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Abstract
Breast cancer is the most common cancer worldwide, with an estimated 2.3 million new cases diagnosed every year. Effec-
tive measures for cancer prevention and cancer therapy require a detailed understanding of the individual key disease 
mechanisms involved and their interactions at the molecular, cellular, tissue, organ, and organism level. In that regard, the 
rapid progress of biomedical and toxicological research in recent years now allows the pursuit of new approaches based 
on non-animal methods that provide greater mechanistic insight than traditional animal models and therefore facilitate 
the development of Adverse Outcome Pathways (AOPs) for human diseases. We performed a systematic review of the 
current state of published knowledge with regard to breast cancer to identify relevant key mechanisms for inclusion into 
breast cancer AOPs, i.e. decreased cell stiffness and decreased cell adhesion, and to concurrently map non-animal meth-
ods addressing these key events. We conclude that the broader sharing of expertise and methods between biomedical 
research and toxicology enabled by the AOP knowledge management framework can help to coordinate global research 
efforts and accelerate the transition to advanced non-animal methods, which, when combined into powerful method 
batteries, closely mimic human physiology and disease states without the need for animal testing.
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1  Introduction

Breast cancer is the most common cancer type and the leading cause of cancer death in women [1]. Gaining a 
mechanistic understanding of breast cancer to prevent cancer-related deaths is therefore a common goal shared 
between biomedical research and toxicology. However, the enormous knowledge on breast cancer mechanisms 
obtained from experimental, clinical, and toxicological testings is scattered across individual research fields, calling 
for intensified collaborative efforts and knowledge exchange [2]. In the light of ongoing discussions surrounding 
the limitations of animal model systems in translating discoveries from basic research into clinical applications [3, 4], 
a concerted effort to develop and catalog suitable non-animal methods that provide valuable insights into cancer 
development and progression is crucial. This accounts especially for diseases such as breast cancer, which exhibit 
pronounced species differences [5, 6]. Clearly, the transition from animal studies to alternative methods requires 
the concomitant development of advanced strategies to combine multiple non-animal methods that address key 
breast cancer mechanisms on various biological levels. Here, we performed a systematic review of the current state 
of published knowledge on breast cancer to outline how biomedical research and toxicology could mutually ben-
efit from an established knowledge management framework, the so-called Adverse Outcome Pathway (AOP) [7, 8].

National and international organizations and funding agencies provide considerable financial resources and 
actively engage in the development of non-animal methods that provide robust and human-relevant information 
at different levels of biological complexity, from molecules to cells to tissues and organs, without the need of animal 
testing [9–11]. These non-animal methods encompass primary cell cultures, stem cell-based approaches (iPSCs, ESCs), 
multi-cellular co-culture (2D, 3D), 3D-printing or scaffold-based approaches, microphysiological systems (organ/
human-on-a-chip) as well as ex vivo (tissue biopsies, organotypic cultures, explants, whole organ slices), in chem-
ico (binding to proteins, lipids, DNA), and in silico (artificial intelligence, modeling, simulations) methods (Fig. 1A). 
Many non-animal methods offer the great advantage of being compatible with high-throughput screening (HTS) 
approaches, which enable the rapid generation of concentration-response information for thousands of chemicals 
and experimental conditions, a feat unattainable with animal methods. HTS compatibility is particularly relevant in 
toxicology when considering the large number of chemicals marketed worldwide and countless number of com-
binations thereof needing evaluation for potential health risks [12]. Biomedical research faces a similar challenge 
in identifying efficacious drug and dosage combinations in therapeutic approaches that simultaneously modulate 
multiple disease-driving factors, while minimizing off-target toxicity effects [13]. However, the intended high com-
plexity and (patho-)physiological relevance of non-animal methods comes inevitably with increased variability and 
decreased HTS capability (Fig. 1A), particularly when using differentiated 3D structures such as organoids to model 
human organ development and diseases [14, 15].

Fig. 1   Non-animal methods and the ‘Adverse Outcome Pathway’ (AOP) concept. A Collection of available and emerging non-animal meth-
ods used in breast cancer research. B Generic structure of AOPs describing the causally-related mechanistic events that link the effect of 
a stressor with a specific health effect in humans. Each AOP starts with a specific molecular initiating event (MIE), and a chain of intercon-
nected key events (KE) occurring at the cellular, tissue and organ level, which consequently lead to an adverse outcome (AO). Each event 
can be shared between multiple AOPs, resulting in overlapping AOPs and thus formation of AOP networks. C Structure of the ‘Estrogen 
receptor activation leading to breast cancer’ AOP (AOP 200) as proposed by [19]. The AOP summarizes the causally-related events in cancer 
cells (solid lines) and stromal cells (dashed lines) that lead to development of ER + breast cancer and cancer-related death upon perturba-
tion of ER activity. D Representative connection (solid lines) of individual AOPs (nodes) into AOP networks (see https://​aopwi​ki.​org and Data 
Matrix, AOP Overview tab for more details). E Proposed additional KEs for an updated breast cancer AOP

▸

https://aopwiki.org
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With the plethora of comprehensive research data on breast cancer and a multitude of available non-animal meth-
ods, the scientific community now faces the challenge of connecting the knowledge generated from individual studies 
in order to derive meaningful conclusions and to identify relevant methods and method combinations that fulfill the 
specific research as well as regulatory need. Importantly, the selection of relevant non-animal methods for integration 
into method batteries for breast cancer requires the concomitant establishment of structured knowledge management 
frameworks that represent the causally-related mechanistic events linked to breast cancer across different levels of bio-
logical complexity. These method batteries and knowledge management frameworks must further exhibit flexibility to 
quickly incorporate new scientific findings and technical progress. In the following paragraphs, we use the example of 
breast cancer to outline how AOPs could be used to organize the available information on breast cancer mechanisms 
and to facilitate the concurrent, systematic collection of non-animal methods.

2 � Methods and results

2.1 � A systematic review to identify relevant mechanisms and non‑animal methods for inclusion into a breast 
cancer AOP

In an attempt to distill the extraordinary diversity of cancer into a common set of underlying core cellular parameters, 
the ‘Hallmarks of Cancer‘ concept was introduced [16–18]. It currently includes 14 underlying principles of cancer 
development that provide an actual description of the common characteristics of cancer and functional capabilities that 
are crucial for the ability of normal cells to form malignant tumors. However, the underlying causally-related molecular 
and cellular mechanisms are still actively researched. Here the AOP concept can be particularly valuable. An AOP is a 
hierarchical representation of a defined sequence of causally-related molecular and cellular events, whose disruption at 
different levels of biological organization can eventually lead to a defined adverse (pathological) outcome (AO) (Fig. 1B). 
For a specific adverse effect, the corresponding AOPs collate the existing information including research articles, clinical 
reports and public databases. To date, more than 400 AOPs (with varying levels of completeness) have already been 
proposed for various endpoints that are actively reviewed in a community-based approach and published online in a 
publicly available AOP-Wiki database (https://​aopwi​ki.​org/).

2.2 � The breast cancer AOP 200—current status

The ‘Estrogen receptor activation leading to breast cancer’ AOP (AOP 200, https://​aopwi​ki.​org/​aops/​200) was originally 
published by Morgan et al. [19] and recently expanded by Del’haye et al. [20]. It starts with perturbation of ER activity as 
specific molecular initiating event (MIE), followed by multiple interconnected key events (KE) at the molecular, cellular, 
tissue and organ level, which may eventually lead to ER + breast cancer and cancer-related death (AO) (Fig. 1C; Table 1; 
Data Matrix, AOP overview tab) (https://​aopwi​ki.​org/​aops/​200#​Events). At the molecular level, KEs include causally-
linked changes in gene expression and protein production of breast cells, leading on a cellular level to the escape from 
cell cycle regulation as well as changes in apoptosis and motility. At the tissue level, these cellular changes translate to 
local hyperplasia, disruption of tissue architecture, invasion, and eventually metastasis to distant organs. In addition 
to effects in cancer cells of the primary tumor (Fig. 1C, solid lines), the AOP further covers changes in the local tumor 
microenvironment (TME) (Fig. 1C, dashed lines), including endothelial proliferation, angiogenesis, and local responses 
from tumor-associated macrophages and fibroblasts. Importantly, these KEs align with many of the proposed ‘Hallmarks 
of Cancer‘ categories (Table 1; Data Matrix, AOP overview tab) and are interconnected through weighted KE relationships, 
which are determined based on scientific evidence (from weak to high; https://​aopwi​ki.​org/​aops/​200#​KE_​relat​ionsh​ips).

As the number of AOPs addressing cancer-related and other disease-relevant mechanisms is constantly 
increasing, so is the overlap of shared MIEs, KEs or AOs among them. This will ultimately lead to the combination 
and interconnection of AOPs into AOP networks [21, 22], which has recently been demonstrated for endocrine-
mediated perturbations [23], thyroid hormone disruption [24], and carcinogenicity [25]. The breast cancer AOP 200 
likewise interconnects with three other AOPs that address different modes-of-action leading to breast cancer, i.e., 
aryl hydrocarbon receptor activation (AOP 439) [26], increased DNA damage (AOP 293), and increased reactive 
oxygen and nitrogen species (AOP 294) (Fig. 1D; Data Matrix, AOP overview tab). This way, the increasing scientific 
knowledge on breast cancer mechanisms could be effectively integrated in a growing catalogue of defined MIEs, 
KEs, and AOs linked by specified key event relationships.

https://aopwiki.org/
https://aopwiki.org/aops/200
https://aopwiki.org/aops/200#Events
https://aopwiki.org/aops/200#KE_relationships
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2.3 � Identification of additional KEs for an updated breast cancer AOP

In order to investigate to what extent the existing MIE, KEs, and AO of the breast cancer AOP 200 are represented by 
published biomedical and toxicological research articles, we systematically reviewed and categorized 299 relevant 
publications from the PubMed database. With a particular focus on recent original studies (published within the 
last five years, no reviews) that used non-animal methods to study mechanisms and (environmental) stressors of 
breast cancer, we collected the retrieved articles and their categorizations in a Data Matrix (Data Matrix, Literature 
classification tab). The search strategy was based on MeSH term combinations that describe the study focus and 
methodologies used (Data Matrix, All queries tab), followed by a manual inclusion of high priority publications based 
on title and abstract review.

We next determined the main study focus and mapped these publications to individual categories representing 
key breast cancer mechanisms, which included the established MIE, KEs, and AO of the breast cancer AOP 200 (Data 
Matrix, Literature classification tab). These 35 categories consisted of (environmental) stressors, molecular and cel-
lular responses in both primary tumor and stromal cells, responses at the tissue level, and the AO, i.e., breast cancer. 
We further grouped these studies into primary research fields, i.e. basic biomedical research (mechanisms of breast 
cancer; 160 studies, 50%) translational biomedical research (diagnostics, (pre-)clinical testing, drugs, therapy; 103 
studies, 32%) and toxicology (environmental effects; 54 studies, 17%) (Data Matrix, Analysis tab). The analyzed stud-
ies from basic and translational biomedical research covered cellular (tumor and stroma) and tissue level responses 
to a similar extent (Fig. 2A; Data Matrix, Analysis tab). The AO, i.e. breast cancer (covering various tumor (sub-)types), 
was most strongly addressed by translational biomedical studies. Notably, the analyzed toxicological studies almost 
exclusively investigated effects on the tumor cell level. The main KEs that were investigated in the toxicological stud-
ies included the activation of the ER, effects on gene expression and proliferation. In contrast, biomedical studies 
covered a much broader spectrum of more complex KEs, including apoptosis, modulation of the TME, tumor growth 
and invasion (Data Matrix, Analysis tab).

Based on the analyzed publications, we further identified additional key breast cancer mechanisms that were not 
yet established as KEs (Table 1; Data Matrix, AOP overview tab). These studies are mainly from the biomedical domain 
(Data Matrix, Literature classification tab) and represent key breast cancer mechanisms that should be considered for 
timely inclusion into AOPs. In particular, important breast cancer mechanisms that were studied in many of the analyzed 
publications but are not yet covered by the current breast cancer AOPs relate to the decrease of cell stiffness and cell 
adhesion when transforming from non-malignant to metastatic states. For example, it has been shown that estrogens 
determine the organization of the essential cell-cell adhesion molecule E-Cadherin at adherens junctions as well as 
stiffness and motility of breast cancer cells [27]. The higher mechanical elasticity and deformability of cancer cells links 
to a reorganization of the actomyosin cytoskeleton and strongly correlates with cell malignancy and metastatic potential 
[28]. In addition, metastatic sites differ between individual cancer types [29] with variations in cytoskeletal organization 
and stiffness of breast tumor subpopulations matching the biomechanical properties of the metastasized organs being 
a possible mechanical indicator explaining metastatic site preferences (organotropism) [30]. In addition to changes 
in biomechanical properties, invasive breast tumor cells do further show a reduced cell-cell and cell-matrix adhesion, 
which increases their ability to detach from the primary tumor, a process mimicking the developmental epithelial-to-
mesenchymal transition (EMT) program [31], and to invade the surrounding stroma. Along this line, the Cadherin- and 
Integrin-family transmembrane adhesion proteins have been identified to play a major role in the transition to metastatic 
states in breast cancer [32, 33].

These findings emphasize the relevance of decreased cell stiffness and cell adhesion as disease mechanisms (KE) in 
metastatic breast cancer progression, and could be included into the existing breast cancer AOPs or used to establish new 
AOPs. These developments would establish connections between alterations of ER activity (MIE 1181) with metastatic 
breast cancer (AO 1982) through reduction of cell stiffness (new KE) by modulation of actomyosin contractility as well 
as reduction of cell-cell adhesion (new KE) by modulation of E-Cadherin localization. Additionally, they would consider 
induction of EMT (KE 1457), increased cancer cell motility (KE 1241), and increased invasion (KE 1196) (Fig. 1E) as part of 
the disease mechanism.
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Fig. 2   Use of non-animal breast cancer methods in biomedical research and toxicology. A-D Visualization of the collected publications and their classifications 
according to the addressed KE levels (tumor cell, stromal cell, tissue, adverse outcome) or the experimental categories (in silico, in chemico, in vitro, in vivo), 
experimental types (e.g. cells, biopsies, AI), in vitro methods (e.g. cell culture, scaffolds, lab-on-the-chip), in vitro dimensions (2D, 3D), and high-throughput 
capacity used in different research fields (basic and translational biomedical research, toxicology) (see Data Matrix, Analysis tab for more details)
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2.4 � Systematic collection of available non‑animal methods in a breast cancer AOP

In addition to organizing available knowledge on cancer mechanisms, AOPs could further serve as information 
sources for selection of suitable non-animal methods (or combinations thereof ) that adequately recapitulate 
particular physiological conditions and disease states. However, with regard to breast cancer research, this potential 
of AOPs is rather unexplored. Therefore, we further categorized the collected publications according to experimental 
categories, experimental types, in vitro methods, in vitro dimensions, and high-throughput capacity (Fig. 2; Data 
Matrix, Literature classification tab).

The collected publications encompass models such as simple biochemical and cell-based models as well as more 
advanced co-culture models, organoids, microfluidic lab-on-the-chip, and computational models. The main KEs that 
were investigated using in vitro and ex vivo methods at the tumor and stromal cell level included alterations of gene 
expression, increased proliferation, decreased apoptosis, and activation of tumor-associated fibroblasts. The two 
newly proposed KEs, i.e., decreased cell stiffness and decreased cell adhesion, were addressed by a smaller number 
of methods (Data Matrix, Analysis tab). At the tissue level, methods focused on modulation of ECM composition, 
increased tumor growth, and invasion. In chemico and in silico methods were mainly used to investigate mechanisms 
leading to activation of the ER, e.g. by xenobiotic exposure, and alterations of gene expression at the tumor cell level. 
In addition to the collection of available methods for individual KEs, this analysis further highlights KEs for which 
limited or no methods have been extracted from the retrieved publications and, thus, could be prioritized when 
developing non-animal methods. These method gaps include increased second messenger production, alterations 
of the circadian clock, occurrence of cancer-related exosomes, increased proliferation and migration of endothelial 
cells, induction of tumor cell intra-/extravasation, and occurrence of circulating tumor cells (Data Matrix, Analysis tab).

When comparing the experimental types performed in the three research fields, toxicology is dominated by the 
use of 2D cell culture methods using single cell lines (Fig. 2B; Data Matrix, Analysis tab). Single cell lines have also 
been used most frequently in basic and translational biomedical research, but were closely followed by co-culture 
or spheroid models. Although 2D cell culture remains a common in vitro model for studying tumor development 
and progression, the frequently observed altered growth characteristics or drug responses between 2D and 3D cell 
cultures have led to specific recommendations for more complex models in drug discovery [34]. Three-dimensional 
spheroid, organoid, scaffold-based, and microfluidic lab-on-the-chip systems currently represent the most advanced 
in vitro models recapitulating physiological and clinically-relevant breast cancer disease conditions to a large extent 
[35]. Based on our analysis, these complex non-animal methods are represented to a considerably higher extent in 
basic and translational biomedical research compared to toxicology (Fig. 2B; Data Matrix, Analysis tab). With regard 
to the investigated breast cancer KEs, the simpler 2D models were mainly used to study mechanisms at the tumor 
and stroma cell level, whereas 3D models were applied to study more complex responses at the tissue level and the 
AO (Fig. 2C; Data Matrix, Analysis tab).

Simpler 2D cell culture methods are often considered to have higher compatibility with robotic HTS applications, 
which can provide data for thousands of tests in little time. Interestingly, this notion does not necessarily apply to 
the breast cancer studies we analyzed, in which 2D- and more complex 3D-based methods were used equally in HTS-
related projects (Fig. 2D; Data Matrix, Analysis tab). The majority of the analyzed HTS methods were used in toxicology 
and translational biomedical research (Data Matrix, Analysis tab). However, current advances in 3D culture methods 
promise an increased integration of 3D methods into HTS platforms in the biomedical domain [36].

Notably, translational biomedical research provided the highest proportion of published articles using ex vivo 
methods, particularly, cells isolated from primary material (biopsies). Other methods such as cultivation of organ-
like structures derived from dissociated (organotypic) or intact, non-dissociated (explants) primary material have 
rather rarely been used (Fig. 2B; Data Matrix, Analysis tab). These ex vivo methods mainly focused on investigating 
different aspects of breast cancer at the AO level, in particular to study tumor invasion using patient-derived material 
in spheroid and organoid models (Data Matrix, Analysis tab).

With regard to the use of in silico methods to study breast cancer-related mechanisms, about every fourth article 
from the toxicological research field used computational tools, particularly structural analyses to investigate the 
MIE, i.e. ER activation (Fig. 2B; Data Matrix, Analysis tab). For example, the quantitative structure-activity relationship 
(QSAR) modeling method and molecular docking simulations are frequently used in toxicology to analyze receptor-
ligand interactions, e.g., to predict ligand binding affinity of environmental stressors to ERα and, thus, to identify 
putative ER-mediated endocrine disrupting chemicals stimulating breast cancer [37]. The resulting data are the basis 
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for so-called grouping and read across approaches, which are currently the most commonly applied non-animal 
methods for identification and characterization of chemical hazards without animal testing [38]. In the biomedical 
domain, structural analyses are successfully employed in the drug discovery process, e.g., to explore potential 
targetable sites on ERα and key structural traits to develop ERα inhibitors for breast cancer therapy [39, 40].

In recent years, artificial intelligence (AI) and computer vision have made considerable progress. AI involves machine 
learning (ML) and deep learning (DL) algorithms, which extract knowledge from sample data, known as training data, 
without being explicitly programmed. Among our dataset, AI-based models have exclusively been used in basic and 
translational biomedical research papers related to breast cancer (Fig. 2B; Data Matrix, Analysis tab). AI, ML, and DL 
become promising tools supporting or even exceeding the performance of human experts with regard to analysis [41], 
diagnosis [42, 43], and surgery [44] of breast cancer. For example, He et al. reported the development of a DL algorithm, 
which has been trained on spatial gene expression data and breast tumor morphologies in order to predicting local 
breast cancer biomarker expression levels directly from clinical histopathology images [41]. Another recent study has 
introduced the ML tool MFmap, which matches cell lines to tumor and cancer subtypes and thus can aid biomedical 
researchers with the selection of suitable methodologies to address their research question [45]. The rise of AI models in 
biomedicine has further triggered the establishment of the community-driven AIMe registry, which allows developers to 
easily register their AIs and helps researchers identify available AI systems suitable for their use cases [46]. In combination 
with advanced microscopic imaging, ML-based image analysis methodologies facilitate the automatic detection and 
quantification of cell morphologies. One such example is the ML-based analysis of the estrogen-dependent organization 
of E-Cadherin at cell-cell contacts in breast cancer cells [47], which correlates with changes in cell stiffness and cell motility 
of breast cancer cells [27] and which we propose as relevant KEs for an updated breast cancer AOP (see Fig. 1E). Along 
this line, cell morphologies are generally regarded as a holistic readout reflecting the biomechanical and physiological 
properties of single cells and, with regard to breast cancer, have been analyzed at high throughput in image-based 
phenotypic screening approaches using 2D and 3D methods in toxicology and biomedical research [48–51]. Moreover, cell 
morphologies can aid the differentiation of cancer from non-cancer cells and provide information on their tumorigenic 
and metastatic potentials [52, 53]. AI might also be important to facilitate the development of even more advanced in 
silico prediction tools but also of more comprehensive AOP Networks.

3 � Discussion

3.1 � Using AOPs to accelerate the transition to advanced, human‑relevant approaches in breast cancer 
research

This analysis of a specific subset of the published literature on breast cancer shows that both biomedical research 
and toxicology could mutually benefit from using AOPs as a shared platform for a more comprehensive exchange of 
knowledge and non-animal methods. Sharing experimental data, in particular from HTS and -omics approaches, would 
significantly support the verification and update of existing AOPs [54] and gene regulatory networks [55, 56]. In addition, 
supplementing AOPs with quantitative data (quantitative AOPs; qAOPs) by integration of diverse types of data (physico-
chemical, in silico, in vitro, in vivo) using computational approaches [57–60], could further stimulate the application of 
the AOP concept in toxicology and biomedical research. In that regard, the growing number of qAOPs case studies that 
currently become available already led to the proposal of a coherent framework for development and evaluation of qAOPs 
and guidance for their purpose-specific, practical application [61]. Besides the obvious benefits of sharing resources and 
knowledge, efforts need to be strengthened in both research fields to stimulate contributions to AOP development and 
to eventually put AOPs into practice.

3.2 � Stimulating and rewarding contributions to breast cancer AOP development

Systematic reviews are an important approach for constructing or updating AOPs albeit strict adherence to the original 
and updated PRISMA guidelines [62–64] is currently not considered as an absolute requirement. Rather, the adoption of 
some aspects of the systematic review process including systematic search terms and a transparent description of the 
literature search and selection strategy are perceived as a pragmatic approach to fast-tracking AOP development while 
minimizing investment of time and resources [65]. In that regard, the use of text mining tools in particular can support 
the efficient retrieval of relevant, published literature. As an example, the recently launched AOP-helpFinder webserver 
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[66], which screens all PubMed abstracts for associations between stressors and biological events at various levels of 
biological organization (MIEs, KEs, and AOs), has been used to construct AOP 439, i.e., activation of the aryl hydrocarbon 
receptor leading to breast cancer [26]. In addition, elaborate text mining engines such as SMAFIRA [67] can support the 
retrieval of relevant non-animal methods from the PubMed database by providing a ranked list of published articles for 
a defined study focus. The AOP-helpFinder webserver and SMAFIRA are two domain-specific examples of text mining 
tools that can support the systematic review process in the context of AOP development. Other systematic review tools 
that could be used depending on the specific use case are collected, e.g., in The Systematic Review Toolbox (http://​
www.​syste​matic​revie​wtools.​com/), a comprehensive online catalogue of tools that support a variety of stages of the 
systematic review process.

To further increase the number of scientifically sound AOPs and incentivize more AOP contributions, the two scientific 
journals ‘Environmental Toxicology and Chemistry’ and ‘Environmental and Molecular Mutagenesis’ have pioneered the 
scientific peer-review of AOPs according to OECD quality standards [68] and their subsequent publication as an AOP 
Report [69, 70]. This currently rather formal, toxicology-oriented peer-review process needs to be opened up in the future 
to engage more biomedical researchers in the development of AOPs, who would ultimately benefit from a ‘systematic 
review-like’ publication with high citation potential.

3.3 � Putting breast cancer AOPs into practice

The assembly of single methods into method batteries to address breast cancer-related questions, e.g., on cancer 
mechanisms, environmental stressors, diagnosis, and treatment scenarios, is challenging. However, there are examples 
demonstrating the successful application of AOPs to establish suitable testing strategies. The AOP for skin sensitization 
[71] was the first AOP-based combination of non-animal methods into so-called Defined Approaches (DAs), which 
recently gained international acceptance to for regulatory decision-making [72]. Similar DAs are under development 
or already endorsed for other endpoints, such as the DA for serious eye damage and eye irritation [73]. Even though 
these endpoints are considerably less complex than the events leading to breast cancer, the current progress in this field 
promises further success stories towards the replacement of animal tests with human-relevant non-animal methods.

4 � Conclusions and outlook

The global scientific output grows exponentially and has been estimated to double every nine to 17 years with hundreds 
of research articles being published every day [74, 75]. Massive amounts of research and testing data on breast cancer are 
generated by modern technologies in biomedical sciences and toxicology. Community-driven AOPs that are designed 
in a user-centric fashion can support the joint analysis, interpretation, and contextualization of big data. The modular 
design of the breast cancer AOP facilitates the straightforward addition of new knowledge and even its combination with 
other AOPs based on shared KEs or AOs. Using AOPs as a blueprint to organize available mechanistic knowledge on breast 
cancer and human-relevant methodologies may thus help to guide the targeted development of not only toxicological 
testing strategies but also the formulation of biomedical research questions. More human-relevant (mechanistic) data 
from basic and translational biomedical research and toxicology, but, importantly, also the pharmaceutical industry, and 
clinics can contribute to establish and constantly update AOPs less dependent on animal data with all its problems in 
particular in respect to species differences.

This review article further intends to raise awareness of the opportunities of the AOP concept to support the phasing-
out and replacement of animal studies, to the extent possible, with already existing and emerging human-relevant 
methodologies that can ensure an equal or even higher degree of protection to humans. The application of these 
methods in the context of AOPs has great potential to further improve the reliability and human relevance of biomedical 
studies. This will ultimately raise the scientific confidence in the study results and ensure translatability of biomedical 
research from bench to clinical practice in order to benefit patient’s health while avoiding unnecessary animal testing. 
However, future AOPs will need to provide more ‘quantitative’ information supporting the separation of physiological 
responses from disease-relevant pathological responses at the cellular level. The usability of AOPs will further essentially 
be determined by the level of detail that is being covered. Considering the complexity and diversity of breast cancer with 
regard to the different subtypes and various cell populations involved, it appears very sensible that all this information 
cannot be covered using a single ‘generic’ breast cancer AOP. This calls for a much greater AOP diversification with regard 
to breast cancer in the future.

http://www.systematicreviewtools.com/
http://www.systematicreviewtools.com/
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Still, the famous quote ‘All models are wrong, but some are useful’, coined by the British statistician George E. P. Box, 
is just as true in statistics as it is in biomedical research and toxicology. Any breast cancer model is just a simplification 
of the reality, however, the generation of human-relevant data from ‘useful’ non-animal models and the crowdsourced 
organization of available knowledge into ‘useful’ AOPs can help to collectively create in an interdisciplinary manner a 
more complete picture of the relevant mechanisms and causally related events in breast cancer and to identify knowledge 
and methodological gaps that need to be closed.
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