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Abstract
Background The prevalence of thyroid cancer (ThyC), a frequent malignant tumor of the endocrine system, has been 
rapidly increasing over time. The mitophagy pathway is reported to play a critical role in ThyC onset and progression in 
many studies. This research aims to create a mitophagy-related survival prediction model for ThyC patients.
Methods Genes connected to mitophagy were found in the GeneCards database. The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases provided information on the expression patterns of ThyC-related genes. To 
identify differentially expressed genes (DEGs), R software was employed. The prognostic significance of each DEG was 
assessed using the prognostic K-M curve. The prognostic model was built using LASSO, ROC, univariate, and multivariate 
Cox regression analyses. Finally, a nomogram model was developed to predict the survival outcome of ThyC patients in 
the clinical setting.
Results Through differential analysis, functional enrichment analysis, and protein–protein interaction (PPI) network 
analysis, we screened 10 key genes related to mitophagy in ThyC. The risk model was eventually developed using LASSO 
and Cox regression analyses based on the six DEGs related to mitophagy. An altered expression level of a mitophagy-
related prognostic gene, GGCT , was found to be the most significant one, according to the KM survival curve analysis. 
An immunohistochemical (IHC) investigation revealed that ThyC tissues expressed higher levels of GGCT than normal 
thyroid tissues. The ROC curve verified the satisfactory performance of the model in survival prediction. Multivariate 
Cox regression analysis showed that the pathological grade, residual tumor volume, and initial tumor lesion type were 
significantly linked to the prognosis. Finally, we created a nomogram to predict the overall survival rate of ThyC patients 
at 3-, 5-, and 7- year time points.
Conclusion The nomogram risk prediction model was developed to precisely predict the survival rate of ThyC patients. 
The model was validated based on the most significant DEG GGCT gene expression in ThyC. This model may serve as a 
guide for the creation of precise treatment plans for ThyC patients.
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1 Introduction

Thyroid carcinoma (ThyC) is one of the most frequently diagnosed endocrine malignancies in adults, accounting 
for approximately 96.0% of all newly diagnosed endocrine cancers and involving females in 77% of cases [1]. Glob-
ally, there were around 580,000 newly diagnosed ThyC cases in 2020, thereby ranking this carcinoma  11th among 
all types of cancers in humans [2]. ThyC can be histopathologically classified into four major subgroups based on 
the cancer-origin cell type, namely papillary (PTC), follicular (FTC), medullary (MTC), and anaplastic thyroid cancer 
(ATC). Of these, PTC is the most frequent kind and exhibits a favorable prognosis [3–5]. Although surgery is currently 
the major form of treatment for ThyC patients, however, there are still cases (< 10%) of ThyC patients present rapid 
progression of cancer symptoms and poor outcomes in surgical removal as well as the worst prognosis [6]. Multi-
ple risk factors may also affect the prognostic outcomes in these patients, for example, the pathological stage, the 
extent of invasion, lymph node metastasis, and residual tumor volume. Since the pathogenesis of ThyC is complex, 
it is essential to establish a standardized prognostic evaluation model [7].

Thyroglobulin (Tg) and calcitonin are commonly used as tumor biomarkers for several years regarding the postop-
erative follow-up evaluation of ThyC, according to the guidelines of the American Thyroid Association (ATA) [8]. How-
ever, Tg shows a low specificity and is only indicative of cancer progression in patients with progressively elevated Tg 
levels after the surgical resection. Calcitonin, as a specific indicator of MTC, has an important value for tumor screen-
ing and prognostic evaluations. Recently, a slew of molecular markers, such as BRAF [9], RAS [10], RET-PTC [11], TERT 
[12], and other gene mutations and/or rearrangement, have been proposed to facilitate the diagnosis and prognosis 
of ThyC patients. Although these genes have not yet entered the clinical first line to guide prognosis, the screening 
of mutations in multiple genes may cumulatively serve as an important indicator toward prognostic evaluations.

An evolutionarily conserved mechanism, called autophagy, allows cells to discard/recycle expired or damaged 
components mainly through the lysosomal degradation pathway [13]. Under normal physiological conditions, a 
mitochondria-specific autophagic pathway, mitophagy, is triggered in response to multiple stressors such as food 
scarcity, hypoxia, DNA damage, inflammation, and mitochondrial membrane depolarization [14, 15]. PARK2, FANCC, 
BNIP3, and BNIP3L are among those mitophagy regulators that are aberrantly expressed during malignancies [16]. 
Recent studies have demonstrated that mitophagy pathway dysregulation can modulate the prognosis of ThyC 
[17–20].

By exploiting ThyC-associated mRNA expression profiles and the TCGA and GEO-derived clinical data, we identified 
a set of differentially expressed genes (DEGs) involved in mitophagy and subsequently constructed a risk prediction 
model for ThyC patients. In parallel, we validated the prognostic model for its precision, reliability, and reproduc-
ibility for risk prediction.

2  Materials and methods

2.1  Data acquisition

The TCGA data portal, containing 510 ThyC and 58 neighboring non-tumor tissue transcriptomics profiles, was used 
to retrieve RNA-seq data for ThyC [21]. Simultaneously, the UCSC Xena database was used to retrieve any relevant 
clinical data (http:// genome. ucsc. edu) [22]. The ThyC microarray data (GSE3678) was also downloaded from the GEO 
database [23]. The data platform for this dataset was the GPL570 Affymetrix Human Genome U133 Plus 2.0 Array. We 
included array profiles of seven specimens for each of the ThyC and the matched control groups from this database. 
In total,2,414 mitophagy-related genes expression profiles were retrieved from the GeneCards database(https:// 
www. genec ards. org/) [24]. Table S1 describes expressions of analyzed genes.

2.2  Identification of ThyC‑associated DEGs

To pinpoint the underlying mechanism, associated biological traits, and DEG-related pathways in ThyC, we first used 
the limma [25] package to normalize TCGA-ThyC and GSE3678 datasets. The TCGA-ThyC dataset’s count data were 

http://genome.ucsc.edu
https://www.genecards.org/)
https://www.genecards.org/)
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then subjected to differential analysis using R-based DESeq2 [26], while the GSE3678 expression profile data were 
differentially analyzed using the R software limma. We obtained two ThyC data sets from different DEG groups, and 
genes with |log2FC|> 1 and adjusted P ≤ 0.05 were considered statistically significant.

To identify DEGs that were associated with mitophagy in ThyC, we first analyzed the intersection points of all DEGs in 
the TCGA-ThyC and GSE3678 datasets and plotted the Venn diagram to acquire common DEGs in these data sets. Then 
co-DEG and mitophagy-related genes were interfaced by plotting, a Venn diagram. The heatmap and volcano plot were 
created using the R tool ggplot2 and the findings of the differential analysis.

2.3  Functional enrichment analysis

Studies on functional enrichment at a large scale, encompassing biological process (BP), molecular function (MF), and 
cellular components (CC), are frequently carried out using Gene Ontology [27] (GO). We used the R package clusterPro-
filer [28] to execute the GO annotation analysis on mitophagy-related DEGs. The entrance screening criteria were P and 
FDR values less than 0.05 for statistical.

2.4  Gene set enrichment analysis (GSEA)

To assess the contribution of disease-relevant gene expressions to the phenotype, the gene distribution tendency of a 
pre-assorted gene set in the dataset was evaluated using the GSEA [29]. Based on the degree of phenotypic connections, 
genes from the TCGA-ThyC and GSE3678 datasets were first split into two groups to perform the enrichment analysis on 
all DEGs with the clusterProfiler program using the following settings seed = 2,020; computations = 1,000; the minimum 
amount of genes in apiece gene set = 10, the maximum amount of genes in apiece gene set = 500, and Benjamini–Hoch-
berg P-value correction (BH). Both P and FDR values of less than or equal to 0.05 were considered statistically significant 
for the gene set h. all.v7.2.Symbols.gmt, obtained from the Molecular Signatures Database (MSigDB) [30].

2.5  Construction of a protein–protein interaction network (PPI)

The PPI network was composed of individual proteins interacting with each other. A database to explore the connection 
between predicted and experimentally validated proteins is called the STRING database [31]. We constructed a PPI net-
work with the STRING database for the selected mitophagy-associated DEGs, and the PPI network model was constructed 
using Cytoscape [32]. The maximal clique centrality (MCC) algorithm [33] has been widely utilized as a performance 
metric in bioinformatics. PPI networks with tightly connected and, tiny areas might include chemical compounds with 
specific biological activities. The PPI network scores of mitophagy-related DEGs that were linked to other PPI network 
nodes were mined using the MCC method. Finally, the top ten mitophagy-related DEGs were ranked according to the 
scores and were selected as the key genes (hub genes) for ThyC.

2.6  Establishment of a mitophagy‑related prognostic model

To develop a prognostic model of DEGs connected with mitophagy in ThyC, LASSO regression was performed using 
tenfold cross-validation with a P-value of 0.05. LASSO regression is often used to construct prognostic models. To mini-
mize the overfitting effect and increase generalizability, the penalty term was introduced to the linear regression model. 
Following the visualization of the LASSO regression results, the risk factor map was used to further explain the group-
ing of each sample according to the survival outcome in the prognostic model as well as the molecular expression of 
prognostic DEGs related to mitophagy in each group.

The prognostic Kaplan–Meier (KM) curve analysis method, also known as survival analysis, is a way to analyze and 
infer the survival time of patients to explore the link between the survival time and outcome. It was proposed by Kaplan 
and Meier, so it is called the Kaplan–Meier method, often referred to as the KM method, as well. The KM survival curve 



Vol:.(1234567890)

Research Discover Oncology          (2023) 14:173  | https://doi.org/10.1007/s12672-023-00772-6

1 3

method is usually used to calculate the survival probability—i.e., the likelihood that a patient who has survived for one 
period would also survive for the subsequent period—and multiplies these probabilities one at a time to get the survival 
rate for that period. The KM curve was plotted for mitophagy-associated DEGs in the LASSO model.

2.7  The receiver operating characteristic (ROC) curve analysis

The ROC curve analysis [34] refers to a method for examining the coordinate schemas that can be employed to 
choose the right model, rule out a runner-up model, or determine the optimal threshold within the same model. The 
composition approach displays the relationship between sensitivity and specificity, and the ROC curve provides a full 
illustration of continuously varying representations of both sensitivity and specificity. The closer area under curve 
(AUC) is to 1, the stronger the diagnostic impact is. A range of AUC values from 0.5 to 0.7 indicates a low accuracy; 
values between 0.7 and 0.9 are considered for medium accuracy, and any values greater than 0.9 indicates the high-
est accuracy. We used the R software survivalROC package to draw the ROC curve and calculate the corresponding 
AUC to evaluate the contribution of mitophagy-associated DEGs to the survival of ThyC patients.

2.8  Clinical correlation analysis of prognosis

To determine the predictive value of the identified mitophagy-related DEGs in ThyC, a univariate Cox regression analy-
sis was performed using the gene expression profile and clinical features for each patient. Factors with a P-value of 
less than 0.01 were then included in the multivariate Cox regression model. Based on these findings, nomograms were 
created to predict the 3-, 5-, and 7-year survival rates of ThyC patients. The nomogram’s accuracy and discrimination 
were assessed using the calibration curve. For the construction of the nomogram and calibration curve, the R package 
"rms" was applied. The decision curve analysis (DCA) was performed to assess the effect of the predictive nomogram 
model of ThyC using the R package ggDCA [35] to explore the possible survival outcomes in these patients.

2.9  Gene set variation analysis (GSVA)

A nonparametric unsupervised analytical technique, called gene set variation analysis (GSVA) [36], is mostly applied 
to determine the gene set enrichment of target gene(s) in microarray and transcriptomics studies. For GSVA at the 
gene expression level, the gene set "h.all.v7.4.Symbols.gmt" was extracted from the MSigDB database to analyze the 
functional enrichment variations between the two tissues. This was done to identify if different tissues had different 
gene expression enrichment profiles within the same group.

2.10  Immunohistochemical (IHC) analysis

Expressions of prognostic DEGs related to mitophagy in control versus ThyC tissues were analyzed by the IHC method 
using the Human Protein Atlas (HPA) [37] database (www. prote inatl as. org/) as the reference. The results of this analy-
sis were included in the database.

2.11  Statistical analysis

Employing R software, version 4.1.2, the whole data processing, and analysis for this report was completed. Continu-
ous variables were expressed as means ± standard deviation (SD). The Wilcoxon rank-sum test was used to compare 
the two groups. To compare the two groups with at least three distinct sizes, the Kruskal–Wallis test was performed. 
The chi-squared (χ2), or Fisher’s exact test was used to analyze the statistical significance between the two sets of 
categorical variables. If not otherwise specified, a P-value of less than 0.05 was considered statistically significant in 
all analyses. If not otherwise stated, the results were estimated as correlation coefficients between various groups 
using Spearman correlation analysis.

http://www.proteinatlas.org/


Vol.:(0123456789)

Discover Oncology          (2023) 14:173  | https://doi.org/10.1007/s12672-023-00772-6 Research

1 3

3  Results

3.1  Flow chart of this study

Figure 1 displays a thorough work flow diagram for this study. First, ThyC and GSE3678 datasets were respectively 
retrieved from the TCGA and GEO database’s. Genes related to mitophagy were intersected with differentially co-
expressed genes. For the discovered differentially co-expressed mitophagy-related genes, functional enrichment, 
and PPI network analyses were carried out. A prognostic model was then constructed based on clinically pertinent 
data using LASSO regression and KM curve analysis. To assess the clinical prognostic significance of ThyC-related 
DEGs, univariate and multivariate Cox regression models were employed. Finally, the difference in functional enrich-
ment between the two groups was analyzed by GSVA, and the related DEGs were further analyzed by IHC in control 
and ThyC tissue samples.

3.2  Analysis of mitophagy‑associated DEGs in ThyC

The TCGA -ThyC data set yielded a total of 22,195 DEGs that met the |logFC|> 1.5 and P.adj 0.05 thresholds, and from 
these, we identified 1,741 genes related to mitophagy. The cancer group had 1,195 individuals with high expres-
sion and 546 individuals with low expression under this cutoff. Differential analysis between these two groups is 
presented as a volcano plot (Fig. 2A). The GSE3678 dataset has 1,719 DEGs, of which 267 genes met the |logFC|> 1.5 
and P.adj 0.05 criteria. Under this threshold, 139 genes were upregulated, while 128 genes were downregulated. 
Differential analysis of this data set resulted in a volcano plot (Fig. 2B). To identify DEGs related to mitophagy, we 
started by taking the intersection of all DEGs from the ThyC and GSE3678 datasets. The ThyC dataset contained 
194 co-DEGs that were shown, in a Venn diagram (Fig. 2C). Co-DEGs and mitophagy-related genes were then inter-
crossed, and a total of 15 DEGs related to mitophagy of ThyC were found (Fig. 2D). Gene names and descriptions 
of these 15 mitophagy-related DEGs are shown in Tables 1 and 2.

To the findings of the Venn diagram, the TCGA-ThyC data set (Fig. 2E) and the GSE3678 data-set (Fig. 2F) were 
examined for 15 mitophagy-related DEGs using the R software.

Fig. 1  Flowchart of the iden-
tification of the mitophagy-
related gene signatures in 
thyroid cancer (ThyC) Co-DEGs
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Construc�on of LASSO 
regression model

Prognos�c analysisROC curve

Univariate and 
mul�variate COX analysis

GSVA analysis IHC analysis



Vol:.(1234567890)

Research Discover Oncology          (2023) 14:173  | https://doi.org/10.1007/s12672-023-00772-6

1 3

0

50

100

150

200

−L
og

10
(P

.a
dj

)
Down no significant Up

TCGA−THCA

−8 −4 0 4 8
Log2 (Fold Change)

0

20

40

−L
og

10
(P

.a
dj

)

Down no significant Up
GSE3678

−2.5 0.0 2.5
Log2 (Fold Change)

TCGA−THCA GSE3678

1547 194 73

Co−DEGs
mitophagy−related
genes

179 15 2399

GSE3678

SMOC2

PPARGC1A

GPM6A

ITPR1

COL11A1

MMP13

RASD2

TENM1

STK32A

GGCT

MET

FN1

LRRK2

C15orf48

CD55

group

group
Normal
THCA

−2

−1

0

1

2

A B

C D

E FTCGA−THCA

SMOC2

PPARGC1A

GPM6A

ITPR1

COL11A1

MMP13

C15orf48

CD55

MET

FN1

GGCT

RASD2

STK32A

TENM1

LRRK2

group

group
Normal

THCA

−4

−2

0

2

4

Fig. 2  Analysis of mitophagy-associated differentially expressed genes (DEGs) in ThyC. A A volcano plot of DEGs from the TCGA-ThyC data-
set comparing cancer tissues (grouping: tumor) and surrounding non-malignant tissues (grouping: normal). B A volcano plot of DEGs in 
ThyC from the GSE3678 dataset. C DEGs from both TCGA-ThyC and GSE3678 datasets were analyzed for co-DEGs using a Venn diagram. D A 
Venn diagram of shared co-DEGs between two datasets and genes related to mitophagy. Co-DEGs: Common differentially expressed genes. 
Complex numerical heat map of mitophagy-related genes with differential expression in the TCGA-ThyC dataset (E) and GSE3678 dataset 
(F). Thyroid cancer: ThyC
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3.3  Gene ontology (GO) analysis of DEGs related to mitophagy

We first carried out GO gene function enrichment analysis for mitophagy-related DEGs examine the relationship 
between 15 mitophagy-related DEGs with their BP, MF, CC and biological pathways (Table 1), and ThyC (Table 3). P 
and FDR values were established at 0.05 since they were deemed statistically significant. The findings demonstrated 
that extracellular matrix organization, autophagy, and other BPs, as well as transport vesicles, collagen-containing 
extracellular matrix, neuronal cell bodies, and other CCs, were enriched in Thyc. Heparin-binding,, glycosaminoglycan 
binding, and sulfur compound binding molecular functions were also found to be enriched in this cancer type. Bub-
ble plots show the outcomes of the GO functional enrichment study (Fig. 3A). In addition, a ring network diagram 
was used to display the findings of the GO study (Fig. 3B). We next ran a combined logFC GO enrichment analysis 
on these 15 DEGs linking mitophagy in ThyC. Based on the enrichment analysis, the logFC value of the individual 
gene in the TCGA-ThyC dataset was provided for differential analysis. A Z-score corresponding to each molecule was 
calculated. We presented the GO enrichment analysis results of the joint logFC by circle diagram (Fig. 3C) and Sankey 
diagram (Fig. 3D) in the form of categories (ONTOLOGY, including BP, CC, and MF) and the relationship between the 
corresponding function or pathway number (ID) and the gene name.

3.4  GSEA of the ThyC dataset

The GSEA was performed to investigate the connection between the expression of DEGs and BP, CC, and MF in the 
TCGA-ThyC and GSE3678 datasets. Both P < 0.05 and FDR < 0.25 thresholds were required for significant enrichment 
screening. According to these findings, genes in the focal adhesion PI3K/Akt/mTOR signaling pathway (Fig. 4B), 
canonical and non-canonical TGF- signaling pathways (Fig. 4C), WNT ligand biogenesis and trafficking (Fig. 4D), IL-18 
signaling pathway (Fig. 4E), and extra pathways (Fig. 4A–E, Table 4) were significantly differentially expressed in the 
TCGA-ThyC enrichment dataset. However, DEGs in the GSE3678 dataset were significantly enriched in MET activate 

Table 1  List of gene symbol 
of mitophagy-related 
differentially expressed genes

Gene symbol

GGCT TENM1 COL11A1 RASD2 MET
PPARGC1A SMOC2 FN1 MMP13 GPM6A
ITPR1 C15orf48 STK32A LRRK2 CD55

Table 2  List of gene symbol and description of mitophagy-related DEGs

Gene_name Description log2FoldChange pvalue padj

GGCT Gamma-Glutamylcyclotransferase 2.222200542 1.0866E-74 2.81997E-72
TENM1 Teneurin transmembrane protein 1 4.659094416 4.6859E-115 7.4426E-112
COL11A1 Collagen type XI alpha 1 Chain 5.054702423 5.69422E-38 2.73729E-36
RASD2 RASD family member 2 3.124377538 7.09195E-85 2.78812E-82
MET MET proto-oncogene, receptor tyrosine kinase 2.669487308 5.23805E-71 1.2163E-68
PPARGC1A PPARG Coactivator 1 alpha −1.784754872 1.25178E-16 1.32193E-15
SMOC2 SPARC related modular calcium binding 2 −2.270758557 2.35107E-27 5.76258E-26
FN1 Fibronectin 1 5.693155783 5.5359E-106 6.1059E-103
MMP13 Matrix metallopeptidase 13 7.501081404 8.2483E-40 4.42588E-38
GPM6A Glycoprotein M6A −2.622331276 5.38522E-38 2.59504E-36
ITPR1 Inositol 1,4,5-trisphosphate receptor type 1 −1.844711071 3.44221E-26 7.79246E-25
C15orf48 Chromosome 15 open reading frame 48 1.567886737 9.91503E-13 7.20791E-12
STK32A Serine/threonine kinase 32A 2.921105242 1.4505E-112 2.1332E-109
LRRK2 Leucine rich REPEAT kinase 2 4.017957621 3.81626E-95 2.52554E-92
CD55 CD55 molecule (Cromer Blood Group) 2.523918797 1.97888E-37 9.29887E-36
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PTK2 signaling (Fig. 4G), and non-integrin membrane-ECM interactions (Fig. 4H). Degrading the extracellular matrix 
(ECM; Fig. 4I), MET promotes cell motility (Fig. 4J) and other pathways (Fig. 4F–J, Table 5).

3.5  The PPI network analysis

We examined the STRING database for the network analysis PPI of 15 mitophagy-related DEGs (see Table 1 for details). 
The minimal needed interaction tally was selected as the confidence parameter in the STRING database, setting a value 
of 0.150 for low confidence. A PPI network of 15 mitophagy-related DEGs was constructed and visualized using the 
Cytoscape software (Fig. 5A). We then used the MCC algorithm to determine the grade of mitophagy-related DEGs 
throughout the PPI network that were linked to other PPI network nodes. The top ten genes with the highest marks were 
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then shown as the important genes (hub genes) for ThyC after we sorted the mitophagy-related DEGs by their scores 
(Fig. 5B). The 10 mitophagy-related DEGs include: PPARGC1A, FN1, MET, LRRK2, MMP13, RASD2, COL11A1, ITPR1, STK32A 
and GGCT . The specific gene score levels are shown in Table S2.

3.6  Construction of a predictive model for DEGs associated with mitophagy and analysis of their differential 
expression patterns

A prediction model was created using LASSO regression analysis to assess the prognostic significance of 15 mitophagy-
related DEGs (see Table 1 for details) in the TCGA-ThyC dataset (Fig. 6A). Six genes (GGCT, COL11A1, PPARGC1A, GPM6A, 
ITPR1 and LRRK2) were identified using this model. To create the LASSO variable trajectory graphics, we also displayed the 
LASSO regression findings (Fig. 6B). We then visualized the grouping of samples in the constructed LASSO model using 
a risk factor plot (Fig. 6C). The risk score estimated by the samples’ model was grouped by the median, and the survival 
time and survival outcome of the clinical samples in the TCGA-ThyC data set were displayed by a dot plot. Finally, the 
heat map was plotted to visualize the expression of the prognostic DEGs related to mitophagy in the LASSO regression 
prognosis model.

3.7  Prognostic analysis of mitophagy‑associated DEGs

For prognostic analysis, the LASSO regression model was comprised of six mitophagy-related prognostic DEGs,namely 
(GGCT, COL11A1, PPARGC1A, GPM6A, ITPR1,and LRRK2). The prognostic survival KM curves of these DEGs were plotted 
individually (Fig. 7 A–F), and they were deemed statistically significant at P < 0.05. GGCT (P = 0.044, Fig. 7A) was identified 
as a DEG with a significant prognostic value..

3.8  The ROC curve analysis of prognostic DEGs related to mitophagy

The expression variations of the six mitophagy-related prognostic DEGs (GGCT, COL11A1, PPARGC1A, GPM6A, ITPR1, and 
LRRK2) were further analyzed using ROC curves in the TCGA-ThyC dataset (Fig. 8A–F). According to the ROC curve analysis, 
the LASSO regression model was used to select those six genes. In addition to COL11A1 (AUC = 0.672, Fig. 8B), expressions 
of GGCT  (AUC = 0.961, Fig. 8A), PPARGC1A (AUC = 0.927, Fig. 8C), GPM6A (AUC = 0.959, Fig. 8D), ITPR1 (AUC = 0.941, Fig. 8E), 
and LRRK2 (AUC = 0.911, Fig. 8F) were also indicated a strong connection with ThyC pathogenesis.

3.9  Evaluation of the prognostic potential of mitophagy‑related DEGs

We conducted a statistical analysis of the clinical data of ThyC patients derived from the TCGA-Thy C dataset, based on 
the correlation with GGCT  gene expression, to further support the LASSO regression prognostic model (Table 6). Then 
we analyzed the correlation between the GGCT  expression and different clinical variables and prognosis in the TCGA-
ThyC dataset. First, we performed univariate COX regression analysis on the GGCT  gene expression and different clini-
cal variables and selected the factors with P < 0.1 for constructing the multivariate Cox regression model. Our findings 
demonstrated a substantial correlation between pathological stage, residual tumor volume, initial neoplasm focal type, 
and prognosis (P < 0.05; Table 7). Then, we developed the nomogram and performed a nomogram analysis to assess the 
model’s predictive power (Fig. 9A). Furthermore, we calibrated the nomogram of univariate and multivariate Cox regres-
sion models for 3-year (Fig. 9B), 5-year (Fig. 9C), and 7-year (Fig. 9D) prognoses and drew a calibration curve (Fig. 9B–D). 
The 3-year blue line (Fig. 9B) was the closest to the gray ideal circumstance line, suggesting that the 3-year prediction 
effect might be superior to that of the 5- and 7-year predictions. The clinical applicability of this model was then assessed 
and presented using DCA at 3-year (Fig. 9E), 5-year (Fig. 9F), and 7-year (Fig. 9E–G) survival rates. The blue line represent-
ing the model was stable and higher than the red line for all positives and the gray line for all negatives. The range of x 

Fig. 4  GSEA of theThyC dataset. (A) There were four main biological features in the GSEA of the TCGA-ThyC dataset. B–E TCGA-ThyC data-
set contains significant DEGs in focal adhesion-related PI3K/Akt/mTOR signaling pathways (B) canonical and no-canonical TGF-β signaling 
(C), WNT ligand biogenesis and trafficking (D) IL-18 signaling pathway (E) and other pathways. (F) GSEA analysis of the GSE3678 dataset 
included four main biological characteristics. G–J DEGs were significantly enriched in MET-activated PTK2 signaling (G) non-integrin mem-
brane-ECM interactions (H) ECM degradation (I) and MET-mediated cell motility (J) The significant enrichment screening criteria of GSEA 
enrichment analysis included P < 0.05 and FDR < 0.25

▸
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values for 5-year (Fig. 9F) was close to that of 7-year (Fig. 9G), and the 3-year (Fig. 9E) prognosis range was the smallest, 
indicating that the model’s ability to predict the survival rate seems to improve over time.

3.10  GSVA of prognostic DEGs related to mitophagy

We then performed GSVA on the prognostic DEGs’ (GGCT , COL11A1, PPARGC1A, GPM6A, ITPR1, and LRRK2) expressions 
related to mitophagy in TCGA-ThyC and GSE3678 datasets to investigate changes in their expression levels between 
cancerous and neighboring non-cancerous tissue samples. A GSVA of these prognostic DEGs in the TCGA-ThyC dataset 
detected a total of 42 hallmark genes related to the p53 pathway, coagulation, apical junction, etc. that were differentially 
regulated in ThyC (Fig. 10A; Table 8). The GSVA results of prognosis-related DEGs in the GSE3678 dataset revealed three 
hallmark gene sets (UV-response DN, bile acid metabolism, and pancreatic function that were differentially expressed 
in this cancer type (Fig. 10B; Table 9).

3.11  IHC analysis of prognostic DEGs related to mitophagy

The human protein atlas (HPA) database was utilized to perform an IHC analysis of the expression of the most significant 
prognostic DEG GGCT  expression related to mitophagy in both normal and cancerous thyroid tissue samples. The IHC 
analysis consistently demonstrated that the GGCT  gene expression was higher in the ThyC tissue than that in the normal 
thyroid cells in control tissues in relation to mitophagy activation (Fig. 11B). The expression level of the DEG GGCT  was 
significantly higher in ThyC tissues (Fig. 11A).

4  Discussion

ThyC pathology is considered the most frequently diagnosed and prevalent type of endocrine malignancy. Although the 
majority of ThyC patients exhibit a satisfactory prognosis, some patients have been diagnosed with metastatic ThyC type 
[38]. Therefore, ThyC patients must undergo a clinical assessment of metastatic risk factors and prognostic outcomes in a 
timely manner. Currently, the American Joint Committee on Cancer recommended TNM staging, including both clinical 
and pathological staging, for ThyC patients, as the most robust approach.

Table 4  GSEA of dataset TCGA-THCA

GSEA gene set enrichment analysis, TCGA  The cancer genome atlas, THCA thyroid cancer

Description setSize Enrichmentscore NES pvalue p.adjust

REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE 128 0.734455925 2.378710633 0.001345895 0.069706745
REACTOME_DEGRADATION_OF_THE_EXTRACELLULAR_MATRIX 140 0.710131029 2.308891368 0.001351351 0.069706745
REACTOME_COLLAGEN_DEGRADATION 64 0.78241245 2.296585549 0.001503759 0.069706745
REACTOME_KERATINIZATION 216 0.668386606 2.28194975 0.001269036 0.069706745
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 300 0.636387385 2.229490948 0.001210654 0.069706745
REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_

MULTIMERIC_STRU CTU RES
61 0.753352898 2.1978989 0.00152439 0.069706745

NABA_ECM_REGULATORS 238 0.630785336 2.166338433 0.001248439 0.069706745
REACTOME_ACTIVATION_OF_MATRIX_METALLOPROTEINASES 33 0.813521776 2.15459814 0.001650165 0.069706745
PID_INTEGRIN1_PATHWAY 66 0.731640296 2.147060596 0.00149925 0.069706745
REACTOME_CELL_JUNCTION_ORGANIZATION 91 0.694749767 2.133937569 0.001436782 0.069706745
REACTOME_COLLAGEN_FORMATION 90 0.694920331 2.128994706 0.001436782 0.069706745
WP_CANONICAL_AND_NONCANONICAL_TGFB_SIGNALING 17 0.718260731 1.691020986 0.008912656 0.124689631
REACTOME_WNT_LIGAND_BIOGENESIS_AND_TRAFFICKING 26 0.637184527 1.613385402 0.017152659 0.169177882
WP_FOCAL_ADHESIONPI3KAKTMTORSIGNALING_PATHWAY 303 0.425114129 1.490649942 0.003636364 0.083720766
WP_IL18_SIGNALING_PATHWAY 273 0.394563188 1.370567279 0.014742015 0.155433977
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Fig. 5  The PPI network. A The 
PPI network of mitophagy-
related DEGs. BThe PPI 
network of the top 10 
mitophagy-related DEGs (key 
genes) in the MCC algorithm. 
The change in color of the 
rectangular block in the figure 
from yellow to red represents 
a gradual increase in the 
score. PPI network protein–
protein interaction network, 
MCC maximal clique centrality
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Autophagy can act as a double-edged sword since this pathway is involved in both tumorigenic and antitumorigenic 
mechanisms. While mitophagy is an autophagic process that particularly manages mitochondrial stress and degeneration. 
It is crucial to maintain an optimal number of mitochondria in a cell for its normal physiological energy metabolism. There 
has been a paucity of clinical and mechanistic investigations regarding the underlying regulatory roles of mitophagy in 
ThyC pathogenesis, even though this pathwayhas been linked to diagnostic and prognostic indicators in many cancer 
types, including lung cancer [39], breast cancer [40], and glioma [41]. Mussazhanova et al. [42] and Dabravolski et al. [43] 
have initially reported the pathological involvement of mitophagy in inducing ThyC pathology, however, they did not 
identify DEGs and their varying effects on the prognosis of ThyC patients. In this context, it’s worth mentioning that this 
is the first study to identify mitophagy-related potential DEGs in ThyC and their differential roles in predicting the risk 
factor and prognosis of ThyC patients using the two largest cancer databases—TCGA and GEO. Moreover, we revealed six 
mitophagy-associated genes (GGCT , COL11A1, PPARGC1A, GPM6A, ITPR1, and LRRK2) that exhibited significant differential 

Fig. 6  Construction of a prognostic model of DEGs related to mitophagy and analysis of their differential expressions. A Diagram of a LASSO 
regression predictive model for mitophagy-related DEGs. Variable trajectory plots from the LASSO regression predictive model (B) and the 
risk factor map (C). The likelihood deviation value of LASSO regression is represented by the ordinate of the LASSO regression prognosis 
model (A) and the situation after taking the lambda (λ) coefficient log of the penalty term in LASSO regression as a default is shown by the 
X-axis log value at the bottom of the figure. The number on the top X-axis indicates how many variables are under each having non-zero 
corresponding coefficients
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expression levels in ThyC. Next, we constructed a nomogram model including these genetic factors to precisely predict 
the risk and prognosis of ThyC patients. Among these genes, the GGCT  gene was found to be the most potential one. 
Hence, we validated the nomogram model based on the expression patterns of GGCT  in ThyC versus control tissues.

Several studies have also suggested several mitophagy-associated diagnostic and prognostic biomarkers of ThyC. 
For instance, Han et al. [44] have discovered that ThyC growth and occurrence are highly correlated with anomalies in 
autophagy-related genes. They identified a set of five autophagy-related DEGs (CX3CL1, CDKN2A, ATG9B, ITPR1, and 
DNAJB1) that could be linked to the overall survival of ThyC patients after analyzing 26 DEGs from the TCGA data-
base. Shan et al. [45] used the TCGA and HADb databases to analyze the original ThyC data and reported about 1,166 
autophagy-related differentially expressed non-coding RNAs(nc-RNAs). Moreover, they found nine non-coding RNAs 
(AC092279.1, AC096677.1, DOCK9-DT, LINC02454, AL136366.1, AC008063.1, AC004918.3, LINC02471, and AL162231.2) 
that were significantly correlated with the prognosis of ThyC patients. In addition, Jia et al. [46] exploited the TCGA-
ThyC dataset for the CIBERSORT algorithm analysis identifying 22 infiltrating immune cell types and screening 42 and 
64 immune gene pairs (IGPs), respectively in the normal tumor group and the non-recurrence group. The number of 
immune cells was found to be significantly correlated with the tumor staging and relapse conditions for markers such 
as ASCC3MAP3K7 and ATF2-SOCS5. However, here, we identified 6 mitophagy-related DEGs that were significantly 
associated with ThyC pathology, and 5 of them had AUC values greater than 0.91.

In our analyses, differential expressions of COL11A1, PPARGC1A, ITPR1, LRRK2, and GGCT  genes were found to be 
correlated with ThyC pathology, however, GPM6A did not exhibit any significant association with mitophagy in ThyC.
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Type XI collagen (COL11A1) is a minor component of hyaline cartilage fibers. The COL11A1 gene is overexpressed 
in many cancer types, including oral cancer and colorectal cancer. It has been implicated that the COL11A1 gene, 
particularly the T allele of rs1763347 and rs2229783, could be associated with PTC [47].

The peroxisome proliferator-activated receptor gamma coactivator 1-α (PPARGC1A) is involved in energy metabo-
lism and immunity. PPARGC1A has been shown to play a role in coordinating mitochondrial quality control mecha-
nisms, including mitophagy, by affecting the expression of various genes involved in the regulation of mitophagy 
[48–50]. Huang et al. have reported that PPARGC1A level may play a critical role in the onset and progression of the 
ATC type of ThyC by preventing immune cell infiltration into the tumor [18]. The direct mechanistic link between 
PPARGC1A and mitophagy remains an area of ongoing research. Future studies are needed to clarify the precise 
mechanism by which PPARGC1A affects mitophagy.

The inositol 1,4, 5-trisphosphate receptor 1 (ITPR1), which is characterized as the direct target of hypoxia-inducible 
factor 2α (HIF-2α), has been reported to induce autophagy. Peng et al. have demonstrated that the long non-coding 
RNA SLC26A4-AS1 can promote ITPR1-mediated autophagy induction by recruiting ETS1, and thereby preventing the 
onset and progression of PTC [19].

The leucine-rich repeat kinase 2 (LRRK2) multi-domain protein contains a guanosine triphosphate (GTP) hydrolase 
domain, which is important for the function of the Ras complex. The study by Jiang revealed that LRRK2 silencing could 
inhibit the JNK signaling activation, triggering cell cycle arrest and apoptosis in ThyC [51]. Therefore, the tumorigenic 
effects of COL11A1 and LRRK2 overexpression and antitumorigenic effects of PPARGC1A and ITPR1 overexpression in 

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
 (T

P
R

)
GGCT

GGCT
AUC: 0.961

CI: 0.944−0.978

0.0 0.2 0.4 0.6 0.8 1.0
1−Specificity (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
 (T

P
R

)

COL11A1

COL11A1
AUC: 0.672

CI: 0.622−0.721

0.0 0.2 0.4 0.6 0.8 1.0
1−Specificity (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
 (T

P
R

)

PPARGC1A

PPARGC1A
AUC: 0.927

CI: 0.904−0.951

0.0 0.2 0.4 0.6 0.8 1.0
1−Specificity (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
 (T

P
R

)

GPM6A

GPM6A
AUC: 0.959

CI: 0.934−0.983

0.0 0.2 0.4 0.6 0.8 1.0
1−Specificity (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
 (T

P
R

)

ITPR1

ITPR1
AUC: 0.941

CI: 0.914−0.968

0.0 0.2 0.4 0.6 0.8 1.0
1−Specificity (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity
 (T

P
R

)

LRRK2

LRRK2
AUC: 0.911

CI: 0.887−0.934

0.0 0.2 0.4 0.6 0.8 1.0
1−Specificity (FPR)

A B C

D E F

Fig. 8  ROC curves of prognostic DEGs related to mitophagy. A–F The ROC curve results of mitophagy related prognostic DEGs, GGCT  (A), 
COL11A1 (B), PPARGC1A (C), GPM6A (D), ITPR1 (E), and LRRK2 (F) in the TCGA-ThyC dataset are shown. ROC: receiver operating characteristic 
curve



Vol:.(1234567890)

Research Discover Oncology          (2023) 14:173  | https://doi.org/10.1007/s12672-023-00772-6

1 3

ThyC in our study were consistent with previous studies. However, we could not reveal the crosstalk between GPM6A 
differential expression and ThyC. We plan to investigate this connection in future studies separately.

The enzyme glutamylcyclotransferase (GGCT), involved in glutathione metabolism, consists of 188 amino acids. 
GGCT  overexpression has been reported to promote cancer cell growth in several cancers, including breast cancer, 
ovarian cancer, cervical cancer, lung cancer, bladder cancer, and colon cancer [52]. While, the downregulation of 
GGCT  can inhibit the aggressive phenotype of a variety of cancers, and GGCT  knockout cells exhibit morphological 
changes in cells, epithelial-mesenchymal transition (EMT), and induction of senescence, autophagy, and apoptosis, 
thereby inhibiting cancer cell proliferation and promoting cell death [53]. In this line GGCT  overexpression has been 
closely linked to severe clinical features in ThyC, rendering poor prognosis. Mechanistically, microRNA miR-205-5p 
directly binds to the GGCT  mRNA mediating its degradation and exerting an antitumor effect [17]. Zhang et al. 
suggest that the interaction between GGCT  and mitochondrial protein 9 (MRPL9) regulates the MAPK/ERK pathway 
activation promoting the proliferation and metastatic properties of PTC cells [54]. More importantly, GGCT  expres-
sion variation was found to have the highest diagnostic potential (AUC:0.961; 95% CI 0.944–0.978) among other 
mitophagy-related DEGs in our study. Therefore, we further validated the LASSO regression model and nomogram 
for prognostic analysis based on the GGCT  expression. The K-M survival curve analysis also confirmed that ThyC 

Table 6  Patient Characteristics 
of THCA patients in the TCGA 
datasets

TCGA  The cancer genome atlas, THCA thyroid cancer

Characteristic Low expression of 
GGCT 

High expression of 
GGCT 

p

n 255 255
T stage, n (%) 0.004
 T1 82 (16.1%) 61 (12%)
 T2 92 (18.1%) 75 (14.8%)
 T3 73 (14.4%) 102 (20.1%)
 T4 7 (1.4%) 16 (3.1%)

N stage, n (%)  < 0.001
 N0 134 (29.1%) 95 (20.7%)
 N1 87 (18.9%) 144 (31.3%)

Pathologic stage, n (%) 0.039
 Stage I 149 (29.3%) 137 (27%)
 Stage II 33 (6.5%) 19 (3.7%)
 Stage III 49 (9.6%) 64 (12.6%)
 Stage IV 23 (4.5%) 34 (6.7%)

Histological type, n (%)  < 0.001
 Classical 160 (31.4%) 204 (40%)
 Follicular 84 (16.5%) 17 (3.3%)
 Other 4 (0.8%) 5 (1%)
 Tall Cell 7 (1.4%) 29 (5.7%)

Extrathyroidal extension, n (%)  < 0.001
 No 193 (39.2%) 145 (29.5%)
 Yes 49 (10%) 105 (21.3%)

Thyroid gland disorder history, n (%) 0.003
 Lymphocytic thyroiditis 43 (9.5%) 31 (6.9%)
 Nodular hyperplasia 42 (9.3%) 26 (5.8%)
 Normal 123 (27.2%) 162 (35.8%)
 Other, specify 17 (3.8%) 8 (1.8%)
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patients with higher expression levels of GGCT  exhibited significantly different prognostic outcomes compared 
to those who had relatively lower expressions of GGCT , in this cohort. Further, the DCA results pointed out that 
the precision of the prognosis prediction model increased with a longer time. The GGCT  expression was found to 
associate with the pathological stage, residual tumor volume, and the primary lesion type in ThyC and significantly 
correlated with the prognosis of these patients. Finally, IHC analysis confirmed that ThyC patients’ tumor tissues 
had an overall higher level of GGCT  expression compared to that in the non-cancerous control tissues.

In cells, mitophagy plays an essential role in maintaining mitochondrial health, as well as energy homeostasis, 
to support normal physiological cellular functions. Overactivation of the mitophagy pathway can be deleterious 
to cell health and survival because damaged mitochondria cannot balance oxidative phosphorylation, resulting in 
enhanced cellular oxidative stress [55] and mitochondrial membrane depolarization. Mitophagy plays a dual role 
in carcinogenesis. In the pathway enrichment analysis, we found that adherence to the TGFβ and PI3K/AKT/mTOR 
signaling pathways induced the overexpression of mitophagy-related genes to inhibit ThyC, which was in agree-
ment with previous findings [56–58]. Therefore, we hypothesize that mitophagy might be beneficial for improving 
the clinical outcomes of ThyC patients.

In this study, we established a valid and reliable mitophagy-based predictive model for Thy, and this model could be 
exploited to assess the risk score of newly diagnosed and at-risk ThyC patients. A higher value over the baseline would 

Table 7  COX regression to 
identify clinical features 
associated with OS

Bold represents statistically significant values (p < 0.05)

OS overall survival

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

GGCT 510
 Low 255 Reference
 High 255 0.332 (0.114–0.969) 0.044 0.177 (0.021–1.536) 0.116

T stage 508
 T1 143 Reference
 T2 167 1.030 (0.171–6.191) 0.974 0.493 (0.024–10.207) 0.648
 T3 175 1.602 (0.309–8.304) 0.575 0.191 (0.009–3.972) 0.285
 T4 23 11.518 (2.303–57.620) 0.003 2.040 (0.015–278.917) 0.776

M stage 295
 M0 286 Reference
 M1 9 4.258 (0.909–19.952) 0.066 0.000 (0.000-Inf ) 0.999

Pathologic stage 508
 Stage I 286 Reference
 Stage II 52 5.380 (0.753–38.446) 0.094 24.669 (0.540–1125.993) 0.100
 Stage III 113 9.733 (2.018–46.944) 0.005 37.297 (1.999–696.040) 0.015
 Stage IV 57 18.760 (3.601–97.751)  < 0.001 34.649 (0.240–5005.316) 0.162

Residual tumor 448
 R0 390 Reference
 R1 54 4.033 (1.214–13.402) 0.023 8.705 (1.348–56.227) 0.023
 R2 4 0.000 (0.000-Inf ) 0.998 0.000 (0.000-Inf ) 0.999

Primary neoplasm 
focus type

500

 Multifocal 233 Reference
 Unifocal 267 3.950 (0.891–17.506) 0.071 13.980 (1.068–183.001) 0.044
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indicate the risk level of that patient. Additionally, the nomogram model included the pathological staging and primary 
tumor type scoreing of ThyC patients, allowing the likelihood of predicting the patient’s 3-, 5-, and 7-year OS rates.

However, due to the incomplete GEO clinical data, our nomogram model could not be validated multiple times in 
other datasets. In vitro experiments, further studies are needed to explore the upstream and downstream mechanisms 
of these differential genes. Also, the downstream effectors of mitophagy-related DEGs remain unknown. Therefore, 
a statistically large cohort of ThyC cases from multi-center and multi-platform databases is warranted for further 
clinical validation of this nomogram in the future.
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Fig. 9  Prognostic analysis of mitophagy-related DEGs. A Nomogram for prognostic DEGs associated with mitophagy in univariate and multi-
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5  Conclusion

In conclusion, we identified six DEGs, namely GGCT , COL11A1, PPARGC1A, GPM6A, ITPR1, and LRRK2 related to mitophagy by 
screening through the TCGA-ThyC dataset for the first time by bioinformatics analysis, the GGCT  gene expression was found 
to be the most potent predictor in this set of genes and we successfully used the GGCT  gene expression to validate the risk 

Table 9  GSVA of dataset GSE3678

GSVA Gene set variation analysis

ID logFC AveExpr t P.value adj.P.Val B

HALLMARK_UV_RESPONSE_DN −0.3304021 0.021909874 −2.095288209 0.036563958 0.776356381 −4.12495255
HALLMARK_BILE_ACID_METABOLISM −0.318883011 −0.003726451 −2.064102972 0.039437281 0.776356381 −4.143971016
HALLMARK_PANCREAS_BETA_CELLS −0.289367178 −0.01935285 −1.983860898 0.047726627 0.776356381 −4.191596063

Fig. 11  Immunohistochemi-
cal (IHC) analysis of the GGCT 
gene in ThyC. A GGCT expres-
sion in tumor tissue, B GGCT 
expression in normal tissue
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prediction precision of our nomogram model. The prognosis of ThyC patients can be accurately predicted using this model. 
This study thus a new perspective on how to improve the prognosis of ThyC. The outcomes of this study, in conjunction with 
experiments, can be used to further increase the prediction accuracy of the nomogram model in the future.
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