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Abstract
Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common 
type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction 
of 2–3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in 
VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent 
germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal 
aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing 
revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Over-
all, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline 
predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are 
well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic 
instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer sup-
port to clinicians for the development of patient-tailored therapies.

1 Introduction

Renal cell carcinoma (RCC) is the most common malignancy that arises from the kidney accounting for ~ 80% of kidney 
cancers and approximately for 3–5% of all tumours [1]. According to the last WHO [2], its classification requires a combi-
nation of morphological, molecular, and genetic characteristics. The major subtypes include clear cell (ccRCC), papillary 
(pRCC), and chromophobe (chRCC) RCC [2, 3], which originate from different segments of the nephron, either proximal 
(ccRCC, pRCC) or distal (chRCC). The main characteristics of the RCC are late diagnosis (due to the specific anatomical 
site), tendency to metastasize and a remarkable chemoresistance. Approximately 20–40% of patients with localized 
RCC experience disease recurrence after surgery. While therapeutic options have improved, particularly for ccRCC [4], 
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the response in metastatic patients and 5-year survival rates remain unsatisfactory. Although clinicopathological scor-
ing systems like the clinical International mRCC Database Consortium model [5] can stratify metastatic RCC patients 
regardless of their subtype [3, 5], significant differences in clinical outcomes are observed within each prognosis group.

RCC might manifest as hereditary forms, accounting for 2% of all renal neoplasia; mostly associated to germline muta-
tions of Von Hippel–Lindau (VHL) and folliculin (FLCN) genes [6, 7]. Other autosomal dominant inherited syndromes 
associated to aggressive kidney cancers are hereditary Leiomyomatosis and Renal Cell Carcinoma (HLRCC) caused by 
loss of function of Fumarate Hydratase (FH), key enzyme of TCA cycle [8], Hereditary Papillary RCC (HPRC) which is linked 
to activating germline mutations in MET Proto-Oncogene tyrosine kinase receptor (MET) gene [9].

Over the years, analysis of cohort of familiar forms of RCCs pointed out pathogenic cancer-associated germline variants 
with unclear role in RCC pathogenesis [10, 11]. The genetic profile of RCC subtypes, including p53 [12–19] (see Table 1) 
might include PBRM1 mutations, that display upregulation of several genes involved in the angiogenesis, with increased 
response to VEGF-target therapy [20], VHL-deficiency in RCC is associated to a vascular development gene expression 
signature triggered by VHL/HIF pathway which can be target by HIF-2a inhibitors [21] while increased TH2 immune gene 
expression signature is strongly associated to poor prognosis and lower survival [22].

Moreover, understanding the RCC microenvironment has opened new therapeutic strategies with immune check 
point inhibitors as anti- cytotoxic T-Lymphocyte Antigen 4 (anti-CTL4) and anti-programmed cell death-1 (anti-PD-1) 
monoclonal antibodies [23]. In particular, the anti-PD-1 treatment have shown strong clinical benefit in renal cell carci-
nomas characterized by deficiency in genes of mismatch repair (MMR) [10, 11, 20, 24]. These examples underline how 
genetic profiles of RCC can direct precision medicine [25–27] and improve clinical outcome.

However, at the state of art, there is no molecular signature capable to accurately predict clinical outcome of RCCs. The 
research of specific molecular characteristics of RCC is of primary importance for the management of this malignancy.

In this case report, we describe an unusually genomic instable case of renal cell cancer characterized by predispos-
ing germline mutations in BRCA1 and RAD51 genes. We detected increase of mutational rate, microsatellite instability 
(MSI) and alterations in genes related to DNA repair in the tumour genome that may benefit the cancer response to the 
immunotherapy.

2  Results and discussion

Here, we report the case of a 65-years-old male patient, part of our background cohort of 365 RCC. In October 2020, 
the patient, previously asymptomatic, received the diagnosis of primary malignant neoplasm of kidney. According to 
the histopathological investigation the tumour was classified as moderately differentiated RCC (G2). Neoplastic lesions 
showed kidney vasculature and peripelvic fat invasion (stage III). At the time of diagnosis, no tumor spread to regional 
lymph nodes and no involvement of distant organs was detected. TNM classification was pT3a cN0/cM0 L0 V1 R0.

Table 1  Most common gene 
alterations found in RCC 
subtypes

See for details references [20, 21]

Genes Function RCC subtype

VHL Ubiquitination/degradation of hypoxia-inducible-factor (HIF) ccRCC 
PBRM1, ARID1, SMARCA4 Chromatin remodeling SWI/SNF complex ccRCC 
BAP1 Polycomb Repressive Deubiquitinase complex (PR-DUB) ccRCC 
SETD2 Histone methyltransferase (H3K36me3) ccRCC 
EZH2 Polycomb Repressive complex 2 (PRC2) ccRCC 
MLH1, MSH2, MSH6, PMS2 Mismatch Repair ccRCC 
MET MET Proto-Oncogene tyrosine kinase receptor pRCC 
TERT Telomerase reverse transcriptase pRCC 
CDKN2A Cyclin dependent kinase inhibitor 2A pRCC 
CDKN2B Cyclin dependent kinase inhibitor 2B pRCC 
EGFR Epidermal Growth factor receptor pRCC 
TP53 Tumor suppressor protein p53 chRCC 
PTEN Tumor suppressor Phosphatase and tensin homolog chRCC 
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The patient underwent complete surgical tumor resection without need of following adjuvant therapy. In February 
2021 during the follow-up, the patient was found to have a suspicious nodule for metastases at the level of the right 
diaphragmatic peritoneum, identified by a computed tomography scan. In May 2021, the patient displayed a high level 
of prostate-specific antigen (PSA) and a suspicious prostate nodule. Afterwards, no further data on patient follow-up are 
available. The anamnesis indicated no familial history of RCC. The patient was not a smoker and not affected by obesity.

Analysis on the Cancer Genome Atlas (TCGA) estimates the overall survival (OS) of RCC of approximately 60% at 5 years 
from diagnosis, correlated with a significant incidence of tumor relapse within 10 years (Fig. 1a, b). We conducted a multi-
omics analysis to identify biomarkers that can predict response to specific targeted therapies.

Whole genome sequencing analysis of the patient’s tumor detected several somatic mutations in cancer-related 
genes (Table 2).

Unfortunately, no FDA-approved drugs are available for this mutational profile. Among gene alterations, we identi-
fied mutations in CSF3 (Colony stimulating factor 3), EGFR (Epidermal growth factor receptor), EPHB2 (EPH receptor B2), 
ERBB2 (Erb-b2 receptor tyrosine kinase 2), FLT4 (Fms related receptor tyrosine kinase 4), PIK3CB (Phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit beta), POLD1 (DNA polymerase delta 1, catalytic subunit) genes for which 
therapies targeting gene are in clinical trials.

The patient displays also somatic mutations in TP53 (tumor suppressor protein 53), clearly involved in cancer biology 
[28–31] and in key genes of DNA repair pathway as BRACA2 (BRCA2 DNA repair associated), MSH3 (MutS homolog 3) and 
MSH5 (MutS homolog 5). Remarkably, the patient displayed a highly genomic instable renal cell cancer, as shown by a 
high mutational burden (Fig. 1c), and high microsatellite instability (MSI-H, Fig. 1d) compared to the average of the 365 
patients in Indivumed’s RCC cohort. We also detected an unusually high frequency of chromosomal aberrations as dele-
tions, duplications, insertions and breakends (Fig. 1e) compared to the average of RCC cases, another feature of genome 
instability. TCGA analysis confirmed that generally renal cell carcinoma genome is characterized by low mutational rate 
and low percentage of genome affected by copy number variations (CNV) (Fig. 1f, g).

We next performed a whole cancer genome sequencing of the patient’s tumor tissue. This reported an enrichment 
of the MMR2 mutational signature not common to RCC (Fig. 2a). The MMR2 mutational signature is associated to 
defective DNA mismatch repair (MMR) and inactivation of genes involved in this DNA repair mechanism. Accordingly, 
the patient showed among others, deletion of 3 nucleotides in MSH3 gene and multiple missense mutations in MSH5 

Fig. 1  Genomic instability in the patient is represented by multiple metrics: a, b overall survival (OS) of RCC estimates by Analysis on the 
Cancer Genome Atlas (TCGA), c high tumor mutational burden, d MSI-H status, e much more deletion, insertions, duplications and break 
ends than average RCCs, f highly structural instable (CNA), intra-tumor heterogeneity slightly increased (CNH), but average numerical CIN 
score (FGA). The patient (red triangle) is compared to the clinical cohort (blue boxplot). g Graphs show total mutations and fraction genome 
altered in RCC 
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Table 2  Mutation in therapy 
related target genes detected 
in the patient

Gene Position Original AA Alteration VAF (%)

EGFR*,_ 511 Ser Tyr 52.40

EML4* 398 Lys Arg 50

ERBB2*,_ 8 Pro Thr 54.50

CSF3R° 835 Glu Lys 64.20

EGFR°,_ 511 Ser Tyr 52.40

EPHB2° 750 Arg Cys 42.60

ERBB2°,_ 8 Pro Thr 54.50

FLT4° 1146 Arg His 30.60

PIK3CB° 475 Pro Ser 50.50

POLD1° 875 Arg His 49.50

FLT4 1146 Arg His 30.60

PIK3CB 475 Pro Ser 50.50

POLD1 875 Arg His 49.50

AR 473 Gly duplication 96.30

ATM 1853 Asp Asn 46.40

ATRX 929 Glu Gln 100

ATXN7 264 Lys Arg 69.30

BRCA2 372 Asn His 100

CASP8 344 Asp His 46

CRLF2 323 Ser Phe 45.90

CYSLTR2 201 Met Val 51.50

ERCC2 312 Asp Asn 48.60

ETV1 100 Ser Gly 46.20

FCGR2A 63 Gln Trp 51.50

FOXP1 202 Gln His 36.20

GSTP1 105 Ile Val 100

HLA-C 327 Val Met 51.20

IL7R 244 Thr Ile 45.10

IRS2 1057 Gly Asp 45.90

JARID2 492 Arg Cys 52.40

KMT2A 30 Ala Gly 45.70

MSH3 60–62 - deletion 40.20

MYC 79 Gly Cys 52.10

NOTCH3 817 Pro Leu 55.10

NRG1 286 Met Thr 51.70

PARP1 123 Lys Arg 52.10

PBRM1 1584 Pro frameshift 10.30

PRKAR1A 333 Ser Asn 58.50

PTCH1 1164 Pro Leu 46

RAD23B 249 Ala Val 47.70

SERPINB3 357 Thr Ala 55.10

TET2 1783 Ile Val 46.10

TP53 384 Ile Phe 42.20

VHL 148 Phe frameshift 34.80

WWTR1 74 Pro Gln 47

MSH5 missense

° Somatic mutations detected in the patient by whole genome sequencing. * Off-label ° Therapy target-
ing gene is in clinical trials. _: Therapy targeting gene is FDA approved in another disease, but it is also in 
clinical trials in the patients’ disease. * Off-label = Therapy targeting gene is FDA approved only in another 
disease. VAF Variant allele frequency

gene, both involved in DNA mismatch repair (Fig. 2b). Notably, MMR system deficiency has been associated to an 
increase of mutation burden [32]. Additionally, MMR-associated mutational signatures have been reported enriched 
in colorectal and gastric adenocarcinomas with high microsatellite instability [33].
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Analysis of adjacent, non-cancer derived DNA from the patient allowed identification of germline mutations in 
RAD51D (c.739-3C>T) and BRCA1 (c.3835G>A) genes (Fig. 2b, lower panel).

Products of both genes, RAD51D and BRCA1, are involved in homologous recombination (HR), the high-fidelity 
repair pathway for DNA double strand break (DSB). Loss of RAD51 paralog, RAD51D, leads to HR deficiency and trig-
gers deletion of chromosome segments located close to DSB site caused by excessive end-resection [34] while BRCA1 
ensures genome integrity by regulating cell cycle checkpoints and DNA repair [35]. RAD51D and BRCA1 germline 
mutations are causative of genetic predisposition to develop ovarian and breast cancer [35–38] and their clinical 
relevance in RCC is still unknown.

Only few cases have described BRCA1 germline mutations in patients affected by renal cell carcinoma. In 2011, the 
2080insA BRCA1 germline mutation was described for the first time in 45-year-old Pakistani patient affected by aggres-
sive form of clear cell renal carcinoma [39]. Germline mutations in DDR-related genes, among them BRCA1, have been 
also reported in RCC patients in Chinese (0.6% cases) and Polish (0.4% cases) population, respectively [40–42]. BRCA1 
and RAD51D germline mutations may therefore underlie predisposition to RCC and might have cooperated in our 
patient determining this unusual high genome instability profile. Nonetheless, since the BRCA1 germline mutations has 
been detected in distinct cancers, sometimes without clear pathological significance [43–46], further investigations are 
required to determine the impact of BRCA1 germline mutations on RCC.

The enrichment of MMR-2 signature confers hypersensitivity to immunotherapy, somatic mutations in EGFR and HER2 
genes are associated, respectively, to tumor response to EGFR tyrosine kinase inhibitors (TKI) and a better outcome 
in response to immune checkpoints inhibitor therapy (anti PDL-1 and anti CTL4) [47, 48]. Based on this evidence, we 
analyzed the tumor expression of the immune checkpoints PD-1, PDL-1, PD-L2 and CTL4 which are notably involved in 
sustaining self-tolerance in tumor site (PD-1/PDL-1) and in the lymph node (CD28/ CTL-4) by modulating the immune 
response. Elevated expression of them suggests a possible strategy of cancer to mask itself and to escape from immune 
surveillance. Indeed CD28/ CTL-4 signaling pathway enhances immunosuppression supported by Tregs while PD-1/
PDL-1–2 overexpression by cancer cells leads to the inhibition of T-cell activity that confers tumor immune resistance 
[49]. We found a global up-regulation of PD-1, PDL-1, PD-L2 and CTL4 in this investigated RCC compared to the normal 
controls (Fig. 3).

Overall, up-regulation of immune checkpoints [24, 50, 51], as well as high tumor mutational burden and elevated 
microsatellite instability [50–55] (Fig. 1) are criteria that may predict tumor susceptibility to the immunotherapy. Thus in 
2021, the patient here reported was included in a randomized controlled trial using a combination of immunotherapeutic 
agents, Nivolumab (anti-PD-L1) and Ipilimumab (anti-CTL4).

In conclusion, the high genome instability found in this isolate case of RCC may confer tumor hypersensitivity to 
immunotherapy, the most prominent therapeutic approach for RCCs. In addition, within the framework of personalized 

Fig. 2  MMR signature. a Mutational contribution of the mismatch repair related signature. The patient (red triangle) is compared to the clini-
cal cohort (blue boxplot). b The main somatic and germline mutations
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medicine [56–59], the here described unusual somatic mutations could provide great opportunities capable of improv-
ing the management of RCC patients.

3  Material and methods

3.1  Collection of samples

Tumor tissues were globally collected using a standardized protocol, minimizing the ischemia time until freezing in 
liquid nitrogen [60–62]. To ensure the quality of the samples, all tissues were Hematoxylin and Eosin stained [63, 64] and 
subjected to a pathological QC as previously described [65]. Approximately 10 mg tissue were taken for nucleic acid 
extraction and protein lysate preparation each.

3.2  Nucleic acid extraction and quality assessment

Frozen tissue slices were mixed with beta-mercaptoethanol containing sample buffer and homogenized using the Bead-
Bug system [66, 67]. DNA and RNA were extracted in parallel from the same sample using the Qiagen AllPrep Universal 
Kit according to the manufacturer’s instructions, as well as using biochemical methods [68, 69].

DNA and RNA concentration were quantified using Qubit fluorometer with the Qubit dsDNA BR assay or Qubit RNA 
BR assay respectively.

DNA and RNA quality were assessed using the Agilent Tapestation with the Agilent Genomic DNA kit or Agilent 
High-Sensitivity RNA ScreenTape kit respectively. RNAs need to have a RIN ≥ 4 or a DV200 ≥ 60 to be selected for library 
preparation.

3.3  Library preparation and NGS sequencing

Libraries for whole genome sequencing (WGS) were performed as recently described by Yang et al. [70].

3.4  NGS data processing

NGS data was aligned against Grch38 genome assembly. Haplotype Caller (genome analysis toolkit; GATK) [71] was used 
for short genomic identification and annotation in normal sample. The following consensus ere used for WGS somatic 
variations: Mutect2 [72], Strelka [73], Varscan [74] and Somatic Sniper [75]. Structural variations were called using R pack-
ages TitanCNA [76], DellyCNV and DellyCall [77], as well as Manta [78].

RNA-Seq differential expression was based on normalized readcount data (TPM: transcripts per million).

Fig. 3  RNA-Seq expression levels of immune checkpoint genes in the patient. The patient (red triangle) is compared to the clinical cohort 
(blue boxplot)
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3.5  Bioinformatical analyses

R package MutationalPatterns [79–81] was used for mutational signatures calculation whilst R package MSIseq [82] was 
used for MSI classification. Metrices to define chromosomal instability were determined using R package CINmetrics 
[83] and CNHplus [84].

Aneuploidy events were analysed using ASCETS [85]. Aneuploidy event span more than 90% of the chromosome. 
Visualization of results was done in IGV [86].

TMB was calculated as the number of non-synonymous mutations of protein coding genes divided by exome size in 
Megabases.
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