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Abstract
Objective We aimed to develop a radiomics nomogram based on computed tomography (CT) scan features and high-
throughput radiomics features for diagnosis of malignant pleural effusion (MPE).
Methods In this study, 507 eligible patients with PE (207 malignant and 300 benign) were collected retrospectively. 
Patients were divided into training (n = 355) and validation cohorts (n = 152). Radiomics features were extracted from 
initial unenhanced CT images. CT scan features of PE were also collected. We used the variance threshold algorithm 
and least absolute shrinkage and selection operator (LASSO) to select optimal features to build a radiomics model for 
predicting the nature of PE. Univariate and multivariable logistic regression analyzes were used to identify significant 
independent factors associated with MPE, which were then included in the radiomics nomogram.
Results A total of four CT features were retained as significant independent factors, including massive PE, obstructive 
atelectasis or pneumonia, pleural thickening > 10 mm, and pulmonary nodules and/or masses. The radiomics nomogram 
constructed from 13 radiomics parameters and four CT features showed good predictive efficacy in training cohort 
[area under the curve (AUC) = 0.926, 95% CI 0.894, 0.951] and validation cohort (AUC = 0.916, 95% CI 0.860, 0.955). The 
calibration curve and decision curve analysis showed that the nomogram helped differentiate MPE from benign pleural 
effusion (BPE) in clinical practice.
Conclusion This study presents a nomogram model incorporating CT scan features and radiomics features to help physi-
cians differentiate MPE from BPE.
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1 Introduction

Pleural effusion (PE) is a common symptom in clinical practice, which can be caused by more than 50 malignant and 
benign diseases, such as malignancy, tuberculosis, and inflammation [1, 2]. Malignant pleural effusion (MPE) is always 
observed in patients with malignant tumors, and lung cancer is one of the major causes of MPE [3]. Annually, more 
than 200 thousand patients are admitted to hospitals in the United States with MPE [4]. For patients with MPE, the 
median survival time was 6 months [5]. The clinical prognosis of MPE is very poor in general, and any delay in treat-
ment may lead to death [6, 7]. Early treatment of MPE increases survival time. Therefore, developing an efficacious 
method to differentiate MPE from benign pleural effusion (BPE) is essential and urgent, especially to elucidate the 
underlying mechanisms of PE.

Traditionally, the diagnosis of MPE has been made based on pleural fluid cytology, pleural fluid tumor markers, 
and pleural biopsy [8, 9]. Cytologic examination of pleural fluid can serve as a common tool in the diagnosis of MPE. 
Several clinical studies suggested that the mean sensitivity of conventional pleural fluid cytology for the detection 
of tumor cells was only 60% [10]. As an invasive examination, pleural biopsy is widely used in diagnosis of MPE [11, 
12]. However, this approach can cause many complications, such as hemoptysis, pneumothorax, and infection [13]. 
Currently, chest computed tomography (CT) plays an important role in patients with PE, it can not only evaluate the 
changes in pleural configuration, but also analyze the lung parenchyma and mediastinum, and is superior to chest 
radiography and ultrasound in detecting the degree of pleural thickening [14, 15]. Previous studies reported that 
some CT morphological features, including diffuse irregular pleural thickening, mediastinal pleural involvement, and 
pleural nodules are highly indicative of MPE [16]. However, not all of these CT signs are specific and may produce 
false-positive results due to inflammation, infection, or other benign conditions [17].

Radiomics, as an emerging, non-invasive, multidisciplinary technology, uses a series of qualitative and quantitative 
methods to analyze high-throughput features and can obtain information from images that are helpful for diagnosis 
and differential diagnosis [18]. Radiomics has been widely used to distinguish the nature of diseases [19, 20]. However, 
few studies [21] have reported the use of radiomics in PE. Therefore, in the present study, we developed an integrated 
model based on radiomics features to predict the nature of PE. In addition, a nomogram combining CT scan features 
and radiomics features was developed to improve the reliability of the classifier in differentiating MPE from BPE.

2  Materials and methods

2.1  Patients and study design

Our institutional review board, Ethics Committee of Shaoxing People’s Hospital approved this retrospective study, 
and the requirement to review informed consent was waived. Patients with PE diagnosed from February 2013 to 
September 2021 were analyzed. Flow-diagram of study selection was shown in Fig. 1. All patients needed to obtain 
the exact etiology of PE for final inclusion in the study. Inclusion criteria: (I) patients were confirmed to suffer from 
PE by contrast enhanced chest CT scan; (II) patients who have underwent diagnostic thoracentesis. Exclusion criteria: 
(I) patients with suspected BPE but follow-up < 12 months; (II) patients with PE after thoracotomy; (III) patients with 
unknown etiology; (IV) patients < 18 years. Patients were randomly divided into training (n = 355) and validation 
(n = 152) cohorts by computer with a ratio of 7:3. The training cohort contains MPE (n = 145) and BPE (n = 210). The 
validation cohort contains MPE (n = 62) and BPE (n = 90).

2.2  Diagnostic criteria

According to the guideline [22], the patient was diagnosed with MPE if malignant cells were detected on cytol-
ogy of the pleural fluid or biopsy specimens. The diagnosis of BPE requires exclusion of a history of malignancy. 
The diagnosis of tuberculous PE was established when acid-fast staining of pleural fluid, bronchoalveolar lavage 
fluid, or sputum was positive. Parapneumonic effusion referred to PE associated with infectious diseases such as 
bacterial pneumonia, viral pneumonia, or lung abscess. The diagnosis of cardiogenic PE relied on medical history, 



Vol.:(0123456789)

Discover Oncology          (2023) 14:213  | https://doi.org/10.1007/s12672-023-00835-8 Research

1 3

B-type natriuretic peptide (BNP), electrocardiogram (ECG), and echocardiography. In addition, other causes of BPE 
followed strict diagnostic criteria. All patients with BPE were followed up for at least 12 months to ensure there was 
no malignant pleural process [23].

2.3  Imaging examination

All patients underwent contrast enhanced chest CT scan using one of two CT scanners (Brilliance, Philips, Netherlands; 
Somaton Force, Siemens, Germany). The following scanning parameters were used: matrix 512 × 512, tube current 80–180 
mAs, slice thickness 2.5 or 3.0 mm, rotation time 0.5 s, tube voltage 120 or 140 kV, reconstructed slice thickness 0.625 mm, 
field of view 350 × 350 mm. Scans were performed using a non-ionic contrast medium, with an injection rate of 3.0 mL/s, 
and scanned approximately 60 s after contrast medium injection.

2.4  CT scan data analysis

Two radiologists with 10 years of experience together evaluated the chest CT images. They did not know the identity and 
clinical information of each patient, nor the final diagnosis of PE. Any disagreements were resolved through discussion 
and a final consensus was reached on the imaging findings. They independently assessed and recorded the following 
CT features: (1) unilateral and or bilateral PE; (2) massive PE (depth > 15 cm); (3) thoracic lymph node enlargement (short 
axis diameter > 10 mm); (4) pericardial effusion; (5) encapsulated effusion; (6) pleural calcifications; (7) pleural thicken-
ing > 3 mm; (8) pleural thickening > 10 mm; (9) pleural nodules (pleural thickening > 1 cm, nodular in appearance); (10) 
pleural-based masses (> 3 cm); (11) increase in attenuation of extrapleural fat (i.e. greater than normal adipose tissue in 
the chest wall); (12) obstructive atelectasis or pneumonia; (13) mediastinal pleural involvement; (14) pleural microbubbles 
(i.e. air bubbles suspended in the pleural space); (15) pleural contrast enhancement; (16) cardiomegaly (cardiothoracic 
ratio > 0.5); (17) pulmonary nodules and/or masses (diameter > 10 mm); (18) split pleura sign (i.e. pleural fluid collection 
between enhanced visceral and parietal pleura).

Fig. 1  Flow-diagram of study selection
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2.5  Image segmentation and feature extraction

Non-contrast enhanced CT images were used for image segmentation and radiomics feature extraction in light of recent 
research [21]. The window width and level were set to 400/40 Hounsfield units (HU). Manual segmentation was performed 
using ITK-SNAP software (v.3.6.0) by a radiologist. In this study, a considerable amount of pleural effusion was detected in 
this group of pleural effusion cases, accounting for 80% of the actual volume of interest (VOI) selected for drawing. Some 
lesions were deeper than 15 cm and even spanned the entire chest, making it impossible to sketch them all at once. So, 
for a significant amount of fluid accumulation, draw three typical layers (each with a depth of 3 cm and volume): were 
selectively drawn for medium and large amounts of fluid accumulation: the top, middle (largest layer) and bottom end 
of the fluid accumulation; There were 102 cases of small amount of fluid accumulation, accounting for 20%. The depth of 
the fluid buildup was generally within 3 cm, and all lesions could be identified at the same time. Three consecutive layers 
with the greatest amount of fluid were selected to manually draw the volume of interest (VOI), avoiding adjacent pleural, 
lung tissue, and other normal anatomical structures using recent literature as a guide [21]. Before image segmentation, 
all CT images were resampled to 1 × 1 × 1  mm3 voxel size using A.K software (v.3.4.0, GE Healthcare) to reduce the effects 
of different CT scanners and imaging acquisition parameters [24]. Based on AK software, 1316 radiomics features were 
extracted from CT images, including first-order histogram features (n = 18), shape features (n = 14), multi-dimensional 
texture features (n = 75), transformation First-order and texture features (n = 1209, including 744 wavelet features, 186 
Laplacian Gaussian features (Log Sigma = 2.0/3.0, as determined by the AK program), 279 local binary pattern filter 
texture features). Intraclass correlation coefficients (ICC) were used to evaluate the reproducibility and consistency of 
radiomics features. 50 patients (25 for MPE and 25 for BPE) were randomly selected from the entire sample for analysis. 
Two radiologists (more than 10 years of experience in chest imaging diagnosis) performed image segmentation for 
inter-reader agreement analysis. Features with ICC > 0.75 indicated good agreement and were reserved for subsequent 
analysis. Before the feature selection, the data were preprocessed. When the standard deviation of the data exceeded 
the range of the mean, the z-score transformation was used for bias field correction and intensity normalization [25].

2.6  Model establishment and evaluation

Radiomic feature selection was performed in the training cohort. We used the following steps to reduce feature dimen-
sionality and select the most reliable and valuable features. First, we used variance threshold algorithm (the variance 
threshold was 1.0) to select radiomics features that were markedly different between the MPE and BPE groups. Then, the 
Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was applied to filter the image features 
[26]. To avoid overfitting, a tenfold cross-test was used for penalized parameter tuning [27]. After the parameters were 
determined by the cross-validation procedure, the logistic regression (LR) model was constructed on the training cohort. 
Finally, the radiomics score (Radscore) was developed based on the regression coefficients [28].

The univariate analysis and multivariable logistic regression analysis were performed for each potential predic-
tor in the training group. Initial CT features were selected using univariate analysis. Statistically significant variables 
were entered into multivariable logistic regression, and CT predictors in differentiating BPE and MPE were selected. 
Subsequently, the logistic regression method was used to construct CT features model. The radiomics nomogram 
was constructed by integrating CT scan features and radiomics features.

2.7  Statistical analysis

Categorical variables were expressed as numbers and rates% between the MPE and BPE groups, whereas continuous 
variables were expressed as mean ± SD. Using the t-test to compare numerical data, and the χ2 and Fisher’s exact 
tests were applied to compare categorical data. P < 0.05 was considered as statistically significant. Receiver operating 
characteristic (ROC) curves were used to assess nomogram performance and were validated in validation cohort. 
Calibration curves were used to assess the goodness of fit of the nomogram. Decision curve analysis (DCA) was used 
to observe the clinical validity of nomogram. The DeLong test was used for comparisons between different models. 
All analyses were performed using R software (version 3.3.2; packages mainly included “glmnet”, “pROC”, “dca.R”, and 
“rms”) and Medcalc software (version 19.1).
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3  Results

3.1  Study populations

A total of 507 patients were recruited in this study, ranging in age from 23 to 87 years, including 309 males and 198 
females. The etiologies of the patients in this study are given in Supplementary Table S1. The most common cause 
of MPE was lung cancer, and the main causes of BPE included parapneumonic effusion and empyema. The clinical 
factors and chest CT scan findings of the training and validation cohorts are summarized in Table 1. There were no 
significant differences in gender and age between the two groups of patients in the training and validation cohorts. 
Among the 507 patients with PE, the CT results were consistent in 495 cases and inconsistent in 12 cases. The overall 
difference between the two radiologists was 2.3%. The most controversial difference was the distinction between 
lung cancer and obstructive atelectasis (n = 8). In response to these differences, we carefully analyzed their CT per-
formance and finally reached a consensus.

3.2  Chest CT features of PE and their predictive performance

Eighteen CT features of BPE and MPE were screened for further analysis. The typical cases of BPE and MPE was shown 
in Fig. 2. Four independent significant factors were selected to predict MPE, including pleural thickening > 10 mm (OR 
2.320, 95% CI 1.340, 4.019, P = 0.003), pulmonary nodules and/or masses (OR 2.362, 95% CI 1.423, 3.893, P = 0.001), 
obstructive atelectasis or pneumonia (OR 3.896, 95% CI 1.623, 9.354, P = 0.002) and massive PE (OR 3.784, 95% CI 2.232, 

Table 1  Detailed characteristics and CT findings in training and validation cohorts

CT computed tomography, Radscore radiomics score, MPE malignant pleural effusion, BPE benign pleural effusion

*A comparison of training and validation groups

Characteristics/CT findings Training cohort (n = 355) P Validation cohort (n = 152) P P*

MPE (n = 145) BPE (n = 210) MPE (n = 62) BPE (n = 90)

Characteristics
 Age (mean ± SD, years) 62.42 ± 10.49 60.86 ± 12.87 0.210 62.68 ± 9.28 60.42 ± 12.36 0.201 0.765
 Female (n%) 62 (42.76) 75 (35.71) 0.219 29 (46.77) 32 (35.56) 0.223 0.745
 Rad-score (mean ± SD) 1.59 ± 2.23 − 1.76 ± 1.37 < 0.001 1.11 ± 2.70 − 1.31 ± 2.31 < 0.001 0.798

CT findings
 Unilateral effusion 109 145 0.255 48 59 0.163 0.793
 Massive pleural effusion 64 37 < 0.001 29 19 0.002 0.479
 Thoracic lymph node enlargement 114 158 0.540 50 64 0.253 0.695
 Pericardial effusion 9 17 0.643 4 8 0.809 0.823
 Encapsulated effusion 12 26 0.291 8 16 0.559 0.109
 Pleural calcifications 4 8 0.810 1 5 0.422 0.752
 Pleural thickening > 3 mm 123 155 0.019 52 67 0.236 0.996
 Pleural thickening > 10 mm 86 61 < 0.001 38 27 < 0.001 0.777
 Pleural nodules 47 36 0.001 22 14 0.008 0.941
 Pleural-based masses 4 0 0.056 1 0 0.851 0.624
 Increase in attenuation of extrapleural fat 21 16 0.057 9 8 0.412 0.799
 Obstructive atelectasis or pneumonia 32 9 < 0.001 15 5 0.002 0.610
 Mediastinal pleural involvement 41 19 < 0.001 19 9 0.003 0.679
 Pleural microbubbles 19 43 0.098 6 20 0.072 0.922
 Pleural contrast enhancement 59 104 0.125 25 45 0.312 0.685
 Cardiomegaly 15 33 0.195 5 14 0.261 0.756
 Pulmonary nodules and/or masses 81 58 < 0.001 32 28 0.018 0.946
 Split pleura sign 5 10 0.737 2 5 0.780 0.867
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6.415, P < 0.001). CT features models were constructed using these independent significant factors. The performance 
of the models was summarized in Table 2.

3.3  Radiomics model development and validation

1316 radiomics features were extracted from each VOI. Features with ICC ≤ 0.75 were excluded by stability analysis, and 
then the variance threshold algorithm was used to remove irrelevant features. Finally, radiomics features with 13 non-
zero coefficients were retained by LASSO regression (Fig. 3). The Radscore was attained with the formula presented in 
Supplementary Data S1. The Radscore showed statistically significant differences between MPE and BPE (Fig. 4). The 
AUC of the radiomics model for the training cohort was 0.901 (95% CI 0.865, 0.930), with a sensitivity of 0.776, specificity 
of 0.882, and accuracy of 0.819. The AUC for the validation cohort was 0.879 (95% CI 0.816, 0.926), with a sensitivity of 
0.966, specificity of 0.645, and accuracy of 0.835. Furthermore, radiomics model showed higher predictive power than 
CT features model in the training cohort (AUC = 0.901 vs. 0.786) and the validation cohort (AUC = 0.879 vs. 0.759) (Fig. 5).

3.4  The nomogram model construction

Based on a logistic regression model, we created a nomogram model. To begin, the following characteristics were identi-
fied using univariate logistic regression analyses: substantial pleural effusion, pleural thickness (3 or 10 mm), pleural nod-
ules, obstructive atelatosis or pneumonia, mediastinal pleural involvement, pulmonary nodules or masses. A nomogram 
model was then developed by merging the four independent predictive parameters in multivariate analysis, Massive PE 
(P < 0.001), objective atelectasis or pneumonia (P = 0.002), pleural thickening > 10 mm (P = 0.003), pulmonary nodules 

Fig. 2  Some CT morphological features of pleural effusion. A A 51-year-old male, benign pleural effusion (BPE) with pleural contrast 
enhancement (black arrowhead), air bubbles in pleural space (white asterisk), and increased attenuation of the extrapleural fat (white 
arrowhead). B A 79-year-old female, malignant pleural effusion (MPE) with diffuse pleural thickening (white arrowhead) and enlarged medi-
astinal lymph node (white asterisk)

Table 2  The predicting 
performance between CT 
features model, radiomics 
model, and the radiomics 
nomogram

CT computed tomography, AUC  area under curve, CI confidence interval, NPV negative predictive value, 
PPV positive predictive value

Models AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Training cohort
 CT features model 0.786 (0.739, 0.827) 0.746 0.866 0.572 0.745 0.747
 Radiomics model 0.901 (0.865, 0.930) 0.819 0.776 0.882 0.905 0.731
 Nomogram model 0.926 (0.894, 0.951) 0.864 0.871 0.855 0.897 0.821

Validation cohort
 CT features model 0.759 (0.683, 0.825) 0.703 0.766 0.612 0.741 0.644
 Radiomics model 0.879 (0.816, 0.926) 0.835 0.966 0.645 0.798 0.930
 Nomogram model 0.916 (0.860, 0.955) 0.868 0.966 0.725 0.836 0.937
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and/or masses (P = 0.003), with Radscore utilizing R studio (Fig. 6). Some irrelevant aspects were automatically filtered and 
removed. The nomogram score (Nomoscore) was calculated using the formula shown in Supplementary Data S2. Table 2 
summarizes the radiomics model’s, CT features model’s, and radiomics nomogram model’s prediction performance.

The AUC for the nomogram model was 0.926 (95% CI 0.894, 0.951) in the training cohort and 0.916 (95% CI 0.860, 0.955) 
in the validation cohort. In the training and validation cohorts, the nomogram model outperformed the radiomics model 

Fig. 3  Radiomics features selection. A LASSO coefficient profiles (y-axis) of the radiomics features. The lower x-axis indicated the log lambda 
(λ). The top x-axis has the average numbers of predictors and B 13 features were selected into the LASSO model when λ was one standard 
error of the minimum loss (left dashed line: lambda.min was the one in which the mean value of the lowest objective parameter was deter-
mined from all of the values. Right dashed line: lambda.1se denotes the value within a range of variance is produced for the simplest model. 
After a certain magnitude, increasing the number of model independent variables, that is, decreasing value, cannot considerably improve 
model performance. The lambda.1se model has outstanding performance but the fewest independent variables)

Fig. 4  The Radscore from MPE 
and BPE in the training (A) 
and validation cohorts (B). “0” 
represents the BPE group and 
“1” represents the MPE group
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and the CT features model. DeLong’s tests revealed a substantial difference between the nomogram model and the other 
two models in the training and validation cohorts (P < 0.05, Supplementary Table S2). The AUC of the nomogram model 
was greatly improved when compared to the radiomics and CT features models. The calibration curves demonstrated 
good agreement between the nomogram model’s predictions and the observed trends (Supplementary Fig. S1). DCA 
demonstrated that the nomogram model and radiomics model had a greater net advantage for clinical decision-making 
than the CT features model (Supplementary Fig. S2).

4  Discussion

PE refers to the abnormal accumulation of free fluid in the pleural cavity [29]. Its etiology is complex and can be caused by 
many diseases, including malignant tumors, inflammation, tuberculosis, and trauma [2]. MPE usually indicates advanced 
cancer associated with high mortality. In recent years, with the increase in the incidence of malignant tumors, the inci-
dence of MPE is also on the rise [30]. The presence of MPE can cause a heavy healthcare burden and affect the survival 
of patients. Timely diagnosis and treatment are essential to improve the clinical outcomes of MPE patients. Patients with 
BPE, such as parapneumonic effusion, can be clinically cured if diagnosed and treated early enough [31]. At present, no 
imaging method can accurately distinguish MPE from BPE. Radiologists often infer the nature of PE indirectly based on 
lung, mediastinal, pleural, and cardiac lesions [32, 33]. Most patients can be diagnosed by pleural fluid cytology, pleural 
biopsy, and thoracoscopy [34]. The sensitivity and specificity of individual tests are low, and the invasiveness of thoraco-
scopic pleural biopsy also limits its widespread clinical use [16]. In clinical practice, there is an urgent need for a simple 
and fast method for qualitative diagnosis of PE.

In recent years, many studies have attempted to diagnose MPE using medical imaging methods. The findings by 
Kim et al. [35] reported that parameters of 18Fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/CT 
(PET/CT) such as increased pleural glucose uptake could be used to differentiate MPE from BPE. In addition, Lu et al. [36] 
developed a PET/CT scoring model based on eight independent predictive parameters to diagnose MPE. In the derivation 
dataset, the AUC of the PET/CT scoring model was 0.958 and the scoring threshold was 6 points. These studies provide a 
new method for the preliminary qualitative diagnosis of PE, but its cost is high and it is not recommended for routine use 
in clinical practice. Radiomics can generate high-throughput data by transforming digital medical images. In previous 
reports, radiomics has excellent performance in disease diagnosis, treatment evaluation, and prognosis analysis [37, 38]. 

Fig. 5  Comparison of ROC curves for prediction of MPE. ROC curves of the CT features model (red curve), radiomics model (blue curve), and 
radiomics nomogram model (green curve) in the training cohort (A) and validation cohort (B)
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Therefore, in theory, radiomics is a feasible method to distinguish MPE from BPE. In this study, quantitative features from 
chest CT images were used to construct radiomics models to identify MPE. We selected 13 optimal features for modeling 
from 1316 radiomics features. Furthermore, in order to improve the diagnostic ability of the model, we combined manual 
visual evaluation by radiologists and automatic extraction of radiomics features by software to constructed a nomogram 
model for the discrimination of MPE from BPE. The radiomics nomogram model showed good predictive ability in both 
the training cohort (AUC = 0.926) and the validation cohort (AUC = 0.916). Moreover, we found statistical differences 
among CT features model, radiomics model, and radiomics nomogram model. The nomogram model combining radi-
omics parameters and CT features outperformed two single models.

Based on previous studies, some chest CT scan findings were investigated and analyzed in this study [16, 39]. Four 
parameters were found to be significant independent variables for predicting MPE, including pleural thickening > 10 mm, 
lung nodules and/or masses (diameter > 10 mm), obstructive atelectasis or pneumonia, and massive PE. This study shows 
that more than 40% of patients with malignant effusions have large effusions, while benign patients mostly have small 
effusions. The main reason is that the tumor invades the pleura, which continuously affects the permeability of pleural 
capillaries and produces a large amount of PE [40]. In addition, when patients are accompanied by obstructive pneumonia 

Fig. 6  Radiomics nomogram combining the Radscore and radiological factors for predicting MPE. (Scales showed each variable’s range of 
values, and the line segment’s length indicated the factor’s contribution. The score in the figure shows the single item score of each variable 
at various values, and the total score is the score when all variable values are combined. Bottom estimated probability)
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or atelectasis, cancer cells can spread to pleural tissue through pulmonary blood vessels and cause MPE [40]. Chest CT 
has been widely used in the initial diagnosis of patients with suspected pulmonary nodules/masses [41]. Pulmonary 
nodules and masses are common in metastatic lung cancer and occasionally in benign diseases such as tuberculosis and 
pneumonia. In this study, lung cancer was the common cause of MPE. Most patients with malignant effusions had lung 
cancer, and most of these patients presented with multiple pulmonary nodules and masses. In contrast, patients with 
BPE had fewer pulmonary nodules and masses. It can be reasonably speculated that the presence of multiple pulmonary 
nodules and masses is a sign of a malignant process. The normal pleura is very thin, and it is not easy to show on general 
chest X-ray examination. Studies have shown that the degree of pleural thickening and pleural nodular hyperplasia can 
differentiate BPE and MPE [2, 16, 17]. Benign pleural thickening is diffuse and uniform, and the pleural thickness is less 
than 10 mm. The pathological basis is pleural fibrous tissue hyperplasia or inflammatory granulomatous tissue hyper-
plasia, so most of them are diffuse or uniform thickening [29, 31].

Pleural thickening in patients with malignant effusions manifests as single or multiple, nodular irregular thickening, 
and the thickness of the pleura is often greater than 10 mm, which is usually caused by tumor metastasis [14, 15]. Single 
or multiple pleural nodules are a sign of malignancy invading the chest wall. However, in this study, due to the influence 
of pleural thickening in multivariable logistic regression analysis, some classic CT signs associated with malignancy (such 
as pleural nodules) lost their significance as predictors of malignancy. We found benign diseases that rarely exhibited 
features usually associated with pleural metastases, including pleural nodules and pleural thickening. These specific 
radiographic features also help guide pleural biopsy to sites that tend to yield positive results, even in the absence of 
pleural fluid cytology [42].

Our study showed that the nomogram model constructed from CT scan features and radiomics parameters is an 
effective strategy to differentiate MPE from BPE. On the one hand, this radiomics nomogram could reduce unnecessary 
invasive procedures, such as cytology or pleural biopsy, in patients suspected of having BPE. On the other hand, this 
nomogram could recommend diagnostic thoracentesis or closed pleural biopsy in patients with possible MPE, and could 
also help in selecting treatment options and predicting prognosis. In addition, CT imaging can guide the puncture or 
biopsy site while minimizing errors during invasive operations. The main strength of this study is the large sample size 
and the participation of CT scan features. The incorporation of meaningful imaging features, clinical data, and radiomics 
may further improve predictive power as the study population and feature size increase. Studying the value of radiom-
ics features in pathophysiological mechanisms can better utilize radiomics features. It is crucial to select features and 
build models based on disease categories, and to correlate radiomics features with more biological information [43, 44].

This study has some limitations. Firstly, the sample source of this study was single, and there were more benign cases 
than malignant cases. The CT scan features we extracted may not fully represent the true weight of malignant effusions. 
Secondly, some patients with relatively uncomplicated diagnoses, including patients with parapneumonic effusion, were 
included in the study, which may have caused selection bias. Finally, according to previous studies, pleural fluid tumor 
markers, such as CEA and CA125 play important roles in the diagnosis of MPE [45, 46]. Due to factors such as sample size, 
pleural fluid tumor markers were not included in this study. These markers may be valuable in improving the diagnostic 
accuracy of nomograms.

5  Conclusion

In summary, we identified four CT scan features and 13 radiomics features that distinguished MPE from BPE and devel-
oped a radiomics nomogram model with good performance in diagnosing malignant effusion. The nomogram may be 
an effective non-invasive tool to help improve diagnostic performance, although further external validation is required 
before widespread use.
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