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Abstract
Background PDAC is a highly malignant and immune-suppressive tumor, posing great challenges to therapy.
Methods In this study, we utilized multi-center RNA sequencing and non-negative matrix factorization clustering (NMF) 
to identify a group of metabolism-related genes that could effectively predict the immune status and survival (both 
disease-free survival and overall survival) of pancreatic ductal adenocarcinoma (PDAC) patients. Subsequently, through 
the integration of single cell sequencing and our center’s prospective and retrospective cohort studies, we identified 
ABHD17C, which possesses metabolic and immune-related characteristics, as a potential biomarker for predicting the 
prognosis and response to anti-PD1 therapy in PDAC. We then demonstrated how ABHD17C participates in the regula-
tion of the immune microenvironment through in vitro glycolytic function experiments and in vivo animal experiments.
Results Through screening for pancreatic cancer metabolic markers and immune status, we identified a critical mol-
ecule that inhibits pancreatic cancer survival and prognosis. Further flow cytometry analysis confirmed that ABHD17C 
is involved in the inhibition of the formation of the immune environment in PDAC. Our research found that ABHD17C 
participates in the metabolic process of tumor cells in in vitro and in vivo experiments, reshaping the immunosup-
pressive microenvironment by downregulating the pH value. Furthermore, through LDHA inhibition experiments, we 
demonstrated that ABHD17C significantly enhances glycolysis and inhibits the formation of the immune suppressive 
environment. In in vivo experiments, we also validated that ABHD17C overexpression significantly mediates resistance 
to anti-PD1 therapy and promotes the progression of pancreatic cancer.
Conclusion Therefore, ABHD17C may be a novel and effective biomarker for predicting the metabolic status and immune 
condition of PDAC patients, and provide a potential predictive strategy for anti-PD1 therapy in PDAC.
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1 Introduction

Pancreatic cancer is a malignant tumor of the digestive tract with hidden and atypical clinical symptoms, which 
is difficult to diagnose and treat [1]. According to The Lancet, the five-year survival rate of pancreatic cancer after 
diagnosis is about 10%, which is one of the malignant tumors with the worst prognosis [2]. About 90% of pan-
creatic cancer is ductal adenocarcinoma originating from adenocarcinoma epithelium [3]. Its incidence rate and 
mortality have increased significantly in recent years. The early diagnosis rate of pancreatic cancer is not high, the 
operative mortality rate is high, and the cure rate is low [4]. Available treatment strategies for patients with PDAC 
include chemotherapy, surgical resection, radiotherapy, and immunotherapy [5]. Common PDAC chemotherapy drugs 
include Fluorouracil, Cisplatin, Gemcitabine, and Paclitaxel [6]. Survival for patients with PDAC depends largely on 
age at diagnosis, disease stage, and PDAC biology. Especially in high-risk patients, disease prognosis remains poor 
and recurrence rates are high [7]. The existence of this condition underscores the need to develop new therapeutic 
strategies and treatments [8].

Metabolism is the basis of all biological processes necessary to sustain life. It involves a series of biochemical 
reactions that convert nutrients into small molecules called metabolites [9]. Through these transformations and 
the resulting metabolites, cells produce the energy, redox equivalents, and macromolecules (including proteins, 
lipids, DNA, and RNA) they need to survive and maintain cellular function [10]. It is well known that under aerobic 
conditions, normal cells first undergo glycolysis in the cytosol followed by mitochondrial oxidative phosphorylation 
(OXPHOS) to obtain energy [11]. When hypoxia, cells rely on glycolysis rather than oxygen-consuming mitochondrial 
metabolism for energy [12]. However, the metabolic pattern of tumors differs from that of normal cells [13]. As first 
observed by Otto Warburg, the phenomenon that cancer cells prefer to undergo glycolysis in the cytosol even in the 
presence of oxygen is known as the “Warburg effect" or "aerobic glycolysis” [14]. Because the immortal proliferation 
of tumor cells requires a faster energy supply, the rate of ATP production by glycolysis is much faster than that by 
oxidative phosphorylation, although the production of ATP per glucose molecule is much less efficient[15]. Current 
studies have found that metabolism-related genes are closely related to the occurrence, development, and progno-
sis of tumors [16]. Cancer cells undergo a process of gradual adaptation to metabolism, which allows tumor cells to 
grow and proliferate rapidly, thereby supporting tumor initiation and progression. Accumulating evidence points 
to the fact that immune responses are associated with marked alterations in tissue metabolism, including nutrient 
consumption, increased oxygen consumption, and production of reactive nitrogen and oxygen intermediates [17]. 
Likewise, many metabolites in the tumor microenvironment also affect immune cell differentiation and effector func-
tion [18]. But recent studies have shown that immune cells compete with cancer cells and other proliferating cells for 
nutrients in the microenvironment [19]. Thus, it suggests that metabolic intervention holds promise for improving 
the effectiveness of immunotherapy.

In the present study, information on genes related to metabolism was collected. Gene expression data from multi-
center platforms were used to construct PDAC molecular subtypes based on genes related to energy metabolism. 
The relationship between molecular subtypes and prognosis was further evaluated. Finally, ABHD17C was screened 
as an independent prognostic evaluation index for PDAC patients with LASSO-Cox regression analysis. The marker 
can evaluate the prognosis of PC patients and be validated in vivo and in vitro assays. In addition, we evaluated the 
function of ABHD17C in terms of clinical relevance, metabolic relevance, immune landscape, and prediction of anti-
PD1 therapy.

2  Materials and methods

2.1  Data acquisition

Three separate PDAC cohorts with intact genetic expression profiles and clinical information were enrolled in our 
work: The Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer.gov/) cohort; the GSE62452 (GEO, https:// www. 
ncbi. nlm. nih. gov/ geo/) cohort; The clinicopathologic data for all cohorts are displayed in Supplementary table 5. 
The TCGA public database that we downloaded contains mainly three types of pancreatic cancer data: Pancreas-
Adenocarcinoma Ductal Type (150), Pancreas-Adenocarcinoma-Other Subtype [24], and Pancreas-Colloid (mucinous 
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non-cystic) Carcinoma [4]. The raw single cell RNA sequence data presented in this paper have been deposited in the 
Genome Sequence Archive (CRA001160) at the National Genomics Data Center (NGDC) of the Chinese Academy of 
Sciences. We derived metabolism-related gene sets from classical gene sets available in the GSEA database. Genetic 
expression profiles and clinical information of six PDAC patients in our center were listed in Supplementary table 1. 
We adhered strictly to the rules of accessing the publicly available database, and since the data was obtained from a 
public database, we did not require approval from the regional ethics board. All patients provided written informed 
consent for the use of their specimens and disease information for future research following the Ethics Committee 
of Tianjin Medical University Cancer Institute and Hospital, China, and under the tenets of the Declaration of Helsinki 
(ID number of ethics approval: PMIF-2021014).

2.2  Comprehensive analysis of immune infiltration characteristics of different metabolism‑related 
subgroups

Based on the RNA-seq dataset of GSE62452 database (GEO), we evaluated the immune infiltration characteristics of 
PDAC by seven online tools: CIBERSORT, TIMER, CIBERSORT_ABS, EPIC, MCPcounter, Quantiseq. Then, we compared the 
immune cells in the six genes which are consistent with our prognostic signature.

2.3  Energy metabolic molecular subtypes

We analyzed the metabolism-related molecular subtype of PDAC using a total of 594 genes. We utilized non-negative 
matrix factorization (NMF) consensus clustering from the "NMF" R package to cluster all PDAC samples in the GSE62452 
dataset. We performed survival analysis and independence tests on the clustering results. We compared the gene set 
variation analysis (GSVA) of different groups and obtained the immune scores of the subtypes through the use of the 
TIMER (tumor immune estimation resource) tool.

2.4  DEGs identification and bioinformatics analysis

We employed the "DESeq2" R package to compute the differentially expressed genes (DEGs) of the subtypes with a false 
discovery rate (FDR) < 0.05 and absolute log2 fold change (|log2FC|) > 1. Subsequently, we conducted Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses based on these DEGs. The 
differentially expressed genes (DEGs) were listed in Supplementary table 2.

2.5  Western blot analysis

For protein isolation, either pancreatic cancer tissue samples or pancreatic cancer cell lines were used, and the obtained 
protein was processed for western blotting. Equal amounts of protein were loaded onto SDS-PAGE gels and transferred 
to PVDF membranes. The membranes were blocked with 5% nonfat dry milk diluted in TBST for 1 h, and incubated with 
primary antibodies against GLUT1(ab15309, Abcam, UK), GLUT4(ab33780, Abcam, UK), MCT1 (EMD Millipore Corpora-
tion, USA), MCT4(sc-50329, SCB, USA), ABHD17C(PA5-61831, Thermofisher) overnight at 4 °C. The following day, the 
blots were incubated with the appropriate secondary antibody (1:5000) for 1 h at room temperature. The blots were 
then visualized using an ECL kit (eBioscience), and imaged using an Image Lab imaging system. The amount of protein 
loaded was 50 μg for cell culture and 100 μg for patient tissue.

2.6  Immunocytochemistry staining

Immunohistochemistry (IHC) was employed to detect ABHD17C in tumour tissue. Firstly, paraffin-embedded sections of 
tumour tissue were deparaffinized and subjected to antigen retrieval by heat treatment in a pressure cooker for 3 min. 
The sections were then incubated with primary antibodies overnight at 4 °C. Subsequently, a peroxidase-conjugated 
secondary antibody was used to detect antibody binding at 37 °C for 30 min. A chromogenic reaction was carried out 
using a DAB substrate kit. Staining intensity was evaluated using a scale of 0 (negative), 1 (low), 2 (medium), or 3 (high), 
while the extent of staining was scored as 0 (0% stained), 1 (1–25% stained), 2 (26–50% stained), or 3 (51–100% stained). 
Five random fields (20 × magnification) were evaluated using a light microscope. The final staining score was determined 
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by multiplying the intensity and extent scores and dividing the samples into four grades: 0 (negative, −), 1–2 (low stain-
ing, +), 3–5 (medium staining, + +), and 6–9 (high staining, +  + +).

2.7  Construction and validation of risk model

The training cohort’s expression data of the DEGs were utilized to construct a risk score model. The impact of each DEG 
on the overall survival (OS) of PDAC patients was estimated using the univariate Cox proportional risk regression model. 
Statistical significance was considered at Log-rank P < 0.01. To narrow down the number of genes in our model, we 
employed LASSO-Cox regression. The risk score model included individual normalized gene expression values weighted 
by their LASSO-Cox coefficients. We validated the robustness of the risk model using internal and external validation 
cohorts. The R package "timeROC" was used to plot the risk score distribution of each sample. Subsequently, we used 
the Gordon index to calculate the cutoff value and divide the samples into high- and low-risk groups. We compared the 
survival difference between the two groups using a log-rank test and performed the K-M survival curve to analyze the 
OS of each group.

2.8  Prognostic value of the risk signature in training and validation group

The patients were classified into high- and low-risk groups based on the median value of the risk score, and the prognostic 
ability of the risk signature was demonstrated by constructing Kaplan–Meier (K-M) survival curves with the Log-rank test. 
Moreover, we evaluated the performance of the two signatures by calculating the area under the curve values (AUCs) 
of the receiver operating characteristic (ROC) curves for 1-, 2-, 3-, and 5-year survival using the R package "survivalROC."

2.9  Cell culture

The human pancreatic ductal adenocarcinoma (PDAC) cell line, PANC-1, was obtained from the Type Culture Collection 
Committee of the Chinese Academy of Sciences (Shanghai, China) in 2013. The murine pancreatic ductal adenocarcinoma 
(PDAC) cell line derived from KPC mouse was generously provided by Dr. Tingbo Liang from the Department of Surgery 
at the First Affiliated Hospital of Zhejiang University. Additionally, ABHD17C-overexpressing cell lines were constructed 
in these two cell lines. Cell suspensions that meet the requirements of cell counting were divided into culture flasks, and 
the culture flasks were placed in a culture box at 37 °C and 5% CO2 for 24 h, and the medium was changed to continue 
the culture. The optimal cell concentration was 5 × 105/ml. The preparation method of cell suspension is to digest with 
0.25% trypsin solution, wash with PBS solution, add culture solution (or Hanks solution or balanced salt solution such 
as PBS), and blow to prepare the cell suspension to be tested. KPC and BxPC-3 cell lines were cultured in 1640 medium.

2.10  Subcutaneous tumorigenesis in C57BL/6 mice

Maintaining a suitable cell state is crucial for conducting tumor formation experiments. It is recommended to collect 
cells during the logarithmic growth phase when the cell density is around 80–90%. To achieve this, the following steps 
can be taken: [1] The night before cell collection, replace the culture medium with fresh medium. [2] Prior to cell col-
lection, trypsinize the cells and wash them twice with pre-cooled PBS to eliminate serum from the cells. [3] With PBS or 
serum-free medium to blow the cell precipitation to the appropriate concentration, the general amount of subcutaneous 
tumor cells inoculated is 1–5 ×  10^6 cells/mouse, the inoculated volume of 0.1 ml, so the cell suspension concentration 
of 1–5 ×  10^7 cells/ml. [4] The cells should be inoculated as soon as possible after digestion in subcutaneous nude mice, 
generally trying to complete within half an hour, the way the cell suspension on ice reduces cell metabolism. [5] The 
choice of C57BL/6 mice is generally 5–8 weeks of age, planting site selection of blood-rich areas, such as the middle and 
rear armpits, and upper groin. [6] Before inoculation, the cell suspension was fully blown away with a gun to prevent cell 
aggregation and reduce cell survival rate. The maximum diameter of mouse tumors in all animal experiments is less than 
15 mm, not exceeding the limits specified in the NIH Guidelines for Endpoints in Animal Study Proposals.

2.11  The Flow cytometry analysis of harvested tumors

The object of flow cytometry is single cell suspension, so the sample should be prepared into cell suspension, cell con-
centration of  105–107/mL. The prepared single cell suspension can be detected by fluorescence or immunofluorescence 
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labeling. The fundamental principles for sample preparation are as follows: [1] Ensure that fresh liquid and suspension 
cell samples are promptly prepared and detected. [2] Utilize appropriate methods such as washing, enzyme digestion, or 
EDTA treatment to eliminate impurities from various cell samples, resulting in the separation of adhered cells to obtain 
a single cell state. [3] For fresh solid tumor tissue, enzymatic, mechanical, or chemical dispersion can be employed to 
acquire a sufficient number of single cell suspensions. [4] The single cell suspension should contain no less than 107 
cells/mL.

2.12  Gene set enrichment analysis (GSEA)

We performed Gene Set Enrichment Analysis (GSEA) between the high- and low-risk groups to investigate potential 
molecular mechanisms. The reference gene set selected from the Molecular Signature Database was h.all.v7.2.symbols.
gmt, which comprises annotated gene sets known as Hallmarks.

2.13  Quantitative real‑time PCR (RT‑qPCR)

Total RNA was extracted from the cells using TRIZOL reagent (Macherey–Nagel, Germany), followed by reverse transcrip-
tion to cDNA using the PrimeScript™ RT reagent kit, as per the manufacturer’s instructions. PCR amplification was carried 
out using the Premix Ex Taq™ kit (Takara), with cycling conditions of 95 °C for 30s, followed by 34 cycles of 95 °C for 5s 
and 60 ℃ for 30s. The primers and probes were chemically synthesized by Sangon Biotech (China) and are provided in 
the list below: GLUT1: F 5-GCC ATG GAG CCC AGC AGC AA-3; R 5-CGG GGA CTC TCG GGG CAG AA-3; GLUT4: F 5-GCC TGT GGC 
CAC TGC TCC TG-3; R 5-GGG GTC TCT GGG CCG GGT AG-3; LDHA: F 5-CCA GTG TGC CTG TAT GGA GTG-3; R 5-GCA CTC TCA ACC 
ACC TGC TTG-3; MCT1:F5-CGC GCC GCA GCT TCT TTC TGT AAC ATT CAA GAG ATG TTA CAG AAA GAA GCT GCT TTT TTT TAAT-3;R5-
TAA AAA AAA GCA GCT TCT TTC TGT AAC ATC TCT TGA ATG TTA CAG AAA GAA GCT GCGG-3; MCT4:F5-CGC GCC GGG ATT GGC TAC 
AGC GAC ATT CAA GAG ATG TCG CTG TAG CCA ATC CCT TTT TTT TAAT-3;R5-TAA AAA AAA GGG ATT GGC TAC AGC GAC ATC TCT TGA 
ATG TCG CTG TAG CCA ATC CCG G-3.

2.14  Detection of extracellular acidification rate (ECAR)

Extracellular acidification rate Assay Kit (ECAR Assay Kit) is a kit that uses the synthesized acidification detection fluo-
rescent probe BBcellProbe ® P61 to detect changes in extracellular acidification. The dynamic real-time determination 
of extracellular acidification can be carried out directly and conveniently by simple mixing based on a fluorescence 
microplate reader. Real-time measurement of cell glycolysis activity is a reliable method for evaluating cell respiration 
for metabolic characterization and evaluating the toxic effects of treatment on cell function in a high-throughput form. 
It can be used for simple kinetic determination on standard microplates using a fluorescence microplate reader. As gly-
colysis proceeds, pyruvate is converted to lactic acid, which causes the extracellular pH to decrease. The P61 probe can 
sensitively detect the decrease of pH and increase the fluorescence signal of P61 probe, thus realizing the determination 
of ECAR. Additionally, Glycolysis Assay [Extracellular Acidification] kit (ab197244) is purchased from https:// www. abcam. 
com/ (Abcam company).

2.15  Detection of OCR(oxygen consumption rate)

Pyruvate produced by pyruvate glycolysis undergoes a lactate dehydrogenase reaction to produce lactate, allowing cells 
to quickly produce ATP without consuming oxygen to meet energy needs. The measurement of hydrogen ions in lactate 
can indicate changes in anaerobic metabolism.

2.16  Statistical analysis

Statistical analyses and data visualization in this study were performed using R (version 3.6.3) or GraphPad Prism (ver-
sion 8.3.0). Continuous variables were compared using t-test, while Fisher’s exact test or chi-square test was used for 
comparisons of categorical variables. Differences among K-M survival curves were estimated using log-rank test. P-values 
less than 0.05 (two-tailed) were considered statistically significant. We conducted a proportional hazards assumption test 
and fitted a survival regression using the survival package. The results were visualized using the survminer and ggplot2 
packages. If the best grouping method was chosen, the surv_cutpoint function in the survminer package was used to 
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select the optimal cut-off point. Paired student’s t test were performed for in vitro assays and unpaired student’s t test 
were conducted for in vivo assays. n.s., no significant statistical difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
The adjusted p-values in Figs. 1e, f, 4a, b, and Supplementary Fig. 1b, c refer to the new p-values obtained after multiple 
comparison correction was applied to the original p-values. In these cases, the false discovery rate (FDR) method was 
used for p-value correction and to identify significant pathways for visualization. On the other hand, Figs. 3d and 5e–h 
utilized the Benjamini–Hochberg method for multiple p-value correction.

3  Results

3.1  Identification and analysis of metabolism‑related differentially expressed genes in PDAC

The metabolic characteristics and microenvironment of pancreatic cancer are also recognized as important factors affect-
ing the efficacy of immunotherapy. The metabolic characteristics of pancreatic cancer primarily include high reliance on 
glucose metabolism, severe hypoxia and acidosis, lipid metabolism disorders, and abnormal amino acid metabolism. 
Therefore, screening and predicting markers of pancreatic cancer metabolic characteristics and metabolic microenvi-
ronment are beneficial in guiding pancreatic cancer immunotherapy, which can help develop more effective immuno-
therapy strategies, such as the combination of metabolic intervention and immunotherapy, to enhance the efficacy of 
immunotherapy [20, 21]. To identify potential intervention targets, we developed a workflow diagram (Fig. 1a) based 
on the metabolic characteristics and immune microenvironment of pancreatic cancer to screen genes that are signifi-
cantly positively correlated with both tumor metabolism and immunosuppressive phenotypes. We first collected 1385 
metabolism-related genes from the MSigDB database and then selected six PDAC patients who underwent surgery and 
were monitored for postoperative recurrence by ultrasound. The tissue of these six postoperative PDAC patients was 
subjected to RNA bulk sequencing (Supplementary table 1), and their immune status was evaluated by CD8 staining 
on pathological sections (Fig. 1b). Finally, we selected differentially expressed genes based on the staining intensity of 
CD8 + T cells in corresponding patients and obtained metabolism-related genes that were closely associated with low 
CD8 + T cell infiltration. In addition, we extracted prognostic-related genes from 178 PDAC patients in the TCGA database 
and obtained a metabolic-immune-related gene set (M-I-DEGs) by intersecting the three gene sets (Fig. 1c; Supplemen-
tary table 2). Next, we used the non-negative matrix factorization (NMF) method to group the expression of the M-I-DEGs 
and obtained two clusters of patients with functional differences (cluster1, M-I-DEGs_L; cluster2, M-I-DEGs_H) (Fig. 1d). 
Subsequently, we performed KEGG enrichment analysis on the different gene sets of cluster 1 and cluster 2. The enrich-
ment analysis results showed that the high expression of M-I-DEGs in cluster 2 was significantly associated with pathways 
such as carbon metabolism, glycerophospholipid metabolism, amino acid biosynthesis, and cerebellar ataxia (Fig. 1e). 
The top five GO enrichment analysis results for cluster2 patients were fatty acid metabolism, small molecule organic 
compound catabolic process, glycerolipid metabolism, phospholipid metabolism, and organic acid biosynthetic process 
(Fig. 1f ). We further performed principal component analysis (PCA) on the M-I-DEGs of the two clustering clusters, which 
showed good independence between them (Fig. 1g). To investigate the biological behavioral differences between the 
two clustering clusters, we performed survival analysis between the two groups and found that the high expression of 
M-I-DEGs in cluster2 was significantly associated with shorter overall survival (OS) and disease-free survival (DFS) (Fig. 1h, 
i). At the same time, we obtained the DEGs that were highly expressed in the cluster2 samples and presented them 
using a volcano plot (Fig. 1j). We further explored the functional enrichment of upregulated and downregulated genes 
in cluster2 using Gene Set Variation Analysis (GSVA) and visualized the top 13 significant biological processes (Fig. 1k). 
Our results showed that the upregulated genes in cluster2 mainly participated in pathways such as PDL1 expression 
and PD1 checkpoint pathway in cancer, PI3K-Akt signaling pathway, Hippo signaling pathway, and pancreatic cancer. 
Finally, we analyzed the abundance of tumor-infiltrating immune cells in the two clusters and found that activated B cells, 
NK cells, dendritic cells, activated CD4 + T cells, and activated CD8 + T cells were significantly decreased in the cluster2 
group (Fig. 1l). Our research results demonstrate that the screened M-I-DEGs can affect the metabolism and immune 
microenvironment of pancreatic cancer and predict the prognosis of pancreatic cancer. We will continue to search for 
a more meaningful target that can predict the metabolic and immune microenvironment characteristics of pancreatic 
cancer and guide the immune checkpoint inhibition therapy for pancreatic cancer. In the future, metabolic interven-
tions based on this target may improve the effectiveness of PDAC immunotherapy and further enrich the feasibility of 
pancreatic cancer immunotherapy.



Vol.:(0123456789)

Discover Oncology           (2023) 14:87  | https://doi.org/10.1007/s12672-023-00690-7 Research

1 3

Fig.1  Identification and analysis of metabolism-related differentially expressed genes in PDAC. a The flowchart of the screening of differ-
entially expressed genes(DEGs); b The postoperative PDAC tissues of six patients who were monitored by ultrasonography were performed 
with RNA bulk sequencing, and then the analysis of the differentially expressed gene was performed according to the stained intensity of 
CD8 + T cells in corresponding patients; c The intersection of DEGs was shown with venn diagram; all differentially expressed genes were 
selected according to p.adj value(p.adj < 0.05) and LogFC(LogFC > 1.5); d Non-negative Matrix Factorization (NMF) method was used among 
all samples according to the expression of mDEGs; e KEGG analysis was conducted with the DEGs; f GO analysis was conducted with the 
DEGs; g Principal component analysis (PCA) of different clusters was conducted; h, i K-M survival analysis of disease-free survival (DFS; no 
recurrence/progression) and overall survival (OS) between the two metabolic subtypes was performed; j the cluster2 was selected. The 
up-regulated and down-regulated genes were presented with volcano plot; red colored indicated up-regulated genes and blue colored 
indicated down-regulated genes; k GSVA enrichment analysis was performed between two clusters; red represented activated pathways 
and blue represented inhibited pathways; l The abundance of tumor-infiltrating immune cells was analyzed with CIBERSORT software. We 
conducted a proportional hazards assumption test and fitted a survival regression using the survival package. The results were visualized 
using the survminer and ggplot2 packages. If the best grouping method was chosen, the surv_cutpoint function in the survminer package 
was used to select the optimal cut-off point. Paired student’s t test were performed for in vitro assays and unpaired student’s t test were 
conducted for in vivo assays; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. The adjusted p-values in Fig. 1e, f refer to the new p-values 
obtained after multiple comparison correction was applied to the original p-values. In this case, clusterProfiler, an R package, automatically 
used the false discovery rate (FDR) method to correct the p-values and identify significant pathways for KEGG and GO analyses
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3.2  Construction of a metabolism‑related risk model to predict the disease‑free survival of pdac patients

To identify a comprehensive and effective metabolic risk marker, we continued to select 48 cross-genes and then 
performed LASSO-Cox regression analysis on key metabolic differential genes related to overall survival. After cross-
validation, ABHD17C was identified as the target gene with the minimum deviation probability that influences pan-
creatic cancer survival prognosis (Fig. 2a, b). First, we prospectively selected eight paired pancreatic ductal adeno-
carcinoma (PDAC) and adjacent tissue samples for validation of ABHD17C expression levels. Our results showed that 
ABHD17C was significantly increased at the protein level in eight prospective PDAC tissues compared with adjacent 
normal tissues, as well as at the mRNA level, which was evaluated by gel electrophoresis after PCR product quanti-
fication (Fig. 2c-d). Subsequently, we retrospectively performed immunohistochemical analysis on 20 pairs of PDAC 
tissues and adjacent normal pancreatic tissues. The researchers found that ABHD17C was more upregulated in tumor 
tissues relative to adjacent normal tissues (Fig. 2e). To further increase the strength of the evidence, we downloaded 
single cell transcriptome sequencing data for 24 cases of pancreatic ductal adenocarcinoma from PRJCA003818. We 
selected KRT19 and EPCAM as markers for all ductal epithelial cells and MUC1 and FXYD3 as markers for malignant 
ducts to distinguish between malignant and benign ducts. Single cell transcriptome sequencing analysis showed 
that ABHD17C expression was significantly upregulated in malignant ductal cells (Fig. 2f–h). However, the biological 
malignant behavior and risk value of ABHD17C in PDAC patients at our center are still unclear. We further performed 
IHC analysis on PDAC samples from 100 tumor tissue samples on a microarray chip at our center. Based on the expres-
sion level of ABHD17C, tumor tissues were divided into ABHD17C low-expression and ABHD17C high-expression 
groups. The correlation analysis showed that ABHD17C high expression was positively correlated with tumor size 
(R = 0.520, p = 0.000), histological grade (R = 0.221, p = 0.031), TNM stage (R = 0.205, p = 0.034), and histological grade 
of tumor tissue (R = 0.226, p = 0.031) in PDAC patients (Supplementary table 3). The K-M analysis showed that patients 
with high expression of ABHD17C had significantly lower rates of OS, DSS, and PFI than those with low expression 
of ABHD17C (Fig. 2j, l). Furthermore, we performed additional K-M analysis in 150 PDAC patients from the public 
TCGA database, which provided similar results (Fig. 2m; Supplementary Fig. 3a, b; Supplementary table 4, 5). Taken 
together, the results from our center and public databases indicated that the expression of ABHD17C was negatively 
correlated with OS, DSS, and PFI in PDAC patients, and it could serve as a valuable prognostic marker for predict-
ing PDAC development and progression. To further validate the function of ABHD17C, we conducted KEGG and GO 
pathway enrichment analysis and immune infiltration analysis using the previously downloaded single cell transcrip-
tome sequencing data. Our results showed that high expression of ABHD17C in malignant ductal cells was positively 
correlated with metabolic processes and could be enriched in cancer-related signaling pathways such as MAPK 
signaling pathway, protein glycosylation, Wnt signaling pathway, and PI3K-Akt signaling pathway (Supplementary 
Fig. 1a–c). In addition, our results indicated that ABHD17C from tumor cells could reduce the infiltration of cytotoxic 
T cells and increase the levels of Tregs, TAMs, and granulocytic cells, which may exacerbate the immune-suppressive 
microenvironment and promote tumor burden (Supplementary Fig. 2a).

3.3  Overexpression of ABHD17C remodels the information of the immune suppressive environment

Based on the screening strategy and analysis results mentioned above, ABHD17C is a critical prognostic and diag-
nostic marker for pancreatic cancer and is closely associated with the immunosuppressive microenvironment and 
metabolic state of pancreatic cancer. To further determine the function of ABHD17C in reshaping the immunosup-
pressive environment of pancreatic cancer in vitro and in vivo, we first constructed stable mouse-derived KPC-
ABHD17C-Vector/OE cell lines and human-derived PANC-1-ABHD17C-Vector/OE cell lines (Fig. 3a). Subsequently, 
the KPC-ABHD17C-Vector/OE cell lines were subcutaneously injected into immunocompetent C57/BL mice, and the 
tumor size was measured three times a week to generate growth curves based on the measured data (Fig. 3b). Our 
results showed that the upregulation of ABHD17C significantly increased tumor burden (Fig. 3c, d). We also inves-
tigated the effect of ABHD17C overexpression on the proportion of different types of immune cells in the tumor 
microenvironment by analyzing the collected tumors using flow cytometry. Our results revealed that the infiltration 
of myeloid-derived suppressor cells (MDSCs) was significantly increased in the KPC-ABHD17C-OE group compared to 
the KPC-ABHD17C-Vector group (Fig. 3e, f ). Furthermore, our additional results showed that the percentage of CD8 + T 
cells and the percentage of cytotoxic factors (TNFα and IFNγ) were significantly decreased in the KPC-ABHD17C-OE 
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Fig. 2  Construction of a Metabolism-Related Risk Model to Predict the Disease-Free Survival of PDAC Patients. a, b The Lasso-Cox regres-
sion analysis was performed with 48 intersecting genes in cluster 2; the minimum partial likelihood deviance was selected to identify the 
targeted marker, ABHD17C. c, d Western blot and PCR assays in eight paired tumor tissues and adjacent normal pancreatic tissues were 
performed to verify the expression of ABHD17C; e IHC analysis in paired tumor tissues and adjacent normal pancreatic tissues was con-
ducted to estimate the expression intensity of ABHD17C; the results were shown with heatmap. f The single cell RNA sequencing datasets 
downloaded from CRA10016 were analyzed with Seurat software, and displayed with UMAP plot; all cell types were color coded. g The 
malignant ductal cells were identified with KRT19, EPCAM, FXYD3, and MUC1 markers; all selected markers were presented with UMAP plot. 
h ABHD17C was color-coded and presented with UMAP plot. i we performed IHC analysis in the microarray chip which contains one hun-
dred tumor tissue samples; The one hundred samples were divided into two groups according to the expression of ABHD17C. j–l The K-M 
analysis of our data was conducted in patients with high ABHD17C expression compared with patients with low ABHD17C expression; the 
overall survival (OS) time, disease-free survival (DFS) time, and progression-free interval (PFI) time were calculated in two groups. m The 
K–M analysis of public data in the TCGA database was conducted in patients with high ABHD17C expression compared with patients with 
low ABHD17C expression; the overall survival (OS) time and disease-free survival (DFS) time were calculated. We conducted a proportional 
hazards assumption test and fitted a survival regression using the survival package. The results were visualized using the survminer and 
ggplot2 packages. If the best grouping method was chosen, the surv_cutpoint function in the survminer package was used to select the 
optimal cut-off point. Paired student’s t test were performed for in  vitro assays and unpaired student’s t test were conducted for in  vivo 
assays. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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group compared to the KPC-ABHD17C-Vector group (Fig. 3g–h, k–n), whereas the percentage of CD8 + PD1 + T cells 
was significantly increased (Fig. 3i, j). Based on these results, we concluded that MDSCs are bone marrow-derived 
cells that typically exert immunosuppressive functions, and an increase in the proportion of MDSCs due to ABHD17C 
overexpression leads to the formation of an immunosuppressive microenvironment in pancreatic cancer. CD8 + T 

Fig. 3  Overexpression of ABHD17C remodels the information of the immune suppressive environment. a the KPC murine cell lines and 
PANC1 human cell lines which stably expressed ABHD17C were constructed; the validation of ABHD17C expression was presented with 
western blot; b the murine KPC-ABHD17C-vector/OE cell lines were constructed and injected subcutaneously into C57/BL mouse, and the 
tumor size was measured after implantation three times a week; c, d The tumor size was monitored and the growth curve was recorded; 
e–n the harvested tumors were performed with flow cytometry analysis; Representative dot plots and statistical analysis of the frequency 
of MDSCs, and CD3 + CD8 + T cells. Representative dot plots and statistical analysis of the frequency of tumor-infiltrating CD8 + IFNγ + T cells, 
CD8 + PD1 + T cells, and CD8 + Grzmb + T cells. Experiments were repeated three times independently. Representative data are shown. Data 
are presented as mean ± SD. We conducted a proportional hazards assumption test and fitted a survival regression using the survival pack-
age. Paired student’s t test were performed for in vitro assays and unpaired student’s t test were conducted for in vivo assays. n.s., no signifi-
cant statistical difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. In c, d, the tumor volume was calculated based on the long and 
short diameters measured at multiple time points for both the control and experimental groups. The Benjamini–Hochberg method was 
used for multiple p-value correction
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cells, on the other hand, are effector cells that exert specific killing effects, and the secretion of TNFα and IFNγ can 
mediate the killing function of CD8 + T cells. However, high PD1 expression leads to CD8 + T cell exhaustion, and an 
increase in PD1 + CD8 + T cells and a decrease in TNFα + /IFNγ + CD8 + T cells due to ABHD17C in the pancreatic can-
cer microenvironment can promote the immune escape of tumor cells and inhibit immune killing. Therefore, based 
on the above research results, the elevation of ABHD17C in pancreatic cancer cells may promote the formation of 
an immunosuppressive environment, increase tumor burden, and promote the occurrence and development of 
pancreatic cancer.

3.4  ABHD17C was positively correlated with the glycolytic process of tumor cells in PDAC

According to the results presented in Fig. 3, the increase of tumor-derived ABHD17C may promote the development 
of pancreatic cancer by reshaping the immunosuppressive microenvironment. However, it is unclear how ABHD17C, a 
tumor-derived factor, influences the pancreatic cancer microenvironment. To further understand the potential mecha-
nisms underlying the increased tumor burden and accelerated formation of the immunosuppressive microenvironment 
by ABHD17C, we performed GSEA enrichment analysis on the mRNA sequencing results of PANC-1-ABHD17C-Vector and 
PANC-1-ABHD17C-OE cell lines. Our enrichment analysis revealed that overexpression of ABHD17C significantly enriched 
the HALLMARK_GLYCOLYSIS pathway (NES = 1.8693, Nominal P-value = 0, FDR = 0.0089) and the HALLMARK_MYC_TAR-
GET_V1 pathway (NES = 2.4187, Nominal P-value = 0, FDR = 0.0). The HALLMARK_MYC and HALLMARK_GLYCOLYSIS path-
ways are critical metabolic pathways in glycolysis, indicating that the overexpression of ABHD17C is positively correlated 
with the glycolysis process of pancreatic cancer tumor cells (Fig. 4a, b).

To validate our conclusion, we selected key effectors in the two enriched pathways, MCT1, MCT4, GLUT1, GLUT4, and 
LDHA, for verification. Our qPCR and western blotting results showed that the elevation of ABHD17C could increase 
the expression of MCT1, MCT4, GLUT1, GLUT4, and LDHA at both the protein and mRNA levels (Fig. 4c, d). MCT1 and 
MCT4 are classic lactate transport proteins, GLUT1 and GLUT4 are key glucose uptake channel proteins, and LDHA is a 
key molecule involved in the later stage of lactate metabolism in glycolysis. In summary, our results demonstrate that 
ABHD17C is closely related to the glycolysis process, which may be a potential mechanism underlying its effects on the 
pancreatic cancer immune microenvironment. However, further functional experiments on glycolysis are needed to 
support this conclusion.

3.5  Elevation of ABHD17C increases the glycolytic ability of tumor cells in PDAC

In Fig. 4, we observed a significant positive correlation between tumor-derived ABHD17C and glycolysis. However, more 
convincing evidence is needed to directly demonstrate that ABHD17C promotes glucose metabolism in pancreatic can-
cer cells. Therefore, we conducted four classical glycolysis-related functional experiments to provide further evidence: 
glucose uptake assay, lactate secretion assay, OCR, and ECAR experiments. Previous studies have shown that increased 
glycolytic capacity in tumor cells leads to increased glucose uptake and lactate excretion, while ECAR and OCR are key 
experiments that reflect glycolytic capacity. The results of glucose uptake and lactate metabolism assays indicated that 
the elevation of tumor-derived ABHD17C significantly increased glucose uptake and lactate secretion (Fig. 5a–d). Sub-
sequently, ECAR and OCR experiments, which represent the potential storage capacity and maximum storage capacity 
of glycolysis, demonstrated that the overexpression of ABHD17C increased the glycolysis level of pancreatic cancer 
cells (Fig. 5e–h). These glycolysis-related functional experiments indicate that ABHD17C promotes glycolysis levels by 
increasing the glycolytic storage capacity of pancreatic cancer cells, thereby enhancing the glucose uptake ability and 
lactate secretion level of tumor cells, leading to a significant decrease in the pH value of the microenvironment. This may 
be a key factor in the reshaping of the immune microenvironment. Next, we need to conduct blocking experiments to 
further confirm our results.

3.6  The aggravation of tumor burden caused by ABHD17C was inhibited by LDHA inhibition which resulted 
in glycolysis defect

However, the mechanism of the alleviation of tumor burden caused by ABHD17C was not clearly figured out in this 
research. Subsequently, the key glycolytic gene, LDHA, was identified as a key enzyme subunit for lactic acid produc-
tion, and the knockout of LDHA could result in glycolysis defects. So KPC-ABHD17C-vector-LDHA-Ctrl, KPC-ABHD17C-
vector-LDHA-KD, KPC-ABHD17C-OE-LDHA-Ctrl, KPC-ABHD17C-OE-LDHA-KD were constructed for subsequent research 
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(Fig. 6a), and the growth of KPC-ABHD17C-OE-LDHA-KD tumor was significantly slower than that of KPC-ABHD17C-
OE-LDHA-Ctrl with complete glycolysis (Fig. 6b, Supplementary Fig. 4a, b). Flow cytometry analysis of harvested tumor 
indicated that the analysis observed that the infiltration of MDSCs significantly reduced in KPC-ABHD17C-OE-LDHA-KD 
group than that in KPC-ABHD17C-vector-LDHA-Ctrl group (Fig. 6c). Besides the proportion of CD8 + T cells level and 
the percentage of functional factors in CD8 + T cells notably elevated in KPC-LDHA-KD group compared with that in 

Fig. 4  ABHD17C was positively correlated with the glycolytic process of tumor cells in PDAC. a, b Gene set enrichment analysis (GSEA) was 
conducted based on the mRNA expression level of ABHD17C in ten PDAC tissues in our center. We then filtered significantly differentially 
enriched pathways based on the adj. p-value and enrichment score(ES), and the adjusted p-value < 0.05 was considered to represent a 
significant difference; c QPCR assay was conducted to estimate the relationship between ABHD17C and metabolic markers(MCT1, MCT4, 
LDHA, GLUT1, and GLUT4). Experiments were repeated three times independently. Representative data are shown. Data are presented as 
mean ± SD. **P < 0.01; ***P < 0.001; ****P < 0.0001; n. s., no significant statistical difference. d Western blot assay was performed to identify 
the relative expression of metabolic markers (MCT1, MCT4, LDHA, GLUT1, and GLUT4) between ABHD17C-vector and ABHD17C-OE group. 
Paired student’s t test were performed for in vitro assays and unpaired student’s t test were conducted for in vivo assays. n.s., no signifi-
cant statistical difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. In a, b, the adjusted p-values refer to the new p-values obtained 
after multiple comparison correction was applied to the original p-values in GSEA analysis. The R package GSEA automatically used the FDR 
method to correct the p-values and identify significant pathways
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KPC-LDHA-Ctrl group (Fig. 6d–f ). In summary, we have demonstrated that inhibition of the key gene LDHA in the tumor 
glycolytic metabolism significantly improves the immune microenvironment and delays tumor burden increase in the 
context of ABHD17C overexpression. These findings suggest that the immunosuppressive microenvironment formation 
and tumor burden increase caused by ABHD17C are mainly attributed to the elevation of glycolytic level in pancreatic 
cancer.

Fig.5  Elevation of ABHD17C increases the glycolytic ability of tumor cells in PDAC. a–d the relative ratio of lactate excretion and glucose 
uptake was calculated in indicated cell lines. Experiments were repeated three times independently. Representative data are shown. Data 
are presented as mean ± SD. e–h ECAR and OCR assays which represented the potential ability of glycolysis were performed between PANC-
1(KPC)-ABHD17C-vector and PANC(KPC)-1-ABHD17C-OE cell lines; Paired student’s t test were performed for in vitro assays and unpaired 
student’s t test were conducted for in vivo assays. n.s., no significant statistical difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
In Fig. 5e–h, the maximum glycolytic capacity and basal energy storage were measured at multiple time points for both the control and 
experimental groups and the Benjamini–Hochberg method was used for multiple p-value correction
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3.7  ABHD17C expression could predict the efficacy of anti‑PD1 therapy in pancreatic cancer

In our previous study, we noticed that the elevation of ABHD17C could increase the infiltration of MDSCs, and tumoral 
ABHD17C could promote the remodel of an immunosuppressive environment. Our results speculated that the expression 

Fig.6  The aggravation of tumor burden caused by ABHD17C was inhibited by LDHA inhibition which resulted in glycolysis defect. a the 
murine KPC-ABHD17C-vector/OE-LDHA-vector/KD cell lines were constructed and validated with western blot assay; b the murine KPC-
ABHD17C-vector/OE-LDHA-vector/KD cell lines were injected subcutaneously into C57/BL mouse; the subcutaneous tumors were ran-
domly divided into KPC-ABHD17C-vector/OE -vector group and KPC-ABHD17C-vector/OE-LDHA-KD group; c–f the harvested tumors were 
performed with flow cytometry analysis; Representative dot plots and statistical analysis of the frequency of tumor-infiltrating T reg cells, 
MDSCs, and CD3 + CD8 + T cells. Representative dot plots and statistical analysis of the frequency of tumor-infiltrating CD8 + IFNγ + T cells, 
CD8 + PD1 + T cells, and CD8 + Grzmb + T cells. Experiments were repeated three times independently. Representative data are shown. Data 
are presented as mean ± SD. Paired student’s t test were performed for in  vitro assays and unpaired student’s t test were conducted for 
in vivo assays. n.s., no significant statistical difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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of ABHD17C in KPC cells could efficiently predict the efficacy of anti-PD1 therapy. To confirm these effects, we performed 
the correlation between tumoral ABHD17C and the efficacy of anti-PD1 therapy (Fig. 7a, b); We first searched for data-
sets of pancreatic cancer patients treated with Anti-PD1/CTLA-4/PD-L1. Based on the expression of ABHD17C and the 
corresponding patients’ responsiveness to ICB treatment, we calculated the specificity and sensitivity of predicting ICB 
therapy for patients with high ABHD17C expression and plotted the ROC curve (Supplementary Fig. 5a, b). Additionally, 
we plotted survival curves between the high and low ABHD17C expression groups (Supplementary Fig. 5c). The ROC 
analysis in three cohorts(Riaz cohort 2018, A; Gao cohort 2018, B; Cho cohort 2020, C) and drug sensitivity analysis in 
public datasets inferred that overexpression of ABHD17C increased the resistance of anti-PD1 therapy (Supplementary 
Fig. 5). Subsequently, our results indicated the BLI Fluorescence value of anti-PD1 treatment significantly decreased in the 
KPC—ABHD17C-Vector group, but no significant decrease in the KPC—ABHD17C-OE group in the orthotopic C57BL/6 
tumor mice model (Fig. 7c); moreover, anti-PD1 treatment could significantly prolong the survival time in KPC-ABHD17C-
Vector group, comparing with KPC-ABHD17C-OE group (Fig. 7d). We inferred that one of the main reasons for inhibiting 
tumor proliferation was that the deficiency of ABHD17C caused less infiltration of MDSCs and was also accompanied 
by changes in the immune microenvironment combined with anti-PD1 therapy. To further explore the changes in the 
immune microenvironment, we detected the infiltration and functional changes of CD8 + T cells among four groups by 
flow cytometry. The results firstly showed the proportion of Ki67 + tumor cells in Vector group was significantly reduced 
than that in OE group after anti-PD1 treatment (Fig. 7e, f ). Then, we further detected the change in PD1 expression level 
in CD8 + T cells. The results indicated Vector group had a high PD1 level, which was non-sensitive to anti-PD1 therapy; 
and the high PD1 level of CD8 + T cells significantly decreased in the Vector group compared with OE group after anti-
PD1 treatment (Fig. 7g, h); Moreover, comparing with the ABHD17C-OE group, the apoptosis ratio of CD8 + T cells in the 
ABHD17C-Vector group also significantly reduced (Fig. 7i, j). In addition, the TUNEL and Ki67 immunofluorescence staining 
on tumors implanted in mice demonstrated that the overexpression of ABHD17C was strongly associated with the resist-
ance to Anti-PD1 therapy (Supplementary Fig. 5a–d). These findings provide strong evidence that ABHD17C plays a crucial 
role in modulating the resistance of ICB-based therapy by remodeling the suppressive immune environment in PDAC.

As our schematic diagram of this research shows (Fig. 8a), on the one hand, the elevation of tumor-derived ABHD17C 
in PDAC could significantly increase the expression of MCT1, MCT4, GLUT1, GLUT4, and LDHA at protein and mRNA levels, 
which increased glycolytic levels of tumor cells and the production of acidic metabolites in the microenvironment. The 
change of microenvironment caused by ABHD17C could promote the chemotaxis of MDSCs and inhibit the function 
of CD8 + T cells, resulting in an immunosuppressive microenvironment; on the other hand, the inhibition of the func-
tion of CD8 + T cells and increased proportion of MDSCs resulted by ABHD17C could increase the resistance of anti-PD1 
therapy. Finally, the deficiency of tumoral-derived ABHD17C could sensitize anti-PD1 therapy and could be expected to 
be a potential marker for the prediction of anti-PD1 therapy in pancreatic cancer.

4  Discussion

The 5-year survival rate of pancreatic cancer is only 8%, and the reason was closely related to the late discovery and early 
diagnosis difficulties [22]. Pancreatic ductal adenocarcinoma is the most common pathological type of pancreatic cancer. 
The pathological manifestations are the disorder of gland arrangement, nuclear pleomorphism, incomplete gland cavity, 
necrosis, gland invasion of blood vessels, neurophilic invasion, and lymphatic invasion [3].

Cell metabolic reprogramming is an important factor in tumorigenesis, which contributes to the occurrence and 
development of tumors [23]. With the changes in intracellular and extracellular metabolites, metabolic reprogramming 
has a profound impact on gene expression, cell heterogeneity, and TME [24]. Metabolic reprogramming also occurs in 
PDAC and exhibits a unique metabolism, although PDAC is different and self-limiting [21]. Therefore, the establishment 
of effective prognostic labels is crucial for the evaluation and treatment of PDAC.

In this study, we first identified and analyzed mDEGs (metabolism-related DEGs) in the PDAC database, which are 
enriched in lipid and amino acid-related metabolic processes. Based on these DEGs, consensus clustering analysis found 
that patients could be divided into two subgroups, and there were significant differences in DFS and OS between the 
two subgroups. These results indicate that the metabolism of PDAC is uneven, and patients with different metabolic 
patterns have different outcomes.

Subsequently, a key survival-related m-DEGs (ABHD17C), a new targeted gene, was screened by Least abso-
lute shrinkage and selection operator (lasso) analysis. ABHD17C [25] (Abhydrolase Domain Containing 17C, 
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Fig. 7  Anti-PD1 therapy inhibited tumor proliferation and improved the immune microenvironment in ABDH17C-deficient pancreatic can-
cer. a KPC-ABDH17C-vector/OE cell lines were implanted orthotopically in C57BL / 6 immunocompetent mice, the blocking antibody of PD1 
was used for intraperitoneal injection (red dots represented the beginning of administration); three times a week until the mice sacrificed. b 
Tumors implanted orthotopically were detected in vivo by bioluminescent imaging on day 7 and 21; c statistical analysis of the fold change 
of bioluminescent value was calculated; d the K-M survival analysis between KPC-vector and KPC-OE groups was performed until the sacri-
fice of mice. The color of the Bar represents the range of fluorescence intensity change; **P < 0.01; n. s., no significant statistical difference; 
the data are presented by mean + -SD. e pancreas weight(g) was calculated among four groups, and shown with a bar plot; f the percent-
age of ki67 + tumor cells was calculated; the data were statistically analyzed by histogram; g, h The infiltration ratio of CD8 + PD1 + T cells 
was detected by flow cytometry; the Y axis represents CD8 + T cell, and the X axis represents high PD1 + . i, j The apoptosis ratio of CD8 + T 
cells was detected by flow cytometry; the Y axis represents PI gated, and the X axis represents APC; the data were statistically analyzed by 
histogram; the mean + SD was used for statistical analysis between groups, **P < 0.01; *P < 0.05; ***P < 0.001;n. s., no significant statistical dif-
ference
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Depalmitoylase) is a Protein Coding gene. Among its related pathways are RAF/MAP kinase cascade and Signal 
Transduction. Gene Ontology (GO) annotations related to this gene include hydrolase microenvironment.

Subsequently, our study found overexpression of ABHD17se activity and serine-type peptidase activity [26]. We 
then constructed a KPC-ABHD17C-vector/OE cell line stably expressing ABHD17C. In vivo, experiments showed that 
the KPC-ABHD17C-OE cell line could significantly increase the tumor burden compared with the KPC-ABHD17C-vector 
group. Our study showed that overexpression of ABHD17C reduced the proportion and function of CD8 + T cells and 
increased the proportion of CD8 + PD1 + T cells. In addition, the increased expression of ABHD17C promoted the 
infiltration of MDSCs and further accelerated the formation of an immunosuppressive microenvironment.

Subsequently, our study found that overexpression of ABHD17C can be enriched to glycolysis-related signaling 
pathways; and then, our results revealed that the immunosuppressive state caused by high expression of ABHD17C 
was eliminated by knocking down the expression of LDHA [27], which is generally considered to be an important 
regulator of metabolic processes [28]. Immune checkpoint inhibition is showing promising results in various solid 
tumors and hematological malignancies as an emerging therapeutic option in cancer. However, PDAC does not 
respond well to immune checkpoint inhibitors anti-programmed cell death protein 1 (PD-1) [29, 30].

It is well known that the metabolism of tumor cells is positively correlated with immunotherapy resistance[31], 
and the “metabolic tolerance effect “ of tumor cells can easily reduce the effect of anti-PD1 therapy[32]. In addition, 
previous studies have shown that there are significant differences in the response of high and low metabolic states 
to PD1 treatment [20, 30].

With the increasing popularity of tumoral molecules for targeted therapy [33], we also predict the sensitivity of 
different PDAC patients to immune checkpoint therapy according to the different tumor metabolism caused by the 
expression of ABHD17C, to improve the treatment efficiency more accurately. Through public databases and drug 
sensitivity analysis, we first determined that high expression of ABHD17C could indeed predict resistance to anti-PD1 
therapy. Subsequently, in vivo, experiments also demonstrated that inhibition of ABHD17C expression could sensitize 
the sensitivity of anti-PD1 therapy, significantly reduce tumor burden and promote the infiltration of effector T cells.

Fig. 8  A schematic diagram of this research
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5  Conclusion

In this part of the study, we found that a single marker, ABHD17C, could predict immune checkpoint inhibition 
therapy by changing the tumor microenvironment, which can achieve the purpose of precise stratified targeted 
therapy for different patients, and play a guiding role in more accurate typing of tumor patients in the future. How-
ever, longitudinal clinical trials should be conducted to verify this hypothesis.
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