRNA for LINC01833 and LINC02321 were separately transfected, and a scratch was made 
during medium changes. Photographs were taken at 0 h, 12 h, and 24 h, and experimental data were collected and 
analyzed [42].

3  Results

3.1  Differential expression of cuproptosis‑related lncRNAs

This study included 306 CESC samples. The heatmap of differential expression of CESC-related lncRNAs was described 
(Fig. 1A). By setting the FDR < 0.05 as the cut-off criterion, 202 upregulated and 45 downregulated lncRNAs were 
shown in a volcano plot (Fig. 1B). We also conducted a co-expression analysis between cuproptosis and lncRNAs. 
With p-value less than 0.001 as the standard, we screened 11 lncRNAs associated with cuproptosis by cox regression 
analysis, which can predict the prognosis of cervical cancer. Subsequently, we used multivariate cox regression to 
construct a cuproptosis-related lncRNA model to predict the prognosis of cervical cancer. The model is as follows: 

Fig. 8  Gene expression analysis and immune cell profiling in CESC. A Heatmap showing the differential expression of immune-related func-
tions between patients with high and low risk scores, based on gene expression profiles. The color scale represents the level of expres-
sion, with red indicating high levels and blue indicating low levels. Asterisks indicate statistical significance, with *p < 0.05, **p < 0.01, and 
***p < 0.001. B Correlation matrix showing the relationship between the relative abundance of 22 immune cells in patients with CESC, based 
on gene expression profiles. The color scale represents the strength of the correlation, with red indicating positive correlation and blue 
indicating negative correlation. C Histogram showing the distribution of stromal score, immune score, and ESTIMATE score in patients with 
CESC, based on gene expression profiles. D Scatter plot showing the correlation between the expression levels of the five cuproptosis-
related lncRNAs and the relative abundance of immune cells in patients with CESC, based on gene expression profiles. The x-axis represents 
the lncRNA expression level, and the y-axis represents the relative abundance of immune cells

▸
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Fig. 9  Molecular characteristics and biomarkers associated with cuproptosis and immune checkpoints in CESC. A Human Protein Atlas 
(HPA) analysis: Immunohistochemical staining images of cuproptosis-related lncRNAs and their corresponding proteins in cervical cancer 
tissues from the HPA database. B Comparison of the expression of immune checkpoints; Box plot showing the expression levels of immune 
checkpoints in patients with CESC, based on gene expression profiles. The y-axis represents the immune checkpoint gene expression level, 
and the x-axis represents the patient group. C Comparison of the expression of m6A-associated genes; Boxplot showing the differential 
expression of m6A-associated genes between CESC and normal cervical tissues. The significance levels are denoted by asterisks (*P < 0.05; 
**P < 0.01; ***P < 0.001) or "ns" for no significance. D Fisher exact test; Heatmap showing the enrichment of cuproptosis-related lncRNAs 
in the top mutated genes in patients with CESC, based on a Fisher exact test. The y-axis represents the -log10 P-value of the enrichment, 
and the x-axis represents the mutated gene set. E The tumor mutation burden; Heatmap showing the distribution of the tumor mutation 
burden in patients with CESC, based on whole exome sequencing data. F CNV profile; Heatmap showing the CNV profiles of cuproptosis-
related lncRNAs in patients with CESC, based on gene expression profiles. The color scale represents the copy number status, with red indi-
cating amplification, blue indicating deletion, and gray indicating no significant change
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Fig. 10  Association between drug sensitivity and riskscore in CESC patients. A Differences in IC50, estimated between the high- and low-risk 
groups are shown in the figure. IC50 represents the half-maximal inhibitory concentration of a drug. B The scatter plot displays the relation-
ship between drug sensitivity and riskscore
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Fig. 11  Analysis of gene co-
expression and module detec-
tion using Weighted Gene Co-
expression Network Analysis 
(WGCNA) to identify modules 
of genes related to drug sen-
sitivity and their correlation 
with riskscore. A The scatter 
plot displays the relationship 
between drug sensitivity and 
riskscore. B WGCNA network 
and module detection: Selec-
tion of the soft-thresholding 
powers. The left panel showed 
the scale-free fit index versus 
soft-thresholding power. The 
right panel displayed the 
mean connectivity versus soft-
thresholding power. Power 
4 was chosen, for which the 
fit index curve flattens out 
upon reaching a high value 
(> 0.9). Cluster dendrogram 
and module assignment for 
modules from WGCNA. Genes 
were clustered based on a 
dissimilarity measure (1-TOM). 
Scatterplot of gene sig-
nificance (y-axis) vs. module 
membership (x-axis) in the 
most significant module
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risk score = (− 0.378045913087538 × LINC01833) + (− 0.508337319291506 × LINC02321) + (-1.18330732616179 × A
L445423.1) + (− 0.616327132303616 × AC096992.2) + (− 2.89642788854093 × AL360178.1) (Fig. 1C, D). At the same 
time, we did lasso regression analysis to prevent overfitting (Fig. 1E, F). The samples were randomly divided into 1:1 
training group and test group according to the median risk score. In the test group, there was no restricted difference 
between the low-risk group and the high-risk group, and the p-value was greater than 0.05 (Fig. 1G). The results of 
K-M survival analysis in the training group showed that the prognosis of the low-risk group was better than that of 
the high-risk group (Fig. 1H). Similarly, the outcomes of the low-risk group were differed from those of the high-risk 
group across the dataset (Fig. 1I).

Principal component analysis (PCA) of the expressions of all genes, cuproptosis-linked lncRNA, cuproptosis-related 
gene and risk lncRNAs were carried out (Fig. 2A). The risk was increased as the patient’s risk score was increased in the 
test group, the training group, and the overall group. The high- and low-risk groups separated better in 5 cuproptosis-
related lncRNAs linked with prognosis, indicating a good prediction value in the prognosis model (Figs. 2B, C and 3A). 
We used cox regression analysis to analyze the clinical features and found that only riskscore was significant (p < 0.01) 
(Fig. 3B). The low-risk group had better progression-free survival than the high-risk group (Fig. 3C). C-index results 
showed that risk score was better than other clinical indicators as a prognostic index (Fig. 3D). The AUC at 1 years, 
3 years and 5 years was 0.678, 0.705 and 0.751, respectively, which indicated that this model has a good prediction 
effect. Meanwhile, we found that risk had the highest AUC of 0.678, which was higher than age and grade (Fig. 3E).

Fig. 12  LINC01833 affects proliferation in HeLa cells. A Differential expression of LINC01833 and LINC02321 in HcerEpic and HeLa cells. B, C 
Validation of LINC01833-siRNA and LINC02321-siRNA expression levels in HeLa cells. D, E The impact of LINC01833 and LINC02321 knock-
down on proliferation in HeLa cell
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3.2  Prognostic analysis of clinical features

The results of nomogram and calibration curves of the nomogram were displayed (Fig. 4A, B). Prognostic analysis 
of the clinical features of cervical cancer was conducted by K-M analysis. The results showed that age, G, T, M and N 
could be used as good prognostic predictors (Fig. 4C). The low-risk group had a better prognosis than the high-risk 
group in the sample older than 50 years. Patients in G2, the high-risk group had a worse prognosis. Besides, there 
is a difference in the prognosis between high and low risk of T4. In MX, NO and NX patients, all low-risk groups had 
better prognosis than high risk groups (Figs. 4C and 5A). The clinical heat map was shown in Fig. 5B.

3.3  Analysis of gene set enrichment

The distribution of clinical characteristics in the high and low risk groups was also displayed (Fig. 6A). We used GO analysis 
for functional classification of genes or proteins into different biological functional domains. GO analysis has three main 
components: biological process (BP), cellular component (CC) and molecular function (MF). According to the results of BP in 
GO analysis, the genes were enriched in T cell differentiation, lymphocyte differentiation, mononuclear cell differentiation, 
chemokine-mediated signaling pathway, T cell selection, response to chemokine, cellular response to chemokine, neutrophil 

Fig. 13  LINC01833 affects cell migration in HeLa cells. A The impact of LINC01833 knockdown on migration in HeLa cells. B The impact of 
LINC02321 knockdown on migration in HeLa cells
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chemotaxis, granulocyte chemotaxis and neutrophil migration (Fig. 6B, C). Besides, in terms of CC, the finding of GO suggested 
that the genes were enriched in T cell receptor complex, plasma membrane signaling receptor complex, alpha–beta T cell 
receptor complex, external side of plasma membrane, clathrin-coated endocytic vesicle membrane, clathrin-coated endocytic 
vesicle clathrin-coated vesicle membrane, laminin complex, coated vesicle membrane, and collagen-containing extracellular 
matrix (Fig. 6B, C). MF primarily controlled MHC protein binding, C–C chemokine receptor activity, C–C chemokine binding, G 
protein-coupled chemoattractant receptor activity, chemokine receptor activity, receptor ligand activity, signaling receptor 
activator activity, chemokine binding, antigen binding, peptide antigen binding. There are three categories in KEGG analysis, 
including environmental information processing, organismal systems and human diseases (Fig. 6B, C). The results of KEGG 
analysis were displayed (Fig. 6D, E). Then, we used GSEA and GSVA to further explore the enrichment pathway. GSVA enabled 
the evaluation of underlying pathway activity variation in each sample, and it was used to explore the enrichment pathways 
of model-related lncRNAs, including AL627095.2, AC015871.3, STP2C2-AS1, AC010996.1, TRAM2-AS1 and AL360178.1. In 
total, 23 remarkably enrichment pathways were identified (Fig. 6F). The GESA results revealed that the following genes were 
enriched in the multiple pathways: GO _ CYTOKINE _ ACTIVITY, GO _ DEFENSE _ RESPONSE _ TO _ BACTERIUM, GO _ DEFENSE 
_ RESPONSE _ TO _OTHER _ ORGANISM, GO _ GRANULOCYTE _ MIGRATION, GO _ HUMORAL _ IMMUNE _ RESPONSE, GO 
_ LEUKOCYTE _ CHEMOTAXIS, GO _ RESPONSE _ TOBACTERIUM, GO _ RESPONSE _ TO _ BIOTIC _ STIMULUS, GO _ SKIN _ 
DEVELOMENT (Fig. 7A).

3.4  Tumor microenvironment and immune infiltration

We used the estimate algorithm to calculate the immune infiltration of 22 types of immune cells in cervical cancer (Fig. 7B, 
C). Type 1 IFN response, inflammation promoting, T cell co-inhibition, check point and T cell co-stimulation were differentially 
expressed in the high-risk group and the low-risk group (Fig. 8A). Figure 8B presented the results of the association analysis 
of 22 different types of immune cells. The immune scores were higher in the low-risk group than in the high-risk group, but 
there was no difference in the stromalscore or estimate score (Fig. 8C). The expression of AL360178.1 was positively correlated 
with B cell and macrophage M2, with the correlation coefficients of 0.44 and 041, respectively. At the same time, the expres-
sion of AL360178.1 was positively correlated with the immune microenvironment score, and the correlation coefficient was 
0.44, which indicated that the expression of AL360178.1 would affect the immune microenvironment of tumors (Fig. 8D). 
HPA results demonstrated the expression of PD-1 on cervical cancer tissues (Fig. 9A). Immune checkpoint results showed that 
a total of 26 immune checkpoints were correlated with gene expression (Fig. 9B). At the same time, the high- and low-risk 
groups were found to have differences in the expression of two m6A genes: IGF2BP1 and METTL16 (Fig. 9C).

3.5  Analysis of tumor mutational burden

TMB is a quantitative biomarker reflecting the total number of mutations carried by tumor cells. The larger the TMB, the 
larger the mutation, the more easily the cancer cells can be detected by the immune cells and become the target of tumor 
immunity, which is likely to be effective for immunotherapy. The results of fisher exact test were displayed (Fig. 9D). 235 
of the 290 samples were mutated, of which PIK3CA had the most mutation rate, accounting for 29%, and NF1 had the 
least mutation, accounting for 4% (Fig. 9E). Comprehensive analysis of copy number variation (CNV) was performed on 
cervical cancer patients, and the overview of CNV was presented (Fig. 9F).

3.6  Analysis of drug prediction

We used the R package "pRRophetic" to evaluate prospective drugs according to IC50 values   of samples in the GDSC 
database so as to obtain more targeted therapy. The IC50 values of BHG712, TL-2-105, FR-180204, Masitinib, TAK-715, 
ODI-027, JW-7-24-2 and OSI-930 in the high-risk group were greater than those in the low-risk group, indicating that 
these drugs may be more appropriate for patients in the high-risk group (Fig. 10A). Furthermore, we found that these 
aforementioned drugs were positively correlated with riskscore (Figs. 10B and 11A).

3.7  Analysis of WGCNA

In order to have relatively balanced scale independence and mean connectivity of the WGCNA, we undertook the inves-
tigation of network topology for various soft-thresholding powers. Power 4 was used to create a hierarchical clustering 
tree. Power 4 was the lowest power for which the scale-free topology fit index reached 0.90 (dendrogram). Then, 56 
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distinct gene modules were produced in the hierarchical clustering tree (dendrogram) via dynamic tree cut and merged 
dynamic, and each module was labelled by a different hue in the dendrogram. The module network dendrogram was 
created by grouping ME distances (Fig. 11B).

3.8  Expression of LINC01833 and LINC02321

Firstly, we verified the mRNA expression of LINC01833 and LINC02321 in cervical cancer cell lines. We observed significant 
upregulation of LINC01833 and LINC02321 in cervical cancer cell lines indicating that LINC01833 and LINC02321 may 
be potential role in cervical cancer development (Fig. 12A).

3.9  Validation of siRNA transfection efficiency

Compared to the negative control (NC), HeLa cells transfected with LINC01833-siRNA and LINC02321-siRNA showed a 
significant reduction in the expression levels of LINC01833 and LINC02321, indicating a pronounced knockdown effect 
(Fig. 12B, C).

3.10  Proliferation and migration capability of cells after LINCRNA interference

Compared to NC, the knockdown of LINC01833 and LINC02321 significantly reduced the proliferation capability of 
cervical cancer cells at 48 h and 72 h (Fig. 12D, E). Furthermore, compared to the NC, the knockdown of LINC01833 and 
LINC02321 significantly decreased the migration capability of cervical cancer cells (Fig. 13).

4  Discussion

Cervical cancer is a type of cancer that affects the cervix, which is the lower part of the uterus that connects to the 
vagina [43]. Lymphatic metastasis is common at early stage, and the prognosis is relatively poor [44]. Therefore, it 
is vital to find new biological targets. We screened out 5 upregulated lncRNAs and 6 downregulated lncRNAs and 
identified cuproptosis-related lncRNAs, including LINC01833 and LINC02321. Afterwards, a prognostic model was 
constructed by multivariate COX regression analysis. Studies have shown that LINC01833 was associated with the 
prognosis of non-small cell lung cancer and bladder cancer [45, 46]. The screened LINC02321 had a considerably con-
nection with the prognosis of bladder cancer, and markedly affected cell invasion and migration [47, 48]. However, 
the role of LINC01833 and LINC02321 was unelucidated in cervical cancer.

KEGG analysis revealed that selected lncRNAs were related to T cell receptor signaling pathway, Th17 cell dif-
ferentiation, and Th1 and Th2 cell differentiation. Meanwhile, GO analysis also found that the selected lncRNAs 
were closely related to the biological process of T cells and neutrophil, including T cell differentiation, T cell selec-
tion, neutrophil migration. Therefore, we further evaluated the immune microenvironment in CESC. In the immune 
infiltration analysis, the level of immunoscore in the low-risk group was higher than that in the high-risk group. At 
the same time, the expression of AL360178.1 was found to be positively correlated with B cell, macrophages and 
tumor microenvironment score. Immune checkpoints are crucial for immune functions, and immune escape is the 
fundamental reason why tumour immunotherapy fails [49]. This work used immune checkpoint expression analysis 
to identify 24 immune checkpoint genes that were differentially expressed for cuproptosis-related lncRNAs between 
two risk groups. Our study has identified five genes associated with cuproptosis that are correlated with prognosis, 
providing crucial insights into predicting disease progression and guiding treatment strategies. Our findings are 
similar with previous research that has identified other prognostic genes, including AJ003147.1, CNNM3-DT, and 
SCAT2 [50–52]. These discoveries serve as a critical foundation and reference for further exploring the pathogenesis 
and pathophysiology of cuproptosis and for developing more effective treatments for patients. It is also essential 
for clinicians and scientists to consider the effects and impacts of these genes when assessing the prognosis and 
treatment options for cuproptosis.

As a class of protein modifications with more complex action modes and more diverse effects, ubiquitination plays an 
equally important role in all aspects of cell life cycle. Ubiquitin ligases play the important role in the specific recognition 
of target proteins and the regulation of the activity of the ubiquitination system [53–55]. An E3 ubiquitin ligase RING 
Finger 44 (RNF44) has been known to involve in carcinogenesis. RNF44 is a prognostic indicator of liver cancer, and its high 
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expression is related to the poor prognosis of liver cancer [56]. Our data analysis found that RNF44 was correlated with 
AL360178.1, but the specific mechanism was unclear. Through literature searching, we found that there are few studies 
on the association between RNF44 and lncRNAs. Notably, one study suggested that lncRNA MIR600HG binds to miR-
125a-5p, which targets RNF44. Down-regulation of MIR600HG increased the expression of miR-125a-5p and decreased 
the expression of RNF44 in oral squamous cell carcinoma (OSCC) [57]. LINC01833 is significantly upregulated in lung 
cancer, and LINC02321 is significantly upregulated in bladder cancer. Experimental studies have shown that LINC01833 
and LINC02321 are also upregulated in cervical cancer, and interference with their expression through siRNA transfection 
significantly reduces cell proliferation and migration capabilities. This suggests that LINC01833 and LINC02321 could 
be potential risk factors associated with the development of cervical cancer. However, there are some limitations in this 
study. Only 19 cuproptosis-related genes were included in our study. The total number of cuproptosis-related genes is 
constantly changing, and there will be other cuproptosis genes in the future. The study only included the TCGA database, 
and larger datasets are needed. In vivo experiments are necessary to validate the role of cuproptosis-related genes. At 
the same time, the prognostic model needs to be validated with more clinical samples.

5  Conclusion

In conclusion, based on the expression profile data of TCGA, we developed a model for predicting the prognosis of 
cervical cancer associated with cuproptosis. At the same time, this study explored the relationship between lncRNA, 
cuproptosis and immune microenvironment. This study provides new potential targets for the diagnosis and treat-
ment of cervical cancer and brings new hope.
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