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Abstract
Background Hepatocellular carcinoma still has a high incidence and mortality rate worldwide, and further research is 
needed to investigate its occurrence and development mechanisms in depth in order to identify new therapeutic targets. 
Ferritinophagy is a type of autophagy and a key factor in ferroptosis that could influence tumor onset and progression. 
Although, the potential role of ferritinophagy-related genes (FRGs) in liver hepatocellular carcinoma (LIHC) is unknown.
Methods Single-cell RNA sequencing (scRNA-seq) data of LIHC were obtained from the Gene Expression Omnibus (GEO) 
dataset. In addition, transcriptome and clinical follow-up outcome data of individuals with LIHC were extracted from 
the The Cancer Genome Atlas (TCGA) dataset. FRGs were collected through the GeneCards database. Differential cell 
subpopulations were distinguished, and differentially expressed FRGs (DEFRGs) were obtained. Differential expression 
of FRGs and prognosis were observed according to the TCGA database. An FRG-related risk model was constructed to 
predict patient prognosis by absolute shrinkage and selection operator (LASSO) and COX regression analyses, and its 
prognosis predictive power was validated. Ultimately, the association between risk score and tumor microenvironment 
(TME), immune cell infiltration, immune checkpoints, drug sensitivity, and tumor mutation burden (TMB) was analyzed. 
We also used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to validate the expression of key 
genes in normal liver cells and liver cancer cells.
Results We ultimately identified 8 cell types, and 7 differentially expressed FRGs genes (ZFP36, NCOA4, FTH1, FTL, TNF, 
PCBP1, CYB561A3) were found among immune cells, and we found that Monocytes and Macrophages were closely 
related to FRGs genes. Subsequently, COX regression analysis showed that patients with high expression of FTH1, FTL, 
and PCBP1 had significantly worse prognosis than those with low expression, and our survival prediction model, con-
structed based on age, stage, and risk score, showed better prognostic prediction ability. Our risk model based on 3 FRGs 
genes ultimately revealed significant differences between high-risk and low-risk groups in terms of immune infiltration 
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and immune checkpoint correlation, drug sensitivity, and somatic mutation risk. Finally, we validated the key prognostic 
genes FTH1, FTL, using qRT-PCR, and found that the expression of FTH1 and FTL was significantly higher in various liver 
cancer cells than in normal liver cells. At the same time, immunohistochemistry showed that the expression of FTH1, FTL 
in tumor tissues was significantly higher than that in para-tumor tissues.
Conclusion This study identifies a considerable impact of FRGs on immunity and prognosis in individuals with LIHC. The 
collective findings of this research provide new ideas for personalized treatment of LIHC and a more targeted therapy 
approach for individuals with LIHC to improve their prognosis.

Keywords Ferritinophagy · Single-cell RNA sequencing (scRNA-seq) · Liver hepatocellular carcinoma (LIHC) · Immune · 
Prognosis · TCGA 

Abbreviations
AUC   Area under the receiver operating characteristic curve
BH  Benjamini–Hochberg
BPs  Biological processes
CCs  Cell components
CGP  Cancer Genome Project
COSMIC  Catalogue of Somatic Mutations in Cancer
DEFRGs  Differentially expressed ferritinophagy-related genes
FDR  False discovery rate
FRGs  Ferritinophagy-related genes
GEO  Gene Expression Omnibus
GO  Gene ontology
IC50  Half-maximum inhibitory concentration
KEGG  Kyoto Encyclopedia of Genes and Genomes
LASSO  Least absolute shrinkage and selection operator
LIHC  Liver hepatocellular carcinoma
MFs  Molecular functions
PC  Principal component
PCA  Principal Component Analysis
qRT-PCR  Quantitative reverse transcription polymerase chain reaction
ROC  Receiver operating characteristic
ROS  Reactive oxygen species
scRNA-seq  Single-cell RNA sequencing
TCGA   The Cancer Genome Atlas
TMB  Tumor mutation burden
TME  Tumor microenvironment
tSNE  T-Distributed Stochastic Neighbor Embedding
WGCNA  Weighted Gene Co-Expression Network Analysis

1 Introduction

Liver hepatocellular carcinoma (LIHC) is among the most widely occurring tumors around the globe, with high morbidity 
and mortality rates. According to the latest statistics [1], LIHC is the fourth most prevalent cancer, and in China, the disease 
leads to the second highest mortality rate. More than 1 million individuals are expected to die from LIHC in 2030, and the 
5-year survival rate of LIHC is 18%, which is the second most fatal tumor after pancreatic cancer [2]. The main treatment 
modality for LIHC is currently surgical resection. However, most patients are not suited for resection surgery due to limita-
tions such as the size and location of the tumor and liver dysfunction [3]. For patients with advanced, unresectable LIHC, 
targeted therapy combined with monotherapy is the first-line treatment option [4]. Nevertheless, LIHC still has a high 
mortality rate. Therefore, a deeper understanding of disease biology is necessary to find novel therapeutic approaches [5].

Ferritinophagy is a type of autophagy and an essential factor in ferroptosis. As a cellular self-degradation mechanism, 
autophagy is a conserved catabolic cellular process. Autophagy helps in the lysosomal degradation of cellular proteins 
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and damaged organelles, which in turn helps in the recycling and protection to ensure the maintenance of cellular 
homeostasis and stress response. Autophagy is categorized into three main types: microautophagy, macroautophagy, 
and chaperone-mediated autophagy [6]. Ferroptosis is a type of programmed cell death that is highly associated with 
lipid metabolism and reactive oxygen species (ROS) [7]. The process is closely associated with autophagy and cancer. As a 
new ferroptosis-related autophagic process, ferritinophagy is an intracellular process and mechanism linking ferroptosis 
and cancer. Moreover, ferritinophagy could influence tumorigenesis and progression [8–11].

Single-cell RNA sequencing (scRNA-seq) data of LIHC were retrieved from the GEO database. In addition, transcrip-
tome and clinical follow-up outcome data of individuals with LIHC were extracted from the TCGA dataset. Differential cell 
subpopulations were distinguished and differentially expressed ferritinophagy-related genes (DEFRGs) among immune 
cells were identified. Subsequently, cell types with high scores were selected for functional enrichment analysis of their 
differentially expressed genes (DEGs). The differential expression of FRGs and their prognosis were analyzed using the 
TCGA dataset. Subsequently, the association between immune cell infiltration and DEFRGs was investigated. A nomogram 
and calibration curves were drawn on the basis of the DEFRGs as well as other pathological features. In addition, the 
model results were visualized. Finally, drug sensitivity analysis and TMB analysis were performed. This study helps better 
understand the pathogenesis of LIHC and promotes the development of targeted therapeutic strategies for patients 
with LIHC to improve their prognosis.

2  Materials and methods

2.1  Data acquisition

From the GEO official website (https:// www. ncbi. nlm. nih. gov/ geo/) [12], the single-cell transcriptome (single-cell 
sequencing, scRNA-seq) dataset GSE149614 [13] was extracted. The species was Homo sapiens, and GPL24676 Illumina 
NovaSeq 6000 was utilized for detection. Transcriptome data from 10 of these LIHC tissues and 8 normal liver tissue sam-
ples were extracted and included in this study. The relevant clinical information of the patients is presented in Table 1.

Transcriptome and somatic mutation data were extracted from The Cancer Genome Atlas (TCGA) database of the 
LIHC project, which contains transcriptome (mRNA) data from 368 LIHC tumor tissues and 50 paraneoplastic control 
tissues, and somatic mutation data from 366 tumors. All above sample data and the corresponding clinical features and 
follow-up outcome data of all patients were included in this study.

Table 1  Clinical characteristics 
of patients in the GSE149614 
and TCGA-LIHC

Characteristic GSE149614 TCGA-LIHC

Sex, n (%)
 Female 120 (32.60)
 Male 248 (67.39)
 Age, median (IQR) 61 (51–69)

Family history of cancer, n (%)
 Yes 110 (29.89)
 No 207 (56.25)
 Unknown 51 (13.85)

AJCC stage, n (%)
 Stage I 3 (30.00) 171 (46.46)
 Stage II 1 (10.00) 85 (23.09)
 Stage III/IV 6 (60.00) 88 (23.91)
 Unknown 24 (6.52)

Survival status, n (%)
 Living 129 (35.05)
 Dead 239 (64.94)

https://www.ncbi.nlm.nih.gov/geo/
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2.2  Quality control of single‑cell data

The expression matrix of the GSE149614 dataset was created as a Seurat object utilizing the R package Seurat 4.2.0 [14]. 
The proportion of mitochondrial genes in all genetic material indicates the homeostatic state of the cell. In general, a 
higher percentage of mitochondrial genes compared to all other genes might put the cell in a stressful state. Therefore, 
cells with > 20% mitochondrial gene content were filtered. Since low-quality cells or empty droplets have fewer genes, 
double cells exhibit an unusually high number of genes. Therefore, cells with FEATURES < 500 or > 6000 were also filtered. 
Ultimately, transcriptome data for 58,127 cells were obtained.

The sequencing depth of the GSE149614 dataset was normalized by the "NormalizeData" function with the default 
"LogNormalize" method. The 2000 variable features of the dataset were detected by the "FindVariableFeatures" function 
using the "vst" method. Subsequently, the data were scaled utilizing the "ScaleData" to exclude the effect of sequencing 
depth. Principal Component Analysis (PCA) was utilized to find the significant principal components (PC), and the P-value 
distribution was observed using the Elbowplot function. Finally, 22 PCs were screened out by t-Distributed Stochastic 
Neighbor Embedding (tSNE) analysis for dimensionality reduction. The K-nearest neighbors of Euclidean distance in the 
base PCA space are constructed using the default parameters of "FindNeighbors" and the 22 PC dimension parameters. 
The "FindClusters" function and the "cluster" function were utilized to obtain the optimal resolution. Finally, the cells were 
categorized into 21 clusters with a resolution of 0.5. Finally, the "RunTSNE" function is used for dimensionality reduction 
to allow visualization and exploration of the dataset.

2.3  Cell type annotations

The single-cell data GSE149614 were subjected to cell type annotation using the SingleR dataset from the R package 
SingleR 2.0.0 [15], yielding eight cell types: T cells, B cells, endothelial cells, monocytes, smooth muscle cells, dendritic 
cells, macrophages, and hepatocytes. Subsequently, the classification results were verified using marker genes of these 8 
cell types. The expression of marker genes in various cells was displayed using the "DotPlot" and "FeaturePlot" functions. 
The marker genes for T cells, endothelial cells, monocytes, macrophages, B cells, smooth muscle cells, dendritic cells, 
and hepatocytes were CD3D, CD79A, PECAM1, CD14, CD68, ACTA2, FLT3, ALC, and ALC, respectively. The "FindAllMark-
ers" function was used to identify DEGs between cell types. This function implements the Wilcoxon rank-sum test and 
compares the gene expression of one cell type with the gene expression of all other cells.

2.4  FRG expression in immune cell subpopulations

The GeneCards database (https:// www. genec ards. org/) [16] delivers extensive information about human genes. There-
fore, it was used to collect FRGs. In total, 21 FRGs were determined using "ferritinophagy" as a search terminology. 
Subsequently, 20 FRG s were retained by excluding the missed genes during the probe transformation of the dataset, 
including USP24, PCBP1, ATG16L1, ATG7, SNCA, FBXW7, TRIM7, TNF, ATG5, WDR45, CYB561A3, FTH1, NCOA4, HERC2, 
ALOX15. BECN1, ELAVL1, ZFP36, BCAT2, and FTL.

The FRGs were intersected with the DEGs across immune cells (T cells, B cells, dendritic cells, monocytes, and mac-
rophages) to obtain DEFRGs across immune cells. The expression of these DEFRGs in various cells is presented by the 
"DoHeatmap" function. The Pearson correlation coefficient of DEFRGs was calculated using the "rcorr" function. Subse-
quently, the correlation heat map was plotted using the "corrplot" function. The expression profile of DEFRGs in different 
cell types was displayed using the "FeaturePlot" function.

2.5  FRG scoring and enrichment analysis

The expression of DEFRGs was scored for each cell of the single-cell dataset GSE149614 using the AUCell package [17]. 
Subsequently, the cell types with higher scores (AUCs) were selected for functional enrichment analysis of their DEGs.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [18] is a commonly used dataset for storing data about 
genomes, biological pathways, diseases, and drugs. Gene ontology (GO) [19] functional annotation analysis is an exten-
sively used method of performing large-scale functional enrichment studies of genes involving biological process (BP), 

https://www.genecards.org/
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molecular function (MF), and cellular component (CC). GO and pathway KEGG enrichment analyses were conducted 
using the clusterProfiler package [20] for DEGs in a subpopulation of cells with high FRG scores in the single-cell dataset 
GSE149614. In addition, adj. P-value < 0.05 indicated statistical differences.

2.6  Cellular communication analysis

Intercellular communication was inferred and quantified using the CellChat package [21] by combining single-cell expres-
sion profiles with known receptors, ligands, and their cofactors. Significantly interacting ligand-receptor relationship 
pairs were found by ligand–receptor interaction probability and perturbation tests. The cell–cell communication net-
work was then integrated by summing the number or strength of ligand–receptor relationship pairs that significantly 
interact between cell types. The number and intensity of interactions were demonstrated using heat maps and circle 
plots, respectively. All significant receptor–ligand pairs during immune cell signaling were counted using bubble plots.

2.7  Differential expression and correlation analysis of FRGs in TCGA‑LIHC data set

Differential expression of FRGs was examined for TCGA-LIHC transcriptome data using Wilcoxon and presented in box 
plots. Heat maps of DEFRGs were drawn utilizing the ggplot2 package [22] and the pheatmap package [23] to visualize 
the expression of FRGs in the samples. Subsequently, the correlation between DEFRGs was analyzed using Pearson cor-
relation, where significantly correlated ones were shown with dotted line plots.

2.8  Immune cell infiltration analysis

CIBERSORT could deconvolute the transcriptome expression matrix as per the principle of linear support vector regres-
sion to determine the abundance and composition of immune cells in a mixture of cells. The counts of TCGA-LIHC dataset 
gene expression matrix was uploaded to the CIBERSORTx (https:// ciber sortx. stanf ord. edu/) [24] online analysis tool to 
calculate by utilizing the LM22 feature gene matrix, we calculated the immune cell infiltration status of the samples. The 
analysis was conducted using the tool’s default parameters with a permutation of 1000. Subsequently, the obtained 
results were filtered to include only samples with a significance level (p-value) below 0.05. As a result, we obtained the 
matrix data for immune cell infiltration.the immune cell infiltration of samples according to the LM22 signature gene 
matrix to filter the output p < 0.05 samples, yielding immune cell infiltration matrix data. Subsequently, the Wilcoxon 

Fig. 1  The study flow chart. 
scRNA Single-cell RNA-
sequencing, PCA Principal 
Component Analysis, tSNE 
t-Distributed Stochastic 
Neighbor Embedding, FRGs 
FRGs, TCGA  The Cancer 
Genome Atlas, LIHC Liver 
Hepatocellular Carcinoma 
Collection, DEGs Differentially 
Expressed Genes, WGCNA 
Weighted Gene Co-Expression 
Network Analysis, LASSO 
Absolute Shrinkage and Selec-
tion Operator

https://cibersortx.stanford.edu/
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test was utilized to compare the difference in the extent of immune cell infiltration between tumor and paracancerous 
tissues. Pearson correlation analysis of the infiltration levels between various immune cells was performed. Differential 
immune cells were observed between the tumor and paraneoplastic tissue groups. Therefore, the correlation between 
these cells and the DEFRGs of the single-cell dataset GSE149614 was analyzed and visualized using a heat map.

2.9  Weighted gene co‑expression network analysis (WGCNA)

DEGs in tumor and paracancerous tissues in the TCGA-LIHC dataset were identified as per a linear model utilizing the 
limma package in R language [25], with DEG screening criteria of adj. p value < 0.05 and |log2FC|> 1. Weighted Gene Co-
Expression Network Analysis (WGCNA), a systems biology method to characterize gene association patterns between 
various samples, could detect highly synergistic gene sets and candidate biomarkers or therapeutic targets according 
to the endogeneity of the gene set and the connection between the phenotype and the gene set. WGCNA was carried 
out using the WGCNA package [26] on DEGs obtained from the analysis of DEGs associated with the TCGA-LIHC data-
set. Initially, the correlation coefficient between any two genes was measured, and the linkage between genes in the 
network was made to obey a scale-free network using the weighted values of the correlation coefficients. Afterward, 
a hierarchical clustering tree was created based on the correlation coefficients between genes. Various clustering tree 
branches correspond to different gene modules (different colors represent different modules), followed by the calcula-
tion of module significance. The minimum number of module genes was set to 25, softpower was set to the optimal soft 
threshold of 4, and the module merge shear height was set to 0.25. Ultimately, the link between the extracted modules 
and differentially infiltrated immune cells and DEFRGs was analyzed.

2.10  Prognostic marker screening

Based on the screened DEFRGs, COX regression analysis was utilized to assess the correlation between gene expres-
sion and prognostic survival of individuals with LIHC in the TCGA-LIHC dataset. The Least absolute shrinkage and 
selection operator (LASSO) technique, a compressed estimation [27], obtains a developed model by creating a penalty 
function, which could compress some coefficients while setting some coefficients to zero. Hence, it retains the benefit 
of subset shrinkage and is a biased estimator that deals with data having complex covariance. Prognostic markers 
were screened using LASSO regression. Subsequently, the variables were screened utilizing the Glmnet function of 
the glmnet package [28] and cross-validated using the cv.glmnet function. Finally, the combination of prognostic 
markers that minimized the CV coefficient was screened.

2.11  Risk score construction and assessment of clinical prognosis predictive power

The risk score for every patient in the TCGA-LIHC dataset was measured with the stated equation:

The Coefficient is the LASSO regression coefficient, and mRNA expression is the expression level of the gene (log2 
conversion).

The maxstat package [29] was utilized to measure the best cutoff value (cutoff ) for the predictive ability of the risk 
score on survival time in individuals with LIHC. Subsequently, the diseased individuals were categorized into high-/
low-risk groups based on this cutoff value. Survival curves were plotted by means of the Kaplan–Meier (K–M) method. 
Risk scores were utilized to predict patients’ 1-, 3- and 5-year survival with the aid of the SURVIVALROC package [30]. 
Ultimately, the predicted ROC was plotted, and AUC values were calculated.

riskscore =
∑n

i=1
Coeff icient i × mRNAExpression(genei)

Fig. 2  Identification of tissue cell subpopulations in LIHC patients on the basis of single-cell RNA-seq data set GSE149614. A A total of 
57,836 cells were clustered into 19 cell clusters by tSNE. B Cells were annotated by singleR into 8 cell types: B cells, T cells, endothelial cells, 
monocytes, macrophages, smooth muscle cells, dendritic cells, and hepatocytes. C Percentage stack graph showing the proportion of 8 cell 
types in each sample. D Expression levels of marker genes for the 8 cells are shown as bubble plots, with darker colors indicating higher 
expression levels and larger circles indicating a higher percentage of gene expression within the cell population. E–L tSNE plots showing 
the expression levels of CD3D (E), CD79A (F), CD68 (G), CD14 (H), PECAM1 (I), ACTA1 (J), FLT3 (K), and ALB (L) in the single-cell data set

▸



Vol.:(0123456789)

Discover Oncology          (2023) 14:147  | https://doi.org/10.1007/s12672-023-00756-6 Research

1 3



Vol:.(1234567890)

Research Discover Oncology          (2023) 14:147  | https://doi.org/10.1007/s12672-023-00756-6

1 3

Fig. 3  Expression levels and correlation analysis of FRGs among immune cells in the single-cell dataset GSE149614. A Heat map of the 
expression of 20 FRGs among immune cells. The top annotation bar indicates five immune cell types: T cells, macrophages, dendritic cells, B 
cells, and monocytes. Light-to-dark color gradient represents the progressively elevated expression level, with red color suggesting a posi-
tive relationship and blue color suggesting a negative relationship. B Heat map of the correlation of 20 FRGs, where red color denotes a 
positive relationship and blue color denotes a negative relationship. C–I tSNE plots showing the expression levels of ZFP36 (C), NCOA4 (D), 
FTH1 (E), FTL (F), TNF (G), PCBP1 (H), and CYB561A3 (I) in the single cell data set
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The effect of other clinical features on patient prognosis and survival, including age, gender, family history of 
tumor, and tumor stage, was assessed using the Cox proportional risk model. Subsequently, forest plots were drawn 
using the forestmodel package [31]. Clinical features with a considerable effect on prognosis were included in mul-
tivariate Cox regression as covariates to assess if risk scores could independently predict patient prognosis, followed 
by forest plotting. The fit effect of the different models was assessed with AUC values.

A nomogram and calibration curves for the optimal multivariate model were plotted utilizing the rms package 
[32]. The model outcomes were visualized to empower predictive model results with higher readability. Ultimately, 
a consistency index (C-index) was measured to evaluate the power of the nomogram in predicting patient survival.

2.12  Immunological analysis of the prognostic model

The abundance of immune cells between the high- and low-risk groups were compared by the Wilcoxon test based 
on the outcomes of immune infiltration of LIHC samples from the TCGA-LIHC database. Additionally, variations in 
the expression of common immune checkpoints (BTLA, CD40, CD70, CTLA4, HAVCR2, IDO1, LAG3, LMTK3, PDCD1, 
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Fig. 4  Single-cell data set GSE149614 FRG cell scoring and functional enrichment analysis of high-scoring cell populations. A FRG scores 
among cell subpopulations (AUC), with lighter colors indicating higher scores, where monocytes and macrophages had the highest mean 
scores. B Bubble plot of KEGG results for DEGs between monocytes and macrophages, with closer colors to red indicating smaller p and 
larger bubbles indicating more DEGs enriched within that pathway. C BP, CC, and MF enrichment results of GO analysis of DEGs between 
monocytes and macrophages presented as bubble plots, with colors closer to red indicating smaller p and larger bubbles indicating 
more DEGs enriched within that pathway. AUC area under the curve, KEGG Kyoto Encyclopedia of Genes and Genomes, DEGs differentially 
expressed genes, GO Gene Ontology, BP biological process, CC cellular component, MF molecular function
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TIGIT, TJP1, TNFRSF14, TNFRSF18, and TNFRSF9) between both risk groups of the TCGA-LIHC dataset were evaluated 
by the Wilcoxon test.

2.13  Drug sensitivity prediction

Drug response prediction was carried out by means of the R package oncoPredict 0.2 [33]. According to the Cancer 
Genome Project (CGP) database, the half-maximum inhibitory concentration (IC50) was determined for each patient 
using Ridge regression. The accuracy of the prediction was calculated by tenfold cross-validation. A linear model was 
utilized for comparing the variations in drug sensitivity between both risk groups utilizing the limma package in R 
[25]. The drug screening criteria for differential sensitivity were adj. p value < 0.05 and |log2FC|> 0.5.

2.14  Somatic mutation analysis

The "mafCompare" function in the R package Maftools 2.14.0 [34] was utilized to perform Fisher’s exact test for all 
genes in both risk groups of the TCGA-LIHC dataset to identify differentially mutated genes. Subsequently, oncoplot 
waterfall plots of FRGs were plotted. The tumor mutational load was compared by the Wilcoxon test between both 
risk groups and between the mutation and non-mutation FRG groups, and the results were presented as violin plots.

The sigminer package [35] was utilized to assess the mutation features of LIHC patient tumor somatic cells. The 
optimal number of mutation features was automatically extracted using the "sig_auto_extract" function, yielding 
eight mutation features. Subsequently, the extracted mutation features were matched with those in the Catalogue of 
Somatic Mutations in Cancer (COSMIC) database. The comparison of the variations in the expression of each mutation 
feature between both risk groups was carried out by the Wilcoxon test, and the results were presented in box plots.

Table 2  Results of KEGG analysis based on differentially expressed genes of Macrophage and Monocyte

Cluster ID Description GeneRatio BgRatio p.adjust Count

Macrophage hsa05171 Coronavirus disease—COVID-19 122/1098 232/8192 4.62E−45 122
Macrophage hsa03010 Ribosome 88/1098 158/8192 9.03E−35 88
Macrophage hsa04145 Phagosome 71/1098 152/8192 8.13E−22 71
Macrophage hsa05323 Rheumatoid arthritis 46/1098 93/8192 3.50E−15 46
Macrophage hsa04142 Lysosome 53/1098 132/8192 7.97E−13 53
Macrophage hsa05140 Leishmaniasis 37/1098 77/8192 9.17E−12 37
Macrophage hsa05330 Allograft rejection 24/1098 38/8192 5.41E−11 24
Macrophage hsa05416 Viral myocarditis 31/1098 60/8192 5.41E−11 31
Macrophage hsa04612 Antigen processing and presentation 36/1098 78/8192 5.41E−11 36
Macrophage hsa05134 Legionellosis 30/1098 57/8192 5.41E−11 30
Monocyte hsa04640 Hematopoietic cell lineage 38/668 99/8192 1.49E−14 38
Monocyte hsa05416 Viral myocarditis 29/668 60/8192 1.85E−14 29
Monocyte hsa04612 Antigen processing and presentation 33/668 78/8192 1.85E−14 33
Monocyte hsa05323 Rheumatoid arthritis 36/668 93/8192 1.85E−14 36
Monocyte hsa05330 Allograft rejection 22/668 38/8192 3.26E−13 22
Monocyte hsa05332 Graft-versus-host disease 23/668 42/8192 3.41E−13 23
Monocyte hsa04940 Type I diabetes mellitus 23/668 43/8192 5.81E−13 23
Monocyte hsa05417 Lipid and atherosclerosis 54/668 215/8192 8.59E−13 54
Monocyte hsa04659 Th17 cell differentiation 36/668 108/8192 1.91E−12 36
Monocyte hsa05166 Human T-cell leukemia virus 1 infection 54/668 222/8192 2.74E−12 54
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Table 3  Results of GO analysis based on differentially expressed genes of Macrophage and Monocyte

Cluster ONTOLOGY ID Description GeneRatio BgRatio p. adjust Count

Macrophage BP GO:0002181 Cytoplasmic translation 102/1810 161/18903 1.12E−59 22
Macrophage BP GO:0002443 Leukocyte mediated immunity 131/1810 463/18903 9.92E−28 23
Macrophage BP GO:0007159 Leukocyte cell–cell adhesion 121/1810 414/18903 4.99E−27 21
Macrophage BP GO:0050863 Regulation of T cell activation 112/1810 376/18903 9.31E−26 20
Macrophage BP GO:1903037 Regulation of leukocyte cell–cell adhesion 112/1810 377/18903 9.64E−26 20
Macrophage BP GO:0022407 Regulation of cell–cell adhesion 131/1810 490/18903 1.51E−25 21
Macrophage BP GO:0002683 Negative regulation of immune system process 122/1810 449/18903 2.09E−24 15
Macrophage BP GO:0002253 Activation of immune response 111/1810 397/18903 3.23E−23 15
Macrophage BP GO:0002697 Regulation of immune effector process 107/1810 379/18903 9.70E−23 17
Macrophage BP GO:0002449 Lymphocyte mediated immunity 104/1810 367/18903 3.07E−22 15
Macrophage CC GO:0022626 Cytosolic ribosome 84/1848 105/19869 2.54E−64 21
Macrophage CC GO:0022625 Cytosolic large ribosomal subunit 50/1848 59/19869 2.73E−40 13
Macrophage CC GO:0005925 Focal adhesion 138/1848 422/19869 1.70E−39 18
Macrophage CC GO:0044391 Ribosomal subunit 88/1848 188/19869 6.66E−39 8
Macrophage CC GO:0030055 Cell-substrate junction 138/1848 432/19869 2.02E−38 12
Macrophage CC GO:0005840 Ribosome 95/1848 232/19869 3.38E−36 12
Macrophage CC GO:0030139 Endocytic vesicle 109/1848 343/19869 5.72E−30 12
Macrophage CC GO:0031983 Vesicle lumen 103/1848 327/19869 5.83E−28 5
Macrophage CC GO:0034774 Secretory granule lumen 102/1848 322/19869 5.86E−28 12
Macrophage CC GO:0060205 Cytoplasmic vesicle lumen 102/1848 325/19869 1.24E−27 13
Macrophage MF GO:0003735 Structural constituent of ribosome 89/1830 176/18432 8.37E−40 11
Macrophage MF GO:0023023 MHC protein complex binding 24/1830 36/18432 1.50E−13 5
Macrophage MF GO:0023026 MHC class II protein complex binding 19/1830 27/18432 2.89E−11 11
Macrophage MF GO:0045296 Cadherin binding 75/1830 333/18432 2.02E−09 9
Macrophage MF GO:0140375 Immune receptor activity 44/1830 148/18432 2.84E−09 9
Macrophage MF GO:0009055 Electron transfer activity 39/1830 122/18432 2.92E−09 9
Macrophage MF GO:0004857 Enzyme inhibitor activity 78/1830 395/18432 3.39E−07 7
Macrophage MF GO:0042287 MHC protein binding 18/1830 42/18432 3.42E−06 9
Macrophage MF GO:0044389 Ubiquitin-like protein ligase binding 64/1830 318/18432 3.42E−06 4
Macrophage MF GO:0061134 Peptidase regulator activity 50/1830 232/18432 1.09E−05 6
Monocyte BP GO:0050863 Regulation of T cell activation 99/1124 376/18903 4.71E−34 99
Monocyte BP GO:0022407 Regulation of cell–cell adhesion 113/1124 490/18903 1.12E−33 113
Monocyte BP GO:0002443 Leukocyte mediated immunity 109/1124 463/18903 2.01E−33 109
Monocyte BP GO:0007159 Leukocyte cell–cell adhesion 102/1124 414/18903 4.79E−33 102
Monocyte BP GO:1903037 Regulation of leukocyte cell–cell adhesion 95/1124 377/18903 1.50E−31 95
Monocyte BP GO:0002253 Activation of immune response 95/1124 397/18903 1.12E−29 95
Monocyte BP GO:0050867 Positive regulation of cell activation 102/1124 467/18903 1.61E−28 102
Monocyte BP GO:0002696 Positive regulation of leukocyte activation 99/1124 450/18903 6.12E−28 99
Monocyte BP GO:0001819 Positive regulation of cytokine production 103/1124 486/18903 9.07E−28 103
Monocyte BP GO:0022409 Positive regulation of cell–cell adhesion 82/1124 322/18903 1.46E−27 82
Monocyte CC GO:0030666 Endocytic vesicle membrane 52/1155 194/19869 2.50E−18 52
Monocyte CC GO:0030139 Endocytic vesicle 70/1155 343/19869 3.25E−18 70
Monocyte CC GO:0070820 Tertiary granule 47/1155 164/19869 3.25E−18 47
Monocyte CC GO:0034774 Secretory granule lumen 65/1155 322/19869 9.41E−17 65
Monocyte CC GO:0060205 Cytoplasmic vesicle lumen 65/1155 325/19869 1.24E−16 65
Monocyte CC GO:0031983 Vesicle lumen 65/1155 327/19869 1.45E−16 65
Monocyte CC GO:0005925 Focal adhesion 74/1155 422/19869 8.33E−16 74
Monocyte CC GO:0030055 Cell-substrate junction 74/1155 432/19869 2.78E−15 74
Monocyte CC GO:0030667 Secretory granule membrane 61/1155 313/19869 3.06E−15 61
Monocyte CC GO:0101002 Ficolin-1-rich granule 45/1155 185/19869 6.77E−15 45
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2.15  Cell culture, RNA extraction, reverse transcription, and quantitative PCR (RT‑qPCR)

All cells were obtained from the Cell Bank of the Chinese Academy of Sciences. LO2 cells represent normal human 
liver cells, while HepG2, 97-H, and LM3 cells are immortalized liver cancer cells derived from patients. All cell lines 
were cultured in DMEM supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA) at 37 ℃ in a 5% 
 CO2 atmosphere.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to test the transcript abun-
dances of FTH1、FTL. TRIzol (Invitrogen, Shanghai, China) reagent was employed for isolation of total RNA from the 
LO2, HepG2, 97-H, and LM3 cells. Using  PrimeScript™ RT Master Mix (Perfect Real Time) (Takara Bio), the extracted 
RNA was reverse transcribed. Subsequently, Real-Time PCR was performed using TB Green Premix Ex TaqII (Tli RNaseH 
Plus) (Code No. RR820A) (Takara Bio) with the same conditions as specified in the kit. ABI 7900HT Real-Time PCR 
system (Applied Biosystems Life Technologies, CA, USA) were performed in triplicate. The data was analyzed by the 
 2−△△CT method. The primers used to test the expression of selected FTH1、FTL:

FTH1-F Sequence (5′to 3′): CCC CCA TTT GTG TGA CTT CAT;
FTH1-R Sequence (5′to 3′): GCC CGA GGC TTA GCT TTC ATT;
FTL-F Sequence (5′to 3′): CAG CCT GGT CAA TTT GTA CCT;
FTL-R Sequence (5′to 3′): GCC AAT TCG CGG AAG AAG TG;

2.16  Hematoxylin and eosin (HE) staining, as well as the detection of FTH1 and FTL protein expression 
in cancer tissue wax blocks, using immunohistochemistry

First, sequentially place the paraffin sections in environmentally friendly dewaxing solutions I and II for 20 min each. 
Then, immerse them in absolute ethanol I and II for 5 min each, followed by 75% ethanol for 5 min. Rinse with water. 
Next, immerse the sections in hematoxylin staining solution for 3–5 min, followed by rinsing with tap water. Dif-
ferentiate using a differentiation solution, rinse with tap water, counterstain with a bluing reagent, and rinse under 
running water. Then, sequentially immerse the sections in 85% and 95% gradient ethanol for 5 min each for dehydra-
tion, followed by staining with eosin solution for 5 min. Finally, sequentially place the sections in absolute ethanol 
I, II, and III for 5 min each, followed by clearing with xylene I and II for 5 min each. Mount using a neutral mounting 
medium. Finally, examine the sections under a microscope and capture images for analysis.

Cancer tissue wax blocks from 60 HCC patients were deparaffinized and subjected to antigen retrieval. The tissue 
chip is from the Servicebio biological sample library and was conducted under the approval of the Ethics Committee 
of our Hospital. Endogenous peroxidase was blocked using hydrogen peroxide solution and serum was added for 
blocking. The primary antibodies used include: Rabbit anti-FTH1 (dilution 1:100, #DF6278, Affinity) and Rabbit anti-
FTL (dilution 1:100, #DF6604, Affinity) antibodies. The secondary antibody used was HRP-conjugated Goat anti-Rabbit 

Table 3  (continued)

Cluster ONTOLOGY ID Description GeneRatio BgRatio p. adjust Count

Monocyte MF GO:0023023 MHC protein complex binding 19/1143 36/18432 2.98E−11 19
Monocyte MF GO:0140375 Immune receptor activity 36/1143 148/18432 3.92E−10 36
Monocyte MF GO:0023026 MHC class II protein complex binding 15/1143 27/18432 1.95E−09 15
Monocyte MF GO:0003823 Antigen binding 34/1143 171/18432 2.89E−07 34
Monocyte MF GO:0042605 Peptide antigen binding 14/1143 37/18432 3.53E−06 14
Monocyte MF GO:0042287 MHC protein binding 14/1143 42/18432 1.74E−05 14
Monocyte MF GO:0005126 Cytokine receptor binding 41/1143 273/18432 1.74E−05 41
Monocyte MF GO:0042277 Peptide binding 46/1143 330/18432 2.37E−05 46
Monocyte MF GO:0004857 Enzyme inhibitor activity 52/1143 395/18432 2.37E−05 52
Monocyte MF GO:0042288 MHC class I protein binding 10/1143 22/18432 2.54E−05 10
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(dilution 1:200, #GB23303, Servicebio). DAB was used for color development, followed by dehydration and counter-
staining with hematoxylin. The Servicebio imaging analysis system was used to read the tissue measurement area 
automatically and calculate the H-score (which converts the number and staining intensity of positive cells in each 
slide into corresponding numerical values, with larger values indicating stronger comprehensive positive intensity).
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Fig. 5  Single-cell dataset GSE149614 LIHC cell subpopulation communication analysis. A Heat map of the number of interactions between 
the 8 cell types, the darker shades of red indicated a higher number of interacting ligand-receptor pairs. B Network diagram of the intensity 
of intercellular interactions between 8 cell types, where nodes indicate various cell types, arrows indicate from the signal source cells to the 
receiving cells, and the line thickness indicates the intensity of the intercellular interaction. The thicker it is, the higher the intensity of the 
interaction. Different colors represent different cell types. C Ligand–receptor pairs of intercellular communication relationships between 
immune cell populations, where the horizontal coordinates indicate cell types where cell communication occurs, and the vertical coordi-
nates indicate ligand-receptor pairs. The figure only displays communication relationship results that are statistically significant (P < 0.05). 
The color of the circle, from blue to red, denotes a gradual increase in the communication probability of cellular interactions
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2.17  Statistical analysis

All data calculations and statistical analyses were carried out utilizing R 4.1.0 (https:// www.r- proje ctt. org/). Multiple 
testing adjustment was conducted by means of Benjamini-Hochberg (BH). False discovery rate (FDR) adjustment 

Fig. 6  Expression of FRGs in TCGA-LIHC dataset and correlation analysis. A Box plot of the comparative expression levels of iron-related 
autophagy genes between LIHC tumors and paracancerous tissues. Group differences were analyzed by the Wilcoxon test, FDR-corrected 
p-values were annotated on the graph; B Differential expression of FRGs between different samples, shown as a heat map; orange rep-
resents tumor group, blue represents paracancer control group. The color of gene expression levels from light to dark indicates elevated 
expression levels, with the negative association in blue and positive in red. C Correlation matrix of differentially expressed FRG expression 
levels. Red denotes a positive correlation, and blue denotes a negative correlation. Darker colors indicate enhanced correlations, and non-
significant ones are shown by black X. D–H Correlation analysis of expression levels of ferritinophagy with significant results, where correla-
tion coefficients above 0.2 are indicated by dotted line plots, and correlation coefficients R and P values are labeled on the plots, respec-
tively

https://www.r-projectt.org/
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was performed in multiple testing to reduce the false positive rate. Comparisons between two groups of continu-
ous variables were performed with independent Student t-tests to estimate the statistical significance of normally 
distributed variables. Variations between non-normally distributed variables were assessed by the Mann–Whitney 
U test (i.e., Wilcoxon rank sum test). The predictive power of prognostic markers was assessed using Cox regression 
models. Receiver operating characteristic (ROC) curves were plotted utilizing the pROC package of R. In addition, 
the area under the ROC curve (AUC) was a measure to determine the risk score’s accuracy in predicting prognosis. 
All statistical p-values were two-sided tests, with P < 0.05 taken as statistically significant.

* ns sn sn sn sn * ****snsn sn******** ns ***sn * ** snns ****
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Fig. 7  Immune cell infiltration analysis of TCGA-LIHC dataset. A Comparison of different levels of immune cell infiltration in the LIHC case/
control group. Differences between groups were analyzed by the Wilcoxon test, and the statistical significance of differences is indicated 
by the "*" sign, where "*" indicates P < 0.05, "**" indicates P < 0.01, "***" indicates P < 0.001, "****" indicates P < 0.0001; B correlation matrix 
between immune cells, where red denotes positive association, blue denotes a negative association and darker color indicates increased 
association. Non-statistical significance is indicated by black X’s; C Correlation matrix between immune cells and FRGs, where red denotes a 
positive association, blue indicates a negative correlation, and darker color indicates enhanced correlation, and correlation coefficients and 
p-values are marked in squares
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3  Results

3.1  Cellular heterogeneity of LIHC tissues

The flow chart of this study was shown in Fig. 1. Quality control was carried out on the GSE149614 dataset. In 
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Fig. 8  WGCNA of TCGA-LIHC dataset. A, B The power parameter screening process of WGCNA, where the values of clustering tree Connec-
tivity A and model fitting R-square B with increasing power and slowing down the rate of change is the best power value, suggesting that 4 
is the best power value; C TCGA-LIHC dataset C tree diagram of cluster analysis of samples and corresponding FRGs-related gene expression 
and immune cell infiltration; D gene cluster analysis of WGCNA illustrated as a tree diagram, where the modules of gene classification are 
demonstrated by distinct colors; E correlation matrix between the module scores retrieved by WGCNA and the obtained FRGs-related gene 
expression and the level of differential immune cell infiltration, with red indicating positive correlation, green indicates negative correlation. 
Darker colors indicate an enhanced correlation, and correlation coefficients and p-values are shown in the cells within the matrix. WGCNA 
Weighted Gene Co-Expression Network Analysis, FRGs ferritinophagy-related genes
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total, 57,836 cells were obtained after filtering cells with > 20% mitochondrial gene content, features < 500, or fea-
tures > 6000 and visualized by tSNE downscaling. The 57,836 cells were successfully classified into 21 independent 
clusters (Fig. 2A). SingleR was utilized to identify the cell clusters in a total of 8 cell types (Fig. 2B). Among them, clus-
ters 0, 12, and 20 were annotated as T cells (21,443, 37.07%); clusters 8 and 17 were annotated as B cells (1675, 2.89%); 
cluster 11 was annotated as dendritic cells (564, 0.97%); clusters 4 and 18 were annotated as endothelial cells (3788, 
6.54%); clusters 1, 5, 6, 9, 10, 14, 15, 16, 19 were annotated as hepatocytes (15,979, 27.62%); cluster 2 and13 were 
annotated as macrophages (8506, 14.70%). Cluster 3 was annotated as monocytes (4021, 6.95%); cluster 7 was anno-
tated as smooth muscle cells (1860, 3.21%). The proportion of each cell between each sample is shown in Fig. 2C. The 
marker genes of eight cell types were used (T cells: CD3D; B cells: CD79A; Endothelial cells: PECAM1; Monocytes: IL1B; 
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Fig. 9  Survival analysis of risk groups for the TCGA-LIHC dataset. A Forest plot of the outcomes of COX regression analysis for the six DEFRGs. 
B–G Survival curves (K–M method) for FTH1 (B), FTL (C), NCOA4 (D), PCBP1 (E), ZFP36 (F), and TNF (G) in high- and low-expression groups. 
Cutoff values were determined by the maxstat package, where orange reaches the high-risk group and purple color denotes the low-risk 
group. FRGs. FRGs, K–M Kaplan–Meier
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Macrophages: CD68; Smooth muscle cells: ACTA2; Dendritic cells: FLT3; Hepatocytes: ALB) were plotted in a bubble 
map (Fig. 2D). Each marker gene had a high expression and cellular expression ratio in cell subpopulations, indicating 
the good auto-annotation effect of SingleR. tSNE plots showed CD3D (Fig. 2E), CD79A (Fig. 2F), CD68 (Fig. 2G), CD14 
(Fig. 2H), PECAM1 (Fig. 2I), ACTA2 (Fig. 2J), FLT3 (Fig. 2K), and ALB (Fig. 2L) expression at the cellular level.

3.2  Differential expression and scoring of FRGs in immune cells

The DEGs among immune cells from GSE149614 data were intersected with 20 FRGs, yielding 7 DEFRGs (ZFP36, 
NCOA4, FTH1, FTL, TNF, PCBP1, CYB561A3). The heat map was utilized to show the expression of 20 FRGs in immune 
cells (T cells, B cells, monocytes, macrophages, and dendritic cells) (Fig. 3A). ZFP36 was highly expressed in T cells, 
FTH1, FTL, PCBP1, NCOA4 in monocytes, FTL, FTH1, NCOA4, and TNF overexpressed in macrophages, and CYB561A3 
was highly expressed in B cells. In addition, correlation analysis was performed for 20 FRGs. A considerably positive 
link was observed between FTH1 and FTL, and a considerably negative link between FTL and ZFP36 (Fig. 3B). Sub-
sequently, seven DEFRGs were analyzed, including ZFP36 (Fig. 3C), NCOA4 (Fig. 3D), FTH1 (Fig. 3E), FTL (Fig. 3F), TNF 
(Fig. 3G), PCBP1 (Fig. 3H), and CYB561A3 (Fig. 3I) in the single-cell dataset. In addition to the highly expressed cell 
types shown in the heat map, ZFP36, FTH1, FTL, and PCBP1 were also widely expressed in other cell types, with FTH1 
and FTL both having high expression in hepatocytes.

3.3  Scoring and functional enrichment analysis of FRGs

The expression of DEFRGs was scored for each cell in the single-cell dataset GSE149614 using the AUCell package (Fig. 4A). 
Monocytes and macrophages had the highest gene scores for FRGs with mean scores of 0.52 and 0.55, respectively. 
Subsequently, DEGs between these two cell types were subjected to functional enrichment analysis.

According to KEGG analysis results, DEGs of macrophages were primarily enriched in Coronavirus disease, ribosomes, 
phagosomes, rheumatoid arthritis, and lysosome pathways. DEGs of monocytes were primarily enriched in hematopoietic 
cell lineage, viral myocarditis, antigen processing and presentation, rheumatoid arthritis, and allograft rejection pathways 
(Fig. 4B). According to GO analysis results, DEGs of macrophages were primarily correlated with biological processes 
(BPs) such as cytoplasmic translation, leukocyte mediated immunity, and leukocyte cell–cell adhesion, cell components 
(CCs) such as cytosolic ribosome, cytosolic large ribosomal subunit, focal adhesion, and molecular functions (MFs) such 
as structural constitution of ribozyme, MHC protein complex binding, and MHC class II protein complex binding. DEGs 
of monocytes were primarily correlated with BPs, such as regulating the activation of T cells, cell–cell adhesion, and 
leukocyte mediated immunity, CCs such as endocytic vesicle membrane, endocytial vesicles, and tertiary granules, and 
MFs such as MHC protein complex binding, immune receptor activity, and MHC class II protein complex binding (Fig. 4C). 
Tables 2, 3 display the specific KEGG and GO enrichment results for Macrophage and Monocyte.

3.4  Cellular communication

Cellular communication among 8 cell types was inferred and quantified by CellChat. In addition, the number (Fig. 5A) 
and intensity (Fig. 5B) of cellular communication were visualized by heat map and circle plot. Macrophages interacts with 
endothelial cells, hepatocytes, and smooth muscle cells in high numbers. In addition, hepatocytes and endothelial cells 
have high interaction intensity with macrophages and monocytes, respectively. In addition, all important receptor–ligand 
pairs (Fig. 4C) were counted when immune cells send/receive signals. MIF signaling pathway-related ligand-receptor 
pairs play a crucial role in this process (p < 0.01).

Fig. 10  LASSO regression screening for prognosis-related FRGs. A, B Screening of prognostic markers using LASSO logistic regression mod-
els; partial likelihood deviation with tenfold cross-validation used to calculate the optimal λ; C ROC curves and AUC values for risk score pre-
diction of 1-, 3- and 5-year survival of patients; D Survival curves for high and low expression groups according to risk scores (K–M method); 
E Other COX regression analysis of the impact of clinical features on patient prognosis, presented as a forest plot; F Multivariate COX regres-
sion analysis of significant clinical features in C, presented as a forest plot. LASSO, absolute shrinkage and selection operator, FRGs ferritin-
ophagy-related genes, ROC receiver operating characteristic AUC  area under the curve, K–M Kaplan–Meier
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Fig. 11  Prognostic risk model for LIHC. A Nomogram of the multivariate COX regression model for risk score prediction of survival in indi-
viduals with LIHC from the TCGA-LIHC dataset. B–D Calibration curves for 1-(B), 3-(C), and 5-(D) year survival prediction

3.5  Differential expression and correlation analyses of FRGs in the TCGA‑LIHC dataset

The varied expression levels of DEFRGs between the tumor and control groups in the TCGA-LIHC liver cancer dataset 
were compared, where ZFP36, NCOA4, FTH1, FTL, TNF, and PCBP1 were matched with the TCGA transcriptome data. The 
expression of all six FRGs was significantly different (p < 0.05), with FTH1, FTL, and PCBP1 being overexpressed in the 
tumor group and ZFP36, NCOA4, and TNF expressed less in the tumor group (Fig. 6A). The expression levels of FRGs in 
different samples were presented as a heat map (Fig. 6B). The correlation matrix of FRGs expression levels was shown 
in Fig. 6C, where PCBP1 had a considerable positive association with ZFP36, NCOA4, and FTH1, respectively, and ZFP36 
and NCOA4 and FTH1 and FTL had a considerable positive association, respectively. The correlation results with correla-
tion coefficients greater than 0.2 were presented as scatter plots, in which FTL was positively linked with FTH1 (R = 0.59, 
P < 0.001), PCBP1 was positively associated with ZFP36 (R = 0.42, P < 0.001), PCBP1 was positively associated with FTH1 
(R = 0.28, P < 0.001), PCBP1 was positively associated with NCOA4 (R = 0.60, P < 0.001), and NCOA4 was positively associ-
ated with ZFP36 (R = 0.34, P < 0.001).

3.6  Assessment of the immune microenvironment and correlation analysis of FRGs

The infiltration of different immune cells in the TCGA-LIHC dataset was analyzed using CIBERSORTx. The infiltration of 22 
immune cells among different subgroups is illustrated in Fig. 7A. M2 macrophages, neutrophils, monocytes, memory B 
cells, and gamma delta T cells were less infiltrated in the LIHC case set, while M0 macrophages, Tregs, resting dendritic 
cells, and activated mast cells were more infiltrated in the LIHC case group. Correlations between the degree of infil-
tration between different immune cells were analyzed, and the correlation matrix is shown in Fig. 7B. where cells with 
correlation coefficients greater than 0.3 or less than − 0.3 were selected. CD8 T cells and activated memory CD4 T cells 
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Fig. 12  Immunophenotypes of risk groups. A Infiltration of immune cells in the risk subgroups. B Expression of common immune check-
point genes in the risk subgroups. Differences between groups were analyzed by the Wilcoxon test. Statistically significant differences are 
indicated by "*" signs, where P < 0.05 is indicated by "*", P < 0.01 by "**", and P < 0.001 by "***", P < 0.0001 by "****", insignificant by ns

were positively correlated (coefficient = 0.40, P < 0.001), and naïve B cells and plasma cells were negatively associated 
(coefficient = 0.33, P < 0.001), M2 macrophages and M0 macrophages were negatively associated (coefficient = − 0.45, 
P < 0.001), resting memory CD4 T cells and CD8 T cells were negatively associated (coefficient = − 0.44, P < 0.001), naïve 
B cells and monocytes were negatively associated (coefficient = − 0.33, P < 0.001), resting and activated NK cells were 
negatively associated (coefficient = − 0.38, P < 0.001). Finally, the association of DEFRGs with different immune cells was 
assessed separately (Fig. 7C). Most FRGs were observed to have a significant positive correlation with M0 macrophages 
and Tregs (P < 0.001).

3.7  WGCNA

In total, 3882 DEGs, including 1588 overexpressed genes and 2294 genes with low expression, were screened from 
the TCGA-LIHC gene expression matrix utilizing the limma package of R language. The screened DEGs were accepted 
by WGCNA (Fig. 8). Seven modules were calculated, which had some correlation with FRGs and immune cell infiltra-
tion, respectively. MEbrown had a considerably positive link with ZFP36, NCOA4, and PCBP1 (P < 0.001), MEgreen had 
a considerably positive link with TNF (P < 0.001), MEturquoise had a considerably positive link with PCBP1 (P < 0.001), 
and MEbrown and MEyellow had a considerably positive association with Tregs and macrophages, respectively. M2 
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Fig. 13  Drug sensitivity variation in high- and low-risk groups. A Drugs with differences are shown in volcano plots, with red and green 
indicating higher and lower drug sensitivity, respectively, in the group with high risk. In addition, adj.p value < 0.05 and |log2FC|> 0.5 sug-
gest substantial variations in drug sensitivity among the risk groups; B–P Box plots showing variation in drug sensitivity between the risk 
groups for erlotinib (B), selumetinib. Selumetinib.BRD.A02303741 (C), BRD.A02303741.navitoclax (D), dasatinib (E), PD318088 (F), navitoclax.
PLX.4032 (G), navitoclax.piperlongumine (H), decitabine.navitoclax (I), UNC0638.navitoclax (J), ABT.737 (K), tretinoin.navitoclax (L), alisertib.
navitoclax (M), navitoclax. birinapant (N), myriocin (O), and GSK.J4 (P), where orange and purple represent the groups with high and low 
risk, respectively

had a considerable negative correlation (P < 0.001), and MEturquoise had a considerable positive correlation with M0 
macrophages (P < 0.001).

3.8  Correlation between DEFRGs and patient prognosis

The association between DEFRGs in the TCGA-LIHC dataset and the patient prognosis was analyzed using univariate Cox 
regression. Patients with higher expression of FTH1 (HR = 1.47, 95% CI 1.19–1.81), FTL ((HR = 1.26, 95% CI 1.08–1.48), and 
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Fig. 14  Somatic mutation analysis of the TCGA-LIHC dataset. A Fisher’s exact analysis of the differences in somatic mutations between both 
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PCBP1 (HR = 1.57, 95% CI 1.15–2.15) had a poorer prognosis (Fig. 9A). Individuals were categorized into high- and low-
expression groups as per the gene expression using the maxstat package, and the results were in line with the outcomes 
of COX regression analysis with continuous variables. Individuals with high expression of FTH1, FTL, and PCBP1 had a 
considerably poorer prognosis than those with low expression of these genes (P < 0.001).

3.9  Prognostic marker screening and risk score construction

LASSO regression analysis was utilized to screen three FRGs as prognostic markers, including FTH1, FTL, and PCBP1 
(Fig. 10A, B).

The coefficients of the candidate prognostic markers were found based on the results of the analysis of the LASSO 
regression model. Subsequently, the risk score RS was measured by means of the following equation:

Riskscore = 0.1846 ∗ FTH1 + 0.0391 ∗ FTL + 0.1618 ∗ PCBP1.
The ROC curves for risk score prediction of 1-, 3- and 5-year survival of diseased individuals are shown in Fig. 10C, 

with the best predictive power for 1-year survival (AUC = 0.687). The best cutoff for the predictive ability of the risk score 
for survival time in individuals with LIHC was determined using the maxstat package was 5.9135. Individuals with LIHC 
were categorized into high- and low-risk groups as per their cutoff values. In addition, individuals with no survival data 
were eliminated. Individuals with high risk scores had significantly shorter prognostic survival duration than those with 
low risk scores (Fig. 10D).



Vol:.(1234567890)

Research Discover Oncology          (2023) 14:147  | https://doi.org/10.1007/s12672-023-00756-6

1 3

C>A C>G C>T T>A T>C T>G
Sig1

Sig2

Sig3

Sig4

Sig5

Sig6

Sig7

Sig8

A
−A

A
−C

A
−G

A
−T

C
−A

C
−C

C
−G

C
−T

G
−A

G
−C

G
−G

G
−T

T−
A

T−
C

T−
G

T−
T

A
−A

A
−C

A
−G

A
−T

C
−A

C
−C

C
−G

C
−T

G
−A

G
−C

G
−G

G
−T

T−
A

T−
C

T−
G

T−
T

A
−A

A
−C

A
−G

A
−T

C
−A

C
−C

C
−G

C
−T

G
−A

G
−C

G
−G

G
−T

T−
A

T−
C

T−
G

T−
T

A
−A

A
−C

A
−G

A
−T

C
−A

C
−C

C
−G

C
−T

G
−A

G
−C

G
−G

G
−T

T−
A

T−
C

T−
G

T−
T

A
−A

A
−C

A
−G

A
−T

C
−A

C
−C

C
−G

C
−T

G
−A

G
−C

G
−G

G
−T

T−
A

T−
C

T−
G

T−
T

A
−A

A
−C

A
−G

A
−T

C
−A

C
−C

C
−G

C
−T

G
−A

G
−C

G
−G

G
−T

T−
A

T−
C

T−
G

T−
T

0.00
0.01
0.02
0.03

0.00
0.05
0.10
0.15
0.20

0.00

0.05

0.10

0.15

0.00

0.10

0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Components

C
on

tri
bu

tio
ns

Best match: SBS28 [similarity: 0.942]
Unknown

Best match: SBS17b [similarity: 0.947]
Unknown

Best match: SBS16 [similarity: 0.82]
Unknown

Best match: SBS49 [similarity: 0.889]
Possible sequencing artefact

Best match: SBS22 [similarity: 0.859]
Aristolochic acid exposure

Best match: SBS6 [similarity: 0.925]
Defective DNA mismatch repair

Best match: SBS46 [similarity: 0.877]
Possible sequencing artefact

Best match: SBS40 [similarity: 0.862]
Unknown

Est_C
ounts

Fraction
0

500

1000

0.00

0.25

0.50

0.75

1.00

Samples

E
xp

os
ur

e

Signature
1

2

3

4

5

6

7

8

A B

C
ns ns ns ns ns ns ns ns

0.0

2.5

5.0

7.5

10.0

Sig1 Sig2 Sig3 Sig4 Sig5 Sig6 Sig7 Sig8

S
ig

na
tu

re
 e

xp
re

ss
io

n

High Low

** *** ** ns *** ns ** ns

0.0

2.5

5.0

7.5

10.0

Sig1 Sig2 Sig3 Sig4 Sig5 Sig6 Sig7 Sig8

S
ig

na
tu

re
 e

xp
re

ss
io

n

Mut WildFerritinophagyD

Riskgroup

Fig. 15  Somatic mutation feature analysis of the TCGA-LIHC dataset. A Mutation patterns of somatic mutation features of LIHC samples and 
similar mutation features of the COSMIC database. B Composition of the mutation features of the samples. C Expression of each mutation 
feature in both risk groups. D Expression of each mutation feature in FRG mutation and non-mutation subgroups. Wilcoxon test was utilized 
to examine variations between groups. Statistically significant differences are indicated by "*" signs, where *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001, and ns represents insignificant. In addition, red and blue denote the high– and low-risk groups, respectively. COSMIC, the 
Catalogue of Somatic Mutations in Cancer

3.10  Prognostic model construction

The outcomes of univariate COX regression demonstrated that both age and tumor stage affected patient survival except 
for risk score/group (Fig. 10E). A multivariate prognostic prediction model was constructed using the Cox regression 
model (Fig. 10F). Nomogram (Fig. 11A) and calibration curves (Fig. 11B–D) were drawn with the rms package for predict-
ing 1-, 3- and 5-year survival in individuals with LIHC. Tumor stage, age (c-index = 0.633), and risk score (c-index = 0.635) 
were used to construct the nomogram, which demonstrated their value as predictors. With a c-index of 0.678, the survival 
prediction model constructed by integrating age, stage, and risk scores demonstrated superior prognosis predictive 
performance.

3.11  Immunophenotypes of risk groups

A comparison of immune cell abundance between the risk subgroups in the TCGA-LIHC dataset is shown in Fig. 12A. 
M0 macrophages, plasma cells, and Tregs had higher abundance in the high-risk group (P < 0.05). Resting mast cells, 
neutrophils, and activated memory CD4 T cells had higher abundance in the low-risk group (P < 0.05).

In both the risk groups, the expression of 14 common immune check loci (BTLA, CD40, CD70, CTLA4, HAVCR2, IDO1, 
LAG3, LMTK3, PDCD1, TIGIT, TJP1, TNFRSF14, TNFRSF18, and TNFRSF9) was observed. CD40, CD70, CTLA4, HAVCR2, 
IDO1, LMTK3, TIGIT, TNFRSF14, TNFRSF18, and TNFRSF9 had substantially different levels of expression between the 
two risk groups (P < 0.05) (Fig. 12B).
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Fig. 16  A expression of FTH1 mRNA in different liver cancer cells and normal liver cells; B expression of FTL mRNA in different liver can-
cer cells and normal liver cells; C the HE staining results of the patient tissue samples. D expression of FTH1, FTL in tumor tissue; *P < 0.05, 
**P < 0.01, ***P < 0.001

3.12  Drug sensitivity prediction

According to drug sensitivity analysis, a significant difference was observed in drug sensitivity to erlotinib (Fig. 13B) 
and selumetinib.BRD.A02303741 (Fig. 13C), BRD.A02303741.navitoclax (Fig. 13D), dasatinib (Fig. 13E), PD318088 
(Fig. 13F), navitoclax.PLX.403 (Fig. 13G), navitoclax.piperlongumine (Fig. 13H), decitabine.navitoclax (Fig. 13I), 
UNC0638.navitoclax (Fig. 13J), ABT.737 (Fig. 13K), tretinoin.navitoclax (Fig. 13L), alisertib.navitoclax (Fig. 13M), navi-
toclax.birinapant (Fig. 13N), myriocin (Fig. 13O), and GSK.J4 (Fig. 13P) between both risk groups (Fig. 13A, adj.p 
value < 0.05 and |log2FC|> 0.5). Individuals in the group with high risk were more sensitive to GSK.J4, dasatinib, 
myriocin, and selumetinib. BRD.A02303741, erlotinib, and PD318088 individuals in the group with low risk. However, 
individuals in the group with high risk were less sensitive to tretinoin.navitoclax, navitoclax.birinapant, UNC0638.
navitoclax, BRD. A02303741. Navitoclark, decitabine.navitoclax, alisertib.navitoclax, ABT.737, navitoclax.piperlongu-
mine, and navitoclax.PLX.4032 than those in the low-risk group.
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3.13  Somatic mutation analysis of risk groups

Fisher’s exact test for somatic mutations was performed to detect differentially mutated genes in tumor samples 
between groups with high- and low-risk in the TCGA-LIHC dataset (2 cases with no mutation data and 366 cases with 
analyzed data). The genes with the most significant differences were TP53, ARID1B, TNRC18, HIPK3, and PDZRN4 
(P < 0.01, Fig. 14A). Subsequently, mutations in FRGs were counted, with the highest mutation frequency being 
HERC2 (23/366, 6.28%), followed by USP24 (8/366, 2.18%), ATG5 (6/366, 1.63%), and PCBP1 (4/366, 1.09%) (Fig. 14B). 
Moreover, the number of Tmbs was counted between the risk groups and between FRG mutation/non-mutation 
groups. The number of Tmbs did not differ considerably between the risk groups (Fig. 14C), whereas the number of 
Tmbs was substantially larger in the FRG mutation group than that in the non-mutation group (Fig. 14D).

3.14  Somatic mutation features of risk groups

A total of eight mutation features were extracted from the TCGA-LIHCLIHC somatic mutation data (Fig. 15A). Among them, 
Sig1 is similar to SBS40 in the COSMIC database (unknown pathogen), Sig2 is similar to SBS46 (sequencing artifact), Sig3 is 
similar to SBS6 (MMR disorder), Sig4 is similar to SBS22 (aristolochic acid), Sig5 is similar to SBS49 (sequencing artifact), Sig6 is 
similar to SBS16 (unknown pathogen), Sig7 is similar to SBS17b (unknown pathogen), and Sig8 is similar to SBS28 (unknown 
pathogen). Sig1 and Sig2 had a higher prevalence of somatic mutations in most samples (Fig. 15B). The expression of mutant 
characteristics was then compared between the risk groups as well as between the FRG mutation/non-mutation groups. No 
difference in the expression of the mutation features was observed between the high- and low-risk groups (P > 0.05) (Fig. 15C). 
However, the FRG mutation group exhibited considerably greater levels of Sig1, Sig2, Sig3, Sig5, and Sig7 expression than 
the non-mutation group (P < 0.01) (Fig. 15D).

3.15  FTH1,FTL is highly expressed in hepatocellular carcinoma cells and hepatocellular carcinoma tissues.

We further validated the FTH1, FTL genes that were significantly associated with poor prognosis. We conducted PCR experi-
ments using a normal liver cell line (LO2) and three liver cancer cell lines (HepG2, LM3, and 97-H). As shown in Fig. 16A, B, 
FTH1, FTL were significantly overexpressed in the three liver cancer cell lines compared with normal liver cells.

We first performed HE staining on the patient tissue specimens we collected to distinguish between cancer tissue and 
adjacent normal tissue. (Fig. 16C). We further detected 60 pairs of liver cancer tissues by immunohistochemistry, and found 
that the expression of FTH1, FTL in tumor tissues was significantly higher than that in para-tumor tissues. This is consistent 
with previous bioinformatics results (Fig. 16D).

4  Discussion

This study is a pioneering effort integrating TCGA and single-cell databases to investigate the expression, prognosis, 
mutation, and immune infiltration associated with FRGs in LIHC. Additionally, prognostic indicators based on DEFRGs 
were screened using LASSO regression analysis. Finally, a survival prediction model was constructed by integrating 
age, stage, and risk scores. The nomogram and calibration curves revealed that the model had excellent prognosis 
predictive performance.

The rapid advancement of single-cell technology has deepened the understanding of tumorigenesis [36, 37]. The 
extracted cells were classified into eight different cell types. Furthermore, the DEGs among immune cells intersected 
with the extracted FRGs, yielding 7 DEGs. A total of 6 genes were found to be differentially expressed according to 
a TCGA database search. Additionally, in line with earlier studies, FTH1, FTL, and PCBP1 could be used as prognos-
tic markers [38–40]. Ferroptosis is a lysosome-dependent autophagic cell death process [41, 42]. Ferroptosis and 
autophagy are mutually reinforcing, with ferritinophagy being the biological process at the intersection of the two 
[43]. Ferroptosis and autophagy are actively involved in cancer progression. ferritinophagy is also inextricably linked 
to the progression of cancer [44, 45]. A series of prognostic models based on the relationship between ferroptosis and 
LIHC could help to accurately monitor the progression of LIHC. In addition, ferroptosis-related gene models could 
predict the prognosis and the choice of treatment for LIHC patients. Moreover, ferroptosis-related prognostic models 
constructed based on some methylation profiles of LIHC could predict the associated risk more accurately [46–48]. 
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In the present study, a model based on ferritinophagy-related prognostic markers was constructed. Individuals with 
high-risk scores exhibited considerably poorer survival rates compared to individuals with low-risk scores. Further-
more, a multivariate prognostic prediction model was constructed using a Cox regression model, which showed 
excellent prognostic predictive power.

TME consists of immune cells, non-immune stromal cells (including endothelial cells, fibroblasts, etc.), and extracel-
lular matrix proteins, which impact the tumor process [49–51]. By secreting various cytokines, chemokines, and other 
signaling molecules that interact with cancer cells, different cells are vital in the control of the tumor immune response. 
Similarly, TME is crucial in the immune response of LIHC [52, 53]. In this study, multiple FRGs were found in the DEGs 
among immune cells. Expression scoring of DEGs indicated that monocytes and macrophages had the highest FRGs 
scores. In addition, various immune cell infiltration in the TCGA-LIHC dataset was evaluated. As expected, considerable 
variations in immune infiltration were observed in LIHC. The association of DEFRGs with different immune cells was 
further evaluated. Most FRGs showed significant positive correlations with M0 macrophages and Tregs. According to 
the models generated by DEFRGs, there were similar variations between high- and low-risk groups in immune cell abun-
dance and expression of multiple immune checkpoints. Cellular communication analysis showed a higher number of 
interactions between macrophages and endothelial cells, hepatocytes, and smooth muscle cells, whereas hepatocytes 
and endothelial cells both interacted with macrophages and monocytes, respectively, with a high interaction intensity. 
Therefore, FRGs and the level of immune infiltration of LIHC were strongly associated. Monocytes and macrophages with 
high expression of FRGs are actively involved in the immune response of LIHC. Monocytes and macrophages are excellent 
potential therapeutic targets for LIHC [54, 55]. Since LIHC mainly progresses to fibrosis or cirrhosis, it has relatively low 
responsiveness to immune checkpoint blockade (ICB) therapy. In previous research, intrinsic enhancer reprogramming 
targeting monocytes improved the immunotherapeutic efficacy of LIHC [56]. Macrophages could be classified as M1 or 
M2 depending on their phenotype [57]. Macrophage polarization is influenced by the tumor stage and presents differ-
ent polarization states depending on the tumor or intra-tumor region [58]. In addition, LIHC progression is considered 
associated with a skewed macrophage phenotype from M1 to M2 [59].

The instability of genetic material accelerates the acquisition of genetic diversity and is a hallmark feature that pro-
motes cancer onset and progression [60]. Over 10,000 genes were found to have significant mutations in HCC, with 26 of 
them showing the highest mutation frequency, including TP53, CTNNB1, and AXIN1 [61]. This was validated in the current 
study. The number of Tmbs was counted for the low- and high-risk groups as well as the FRG mutation and non-mutation 
groups. No substantial difference was found in TMB between both risk groups. However, it was remarkably increased in 
the FRG mutation group than in the non-mutation group. High-mutation frequency genes, such as FRGs like HERC2 and 
USP24, have been linked to the onset and progression of various malignancies [62–65]. However, the relevance of these 
genes to LIHC needs to be explored in further studies.

The current study has certain limitations. First, public databases were used to collect the data for this investigation. 
Therefore, further validation using different external data sets is needed. Second, in order to further validate the findings 
of this study, in vitro and in vivo investigations are necessary. Finally, FRGs were defined by searching on GeneCards, 
which may introduce some bias. In summary, a LIHC-related prognostic model based on FRGs was constructed, which 
offers fresh insights into LIHC prevention and treatment.

5  Conclusion

We investigated the relationship between ferritinophagy and the occurrence and development of LIHC. Through screen-
ing of differentially expressed FRGs that were significantly correlated with patient prognosis, we further constructed a 
relevant risk model. Further analysis revealed significant differences in terms of immune infiltration, immune checkpoints, 
drug sensitivity, TMB, etc., between the high-risk and low-risk model groups. Our in vitro PCR, IHC experiments also 
validated our research. In summary, our study provides a new research idea for the prevention and treatment of LIHC.
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