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Abstract
Background Currently, the development of breast cancer immunotherapy based on the PD-1/PD-L1 pathway is relatively 
slow, and the specific mechanism affecting the immunotherapy efficacy in breast cancer is still unclear.
Methods Weighted correlation network analysis (WGCNA) and the negative matrix factorization (NMF) were used to dis-
tinguish subtypes related to the PD-1/PD-L1 pathway in breast cancer. Then univariate Cox, least absolute shrinkage 
and selection operator (LASSO), and multivariate Cox regression were used to construct the prognostic signature. A 
nomogram was established based on the signature. The relationship between the signature gene IFNG and breast cancer 
tumor microenvironment was analyzed.
Results Four PD-1/PD-L1 pathway-related subtypes were distinguished. A prognostic signature related to PD-1/PD-L1 
pathway typing was constructed to evaluate breast cancer’s clinical characteristics and tumor microenvironment. The 
nomogram based on the RiskScore could be used to accurately predict breast cancer patients’ 1-year, 3-year, and 5-year 
survival probability. The expression of IFNG was positively correlated with CD8+ T cell infiltration in the breast cancer 
tumor microenvironment.
Conclusion A prognostic signature is constructed based on the PD-1/PD-L1 pathway typing in breast cancer, which can 
guide the precise treatment of breast cancer. The signature gene IFNG is positively related to CD8+ T cell infiltration in 
breast cancer.
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1 Introduction

As one of the most common cancers worldwide, breast cancer is the leading cause of tumor-related death in women [1]. 
Currently, treatment strategies for breast cancer are selected based on histopathology and specific genetic characteristics, 
mainly including surgery, hormone replacement, chemoradiotherapy, and targeted therapy [2, 3]. However, the current 
effect of conventional treatment is not ideal for patients with advanced breast cancer, especially those with triple-negative 
breast cancer [4].

As critical immune checkpoints, PD-1/PD-L1 can regulate the function of T cells and play an essential role in maintain-
ing immune homeostasis under physiological conditions [5, 6]. In the complex tumor microenvironment, the PD-1/PD-L1 
pathway controls immune tolerance in the tumor microenvironment, which is the main mechanism of immune escape of 
tumor cells [7]. In recent years, immune checkpoint inhibitors targeting the PD-1/PD-L1 pathway have shown great success 
and promoted the development of immunotherapy in various tumors, bringing hope to breast cancer.

Compared with lung cancer, malignant melanoma, breast cancer has a low gene mutation rate and poor immunogenicity 
and was previously considered a cold immune tumor [8, 9]. As the clinical practice of PD-1/PD-L1 inhibitors in breast cancer 
is in full swing and the understanding is deepening, more and more clinical trials such as KEYNOTE-119 [10] and NEWBEAT 
[11] have confirmed the close connection between breast cancer and immunotherapy. However, breast cancer, a complex 
genetic disease, can be further subdivided into luminal A, luminal B, HER2-positive, and basal-like. It has the characteristics 
of strong heterogeneity and significant individual differences. Prognosis among different subtypes and tumor immune-
related indicators such as tumor-infiltrating lymphocytes, PD-L1 expression, and tumor mutation burden (TMB) are pretty 
different [12]. Currently, PD-1/PD-L1 inhibitors have limited efficacy in treating hormone receptor-positive metastatic breast 
cancer. Even in triple-negative breast cancer with the most popular immunotherapy research, the objective response rate 
of single-agent PD-1/PD-L1 inhibitor therapy is difficult to more than 30% [9]. There are many unknowns about the PD-1/
PD-L1 pathway in breast cancer, and the overall response rate of PD-1/PD-L1 inhibitors in patients is not ideal, which limits its 
clinical application. It is urgent to clarify further the relationship between the PD-1/PD-L1 pathway and clinical characteristics 
of breast cancer patients to carry out risk stratification and guide precise clinical treatment.

In recent years, the era of big medical data has made it possible for us to conduct multi-omics and multi-angle analyses 
of tumors to find biomarkers [13–15]. We systematically evaluated the characteristics of the PD-1/PD-L1 pathway in breast 
cancer, based on which we performed molecular classification of breast cancer and analyzed the clinical prognostic charac-
teristics of different subtypes. The prognostic signature related to PD-1/PD-L1 pathway molecular typing was further con-
structed, and a nomogram was drawn to predict the survival of breast cancer patients. Immunohistochemistry was used to 
verify the expression of the signature gene IFNG in breast cancer samples and we further explored the relationship between 
IFNG and immune infiltrating cells in the breast cancer tumor microenvironment. The workflow of this study is shown in Fig. 1.

2  Materials and methods

2.1  Data acquisition and differentially expressed genes (DEGs) analysis

TCGA-BRCA (breast cancer) and breast tissue protein coding gene data were obtained from the TCGA database, and DESeq2 
[16] was used for data processing. GSE20711 [17], GSE103091 [18], GSE42568 [19], and GSE76250 [20] were obtained from 
the GEO database, and limma [21] was used for data processing. DEGs were defined as the adjusted P value < 0.05, |log2fold-
change| > 1. The public immunohistochemical staining information was obtained from the HPA database [22]. Breast cancer 
single-cell sequencing data were obtained from the single-cell sequencing dataset in Single Cell Portal (https:// singl ecell. 
broad insti tute. org/ single_ cell) [23]. The “PD-L1 expression and PD-1 checkpoint pathway in cancer” gene set (hsa05235) was 
downloaded from the Kyoto protocol encyclopedia of genes and genomes (KEGG) database, and the gene set was presented 
in the supplementary materials (Supplementary Table S1).

2.2  PD‑1/PD‑L1 pathway scoring and function enrichment analysis

The PD-1/PD-L1 pathway in breast cancer was analyzed by gene set variation analysis (GSVA) [24]. Gene ontology (GO) or 
KEGG analysis was performed using “ClusterProfiler” [25]. “h.all.v7.5.1 symbols.gmt” was obtained from MSigDB database 
for gene set enrichment analysis (GSEA) [26].

https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
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2.3  Establishment of WGCNA and identification of the key module related to the PD‑1/PD‑L1 pathway 
in breast cancer

DEGs were included in WGCNA [27] to identify the module most related to the PD-1/PD-L1 pathway in breast cancer. The 
soft threshold β was selected when close to 0.9 (1 to 20). The hierarchical clustering method was used to identify mod-
ules (the minimum number of genes in the module was 30), and similar modules were merged (abline = 0.25). Pearson 
correlation analysis was used to evaluate the correlation between module eigengene (ME, the first principal component 
of a given module, representing the gene expression of the whole module) and PD-1/PD-L1 pathway scores. Gene sig-
nificance (GS) represented the Pearson correlation coefficient between gene expression and the PD-1/PD-L1 pathway. 
Modular membership (MM) could be obtained by correlation analysis between the expression level of this gene and 
the module eigengene. MM was used to measure the importance of genes in the module. GS greater than 0.5 and MM 
greater than 0.8 were selected to screen genes in the module.

2.4  Molecular typing based on the PD‑1/PD‑L1 pathway in breast cancer

TCGA breast cancer samples were classified by non-negative matrix factorization (NMF) (method = “brunet”) [28] accord-
ing to breast cancer PD-1/PD-L1 pathway key genes obtained in the above steps. The appropriate subtype fraction 
number k was determined by cophenetic correlation, dispersion, and silhouette.

Fig. 1  The study flowchart. Firstly, WGCNA was performed on breast cancer samples in the TCGA database, and a total of 25 key genes of the 
PD-1/PD-L1 pathway in breast cancer were identified. TCGA breast cancer samples were classified accordingly. Next, univariate Cox analysis, 
LASSO, and multivariate Cox analysis were used to screen prognostic genes. A seven-gene signature was constructed, and the nomogram 
was further built. Subsequently, immune correlation analysis, somatic mutation, drug sensitivity analysis, GO, KEGG, and GSEA were applied 
to determine the clinical applicability of this signature. Finally, immunohistochemistry was used to verify the expression and function of the 
key prognostic gene
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2.5  Assessment of tumor microenvironment in breast cancer samples

ESTIMATE [29], ImmuneCellAI (http:// bioin fo. life. hust. edu. cn/ ImmuC ellAI# !/) [30], CIBERSORTx (https:// ciber sortx. stanf 
ord. edu/) [31], EaSIeR [32], and TIMER2.0 (http:// timer. cistr ome. org/) [33] were applied to analyze the tumor microenvi-
ronment in breast cancer.

2.6  Development of the PD‑1/PD‑L1 pathway molecular typing‑related prognostic signature

Univariate Cox analysis was performed in the training set, and results with P < 0.01 were included in least absolute contrac-
tion and selection operator (LASSO) regression to identify PD-1/PD-L1 pathway-related prognostic genes. The prognostic 
signature was further constructed by the multivariate Cox regression survival analysis step method. Coefj represented the 
coefficient, and Xj represented the normalized gene expression. h0 (t) was the baseline hazard function. The signature’s 
predictive ability was quantified by the area under the curve (AUC) and C-index. The RiskScore was calculated using the 
“predict” function (type = “risk”) in the R software by the following formula:

2.7  Clinical features analysis

“maftools” [34] was used to analyze TCGA-BRCA gene mutation data. “oncoPredict” [35, 36] was used to predict  IC50 of 
common antitumor drugs with different RiskScores and Spearman correlation was used to analyze the relationship 
between the RiskScore and the drug  IC50.

2.8  Construction of the nomogram

The nomogram was constructed by “regplot” in combination with important clinical parameters of breast cancer. The 
clinical predictive ability of this nomogram was evaluated using C-index, the calibration curve, and decision curve analysis 
(DCA).

2.9  Immunohistochemical analysis

Tissue microarray (TMA) (HBreD050Bc01) was obtained from Shanghai Outdo Biotech Company (Shanghai, China). Anti‐
rabbit IFNG antibody (15365-1-AP) was obtained from Proteintech, and the working concentration was 1:8000. The 
immunohistochemical staining process of TMA was shown before [37, 38]. The staining intensity (0/1+/2+/3+) and posi-
tive rate (staining positive rate score: 0–100% corresponding to 0–100 points) of IFNG in cytoplasm and nucleus were 
interpreted. Cancer tissues and adjacent tissues were analyzed respectively. “Staining intensity” and “staining positive 
rate” were multiplied to give the final sample score.

2.10  Statistical analysis

Statistical analysis and drawing were performed with R v.4.2.2, SPSS 26, and GraphPad Prism 9. Student’s t-test or Wilcoxon 
test was used to compare the two groups. One-way ANOVA or Kruskal–Wallis test was used to compare multiple groups. 
Survival analysis was performed using the log-rank test, and P < 0.05 was considered statistical significance.

3  Results

3.1  Analysis of the PD‑1/PD‑L1 pathway‑related DEGs in breast cancer

As a widely used database, the TCGA database contains a large sample size of breast cancer samples. This study was 
based on the TCGA database. Firstly, differential expression of coding genes was analyzed between 1076 breast cancer 

RiskScore ∶ h0(t) exp

(

n
∑

j=1

Coefj ∗ Xj

)

.

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
http://timer.cistrome.org/
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samples and 99 breast samples in the TCGA database. The results indicated that a total of 5090 genes were differentially 
expressed. Due to the excessive number of DEGs, the |log2foldchange| was further increased to 1.5, resulting in a total 
of 2973 genes. The expression data of these 2973 genes were used to construct the breast cancer-related weighted co-
expression network. When the soft threshold β was 4 (Fig. S1A), the constructed weighted co-expression network was 
closest to the scale-free network. By GSVA, the PD-1/PD-L1 pathway score of each breast cancer sample was obtained 
and included in WGCNA for correlation analysis. Twelve modules were obtained by clustering, represented by different 
colors (Fig. 2A).

According to the correlation heatmap (Fig. 2B), the black module had the most significant correlation with the PD-1/
PD-L1 pathway in breast cancer samples, with a correlation coefficient of 0.8 (P < 0.01). KEGG (Fig. S1B) analysis of modules 
suggested that they were involved in many critical biological functions of immunology, such as cytokine and cytokine 
receptor interaction, Toll-like receptor signaling pathway, and chemical factor signaling pathway. Therefore, the study 
focused on the black module (120 DEGs). In the black module, GS was positively correlated with MM (correlation coef-
ficient was 0.93) (Fig. 2C), indicating that this module was closely related to the PD-1/PD-L1 pathway. According to the 
preset thresholds of GS and MM, 25 DEGs in the black module had the strongest correlation with the PD-1/PD-L1 pathway 
in breast cancer, and it suggested that these 25 genes were closely related to cytokines and T cell function (KEGG analy-
sis) in the PD-1/PD-L1 pathway and might be the essential genes related to the PD-1/PD-L1 pathway in breast cancer.

3.2  Identification of the PD‑1/PD‑L1 pathway‑related molecular subtypes in breast cancer

After the above steps, 25 key genes of the PD-1/PD-L1 pathway in breast cancer were found. The expression of these 25 
genes was analyzed in the TCGA database (Fig. 2D). It was known that they were up-regulated in breast cancer samples 
compared to breast tissues. These 25 genes might play an essential role in the occurrence and development of breast 
cancer. We used the NMF method to type TCGA breast cancer samples (n = 1059) based on these 25 key genes. By analyz-
ing cophenetic correlation, dispersion, and silhouette, line plots showed a significant degree of inflection point at k = 4, so 
the optimal cluster number in this study was 4 (Fig. S1C). Four molecular subtypes [Cluster 1 (n = 240), Cluster 2 (n = 224), 
Cluster 3 (n = 165) and Cluster 4 (n = 430)] differentiated by the PD-1/PD-L1 pathway were obtained. The clinical data of 
TCGA breast cancer samples were shown in Table 1. The consistency clustering was shown in Fig. 2E. Principal compo-
nent analysis (PCA) of molecular subtypes (Fig. S1D) showed that key genes of the PD-1/PD-L1 pathway could effectively 
classify TCGA breast cancer samples. Survival analysis among different molecular subtypes indicated that survival with 
different molecular subtypes was significantly different (P < 0.01) (Fig. 2F). We also found significant differences in PD-1/
PD-L1 pathway scores among the four subtypes (Fig. 2G). These results suggested that our molecular typing of TCGA 
breast cancer samples based on these 25 genes had crucial clinical significance.

In order to show the characteristics of each cluster. The clinical parameters (PD-1/PD-L1 pathway, Subtype, Stage, Age, 
ER/PR/HER2 status) and the heatmap of 25 key genes of different subtypes were further drawn (Fig. 2H) (Supplementary 
Table S2). Through the heatmap, we could observe that these 25 genes had significant differences in expression among 
the four subtypes, suggesting that there might be different biological characteristics. At the same time, gene mutation 
waterfall maps among different molecular subtypes of breast cancer were drawn (Fig. S2). Cluster 1 and Cluster 3 were 
dominated by TP53 mutation, while Cluster 2 and Cluster 4 were dominated by PIK3CA mutation.

3.3  Analysis of molecular mechanism and immunological characteristics among subtypes

According to “h.all.v7.5.1 symbols.gmt”, hallmark pathways of different breast cancer molecular subtypes were scored, 
and the heatmap was drawn (Fig. S1E). It could be observed that the scores of MTORC1 SIGNALING and UNFOLDED 
PROTEIN RESPONSE in Cluster 1 were high. In Cluster 2, pathways such as INFLAMMATORY RESPONSE had higher scores. 
Pathways such as REACTIVE OXYGEN SPECIES PATHWAY had higher scores in Cluster 3. Pathways such as ESTROGEN 
RESPONSE were scored higher in Cluster 4.

Differences in the tumor microenvironment of each subtype were further analyzed, and the tumor microenvironment 
was evaluated by ImmuneScore, StromalScore, and ESTIMATEScore (Fig. 3A). ImmuneScore in Cluster 2 and Cluster 3 was 
relatively high, indicating more immune-related components in the tumor microenvironment. In CIBERSORTx (Fig. 3B) 
and ImmuCellAI (Fig. 3C) results, tumor microenvironment components differed significantly among subtypes. M0 mac-
rophages were significantly infiltrated in Cluster 1. Tfh cells were significantly infiltrated in Cluster 2, and M1 macrophages 
were significantly infiltrated in Cluster 3. These results suggested that molecular subtypes of breast cancer differentiated 
by the PD-1/PD-L1 pathway significantly differed in pathogenesis and the tumor microenvironment.
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3.4  Identification of key genes related to molecular typing of the PD‑1/PD‑L1 pathway in breast cancer

The above steps analyzed clinical survival and tumor microenvironment characteristics of different subtypes distin-
guished by the PD-1/PD-L1 pathway in breast cancer. Cluster 1 and Cluster 3 showed the most considerable difference 

Fig. 2  The PD-1/PD-L1 pathway molecular subtype analysis. A Hierarchical clustering dendrogram of genes; B Module-phenotypic correla-
tion analysis. Each cell contained the corresponding correlation and P value; C GS and MM correlation scatter diagram in the black module. 
GS was highly significantly correlated with MM. Results suggested that genes highly associated with the PD-1/PD-L1 pathway were also 
important in the black module; D The box diagram of expression of 25 key genes in TCGA breast cancer and normal tissues; E The consensus 
heatmap of NMF; F Survival analysis of different breast cancer subtypes in TCGA; G The violin plot of four subtypes of PD-1/PD-L1 pathway 
scores; H The heatmap of the relationship between characteristic gene expression and clinical parameters of different molecular subtypes of 
breast cancer in the TCGA database. ****P < 0.0001; **P < 0.01
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in prognosis, and there was a significant difference in ImmuneScore between Cluster 1 and Cluster 3, suggesting 
that genes that influenced the tumor microenvironment and prognosis were most differentially expressed between 
the two subtypes. Therefore, we further investigated changes in 2973 DEGs between Cluster 1 and Cluster 3 (Sup-
plementary Table S3). Between Cluster 1 and Cluster 3, 246 genes were differentially up-regulated, and 257 were 
differentially down-regulated. Similarly, 219 DEGs with the absolute value of  log2foldchange greater than 1.5 were 
included in the subsequent analysis.

3.5  Construction and validation of the PD‑1/PD‑L1 pathway molecular typing‑related prognostic signature

In order to better construct the prognostic signature related to the molecular typing of the PD-1/PD-L1 pathway, the 
breast cancer samples with prognostic follow-up time greater than 0 in the TCGA database were randomly divided into 
the training set (Supplementary Table S4) and the internal test set (Supplementary Table S5) according to the ratio of 
7:3. Univariate Cox analysis was performed on the 219 DEGs obtained from the molecular classification in the above 

Table 1  Clinical parameters 
of patients in the TCGA-BRCA 
cohort

Clinical parameters TCGA-BRCA 

No. of patients 1059
Age [mean (SD)] 58.35 (13.18)
ER (%)
 Negative 232 (21.9)
 Positive 780 (73.7)
 Indeterminate 2 (0.2)
 NA 45 (4.2)

PR (%)
 Negative 330 (31.2)
 Positive 679 (64.1)
 Indeterminate 4 (0.4)
 NA 46 (4.3)

HER2 (%)
 Negative 542 (51.2)
 Positive 157 (14.8)
 Equivocal 176 (16.6)
 Indeterminate 11 (1.0)
 NA 173 (16.3)

Stage (%)
 Stage I 87 (8.2)
 Stage IA 84 (7.9)
 Stage IB 6 (0.6)
 Stage II 6 (0.6)
 Stage IIA 347 (32.8)
 Stage IIB 243 (22.9)
 Stage III 2 (0.2)
 Stage IIIA 153 (14.4)
 Stage IIIB 25 (2.4)
 Stage IIIC 64 (6.0)
 Stage IV 20 (1.9)
 NA 22 (2.1)

Cluster (%)
 1 240 (22.7)
 2 224 (21.2)
 3 165 (15.6)
 4 430 (40.6)
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steps (Supplementary Table S6). According to the cut-off value of P < 0.01, nine genes were associated with breast cancer 
prognosis in the training set and were used as candidates to establish the LASSO model. Subsequently, to obtain the 
critical prognostic genes, LASSO analysis was performed on these nine genes, in which lambda = 0.0063 (Fig. 4A, B), and 
eight genes were included in multivariate Cox regression analysis. Finally, seven non-collinear genes related to the PD-1/
PD-L1 pathway molecular typing were selected to construct the prognosis signature: IFNG, JCHAIN, ELOVL2, PIGR, PAGE5, 
ACTL8, and CLEC3A. The PD-1/PD-L1 pathway molecular typing-related prognostic signature was calculated using the 
“predict” function (type = “risk”) in the R software:

In the TCGA dataset, univariate and multivariate Cox regression analyses were performed on relevant clinical vari-
ables, and both showed that RiskScore was significantly correlated with survival (P < 0.01). Results were shown in Table 2, 
indicating the independence of this signature in clinical application.

n
∑

j=1

Coefj ∗ Xj ∶ − 0.4069 × IFNG − 0.0894 × JCHAIN − 0.1312 × ELOVL2 − 0.0926 × PIGR

+ 0.2100 × PAGE5 + 0.1393 × ACTL8 + 0.0797 × CLEC3A.

Fig. 3  Tumor microenvironment analysis of different molecular subtypes. A ESTIMATE analysis of different molecular subtypes of breast can-
cer in TCGA database; B CIBERSORTx analysis of different molecular subtypes of breast cancer in TCGA database; C ImmuCellAI analysis of 
different molecular subtypes of breast cancer in TCGA database. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05
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Subsequently, in the TCGA cohort, survival was assessed using the Kaplan–Meier method. Datasets were grouped 
according to the median RiskScore. The prognostic signature was validated in the training set, the internal test set, and 
the entire set. In the training set, survival analysis suggested that patients with low-RiskScore had significantly better 
survival outcomes (Fig. 4C–E). The C-index was 0.747. AUC values indicated that the signature had the predictive ability 
(1-year AUC = 0.787; 3-year AUC = 0.770; 5-year AUC = 0.727) (Fig. 4F). This signature also showed good prediction ability 
in the internal test set and the entire set (Fig. 4G, H).

Fig. 4  Construction of the prognostic signature. A Ten-fold cross-validation of λ selection in LASSO analysis; B LASSO coefficient spectrum; 
C–E TCGA breast cancer samples were randomly divided into the training set and the internal test set at a 7:3 ratio. Survival analysis show-
ing the difference in the prognosis of the training set, the internal test set, and the entire set in high- and low-RiskScore group, respectively; 
F–H 1-, 3- and 5-year ROC curves of the training set, the internal test set, and the entire set, respectively; I Survival analysis in the prognosis 
of GSE20711 in high- and low-RiskScore group; J Survival analysis in the prognosis of GSE42568 in high- and low-RiskScore group; K Survival 
analysis in the prognosis of GSE103091 in high- and low-RiskScore group
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In the TCGA breast cancer samples, we further analyzed the impact of the RiskScore on patient survival in different age, 
ER/PR/HER2 status, and tumor stage. The results showed that the low-RiskScore patients had the better prognosis accord-
ing to “surv_cutpoint” function (Fig. S3). GEO datasets from different sources (GSE20711, GSE42568, and GSE103091) were 
used as the external validation sets. A survival advantage was also observed for patients with low-RiskScore according 
to “surv_cutpoint” function (Fig. 4I–K). Also, we analyzed whether there were differences in the RiskScore among differ-
ent subtypes of breast cancer (Fig. S4), and the results indicated that there were significant differences in the RiskScore 
among different subtypes. The RiskScore of Cluster 1 was relatively high, which was consistent with the poor prognosis.

3.6  Clinical features with different RiskScores

The clinical characteristics of breast cancer patients in different groups in the TCGA dataset were further analyzed. Firstly, 
 IC50 values of antitumor drugs were predicted (Fig. 5A), and the mechanism of each antitumor drug was described in 
Supplementary Table S7. We further analyzed the relationship between the RiskScore and  IC50 of antineoplastic drugs. 
The results showed that the  IC50 of most drugs increased with the increase of the RiskScore, suggesting that the RiskScore 
could also guide the precise treatment of patients in clinical practice. Since the prognostic signature was constructed by 
the PD-1/PD-L1 pathway typing, we first evaluated the differences of the PD-1/PD-L1 pathway in patients with different 
RiskScores. The result showed that PD-1/PD-L1 pathway scores were significantly increased in patients with low RiskScores 
(Fig. 5B). we further analyzed the immune-related characteristics of patients with different RiskScores. The expression 
levels of PDCD1, CD274, CTLA-4, HAVCR2, and LAG3 were relatively higher in the low-RiskScore group (Fig. 5C). CIBERSORTx 
was used to analyze the tumor microenvironment of patients with different RiskScores (Fig. 5D). According to the results, 
CD8-T cells, activated NK cells, and M1 macrophages were clearly negatively correlated with the RiskScore, and the results 
suggested significant differences in the infiltration of different cells in the tumor microenvironment between the two 
groups. We also analyzed the correlation between each indicator gene and the PD-1/PD-L1 pathway, and found that 
IFNG was significantly positively correlated with the PD-1/PD-L1 pathway, with a correlation coefficient greater than 0.7 
(P < 0.05) (Fig. 5E). We also predicted the response to immunotherapy in breast cancer samples with different RiskScores, 
and the low-RiskScore group had a higher immunotherapy score (Fig. 5F). Interestingly, IFNG also showed a significantly 
positive correlation with immunotherapy compared with other signature genes (Fig. 5G). The above results suggested 
that subsequent studies might need to focus on the relationship between IFNG and breast cancer microenvironment.

The gene mutation also completely differed between groups (Fig. S5A). In the high-RiskScore group, mutation fre-
quencies of TP53, PIK3CA, TTN, GATA3, and MUC16 were 41%, 34%, 19%, 11%, and 11%, respectively. In the low-RiskScore 
group, mutation frequencies of PIK3CA, TP53, TTN, CDH1, and GATA3 were 35%, 27%, 19%, 18%, and 13%, respectively. 
Immunohistochemical staining in cancer tissues was obtained from the HPA database, and the staining distribution of 
IFNG, JCHAIN, PIGR, PAGE5, and CLEC3A in cancer tissues could be preclinically observed in Fig. S5B.

3.7  Construction of the nomogram

Based on the PD-1/PD-L1 pathway typing-related prognostic signature, the nomogram was constructed by multivariate 
Cox regression analysis of Age, HER2, Stage, and RiskScore (Fig. 6A). For example, a 70-year-old female patient with ER/
PR/HER2 negative, stage III-IV, and RiskScore of 0.392 could be calculated by the nomogram, and the final total score was 
87.9. The probability of survival over 1 year, 3 years and 5 years was 0.957, 0.772, and 0.606, respectively. The C-index of 

Table 2  Univariate and 
multivariate Cox analyses

Clinical parameters Univariable Cox Multivariable Cox

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age 1.04 1.03 1.06 < 0.01 1.04 1.02 1.06 < 0.01
ER 0.64 0.39 1.06 0.083 – – – –
PR 0.73 0.46 1.17 0.191 – – – –
HER2 1.72 1.04 2.84 0.035 1.34 0.79 2.27 0.29
Stage 2.85 1.79 4.52 < 0.01 3.33 2.06 5.37 < 0.01
RiskScore 1.23 1.16 1.31 < 0.01 1.21 1.13 1.30 < 0.01
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Fig. 5  Analysis of the clinical application of the prognostic signature. A The bubble plot of correlation between RiskScores and  IC50 values 
of antineoplastic agents; B Differences in PD-1/PD-L1 pathway scores of patients with different RiskScores; C Expression of PDCD1, CD274, 
CTLA-4, HAVCR2, and LAG3 in different RiskScore groups; D CIBERSORTx predicted tumor microenvironment in different RiskScore patients; E 
The heatmap of correlation between signature genes and the PD-1/PD-L1 pathway; F Differences in RiskScores for response to the immuno-
therapy; G The bubble map of correlation between signature genes and immunotherapy. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05; ns 
no significance
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this nomogram was 0.812 (se = 0.027), and the calibration curve (Fig. 6B) and DCA (Fig. 6C) proved that the nomogram 
had reasonable clinical practicability for prognostic prediction.

3.8  Mechanism analysis of the RiskScore

The above research showed significant differences in clinical prognosis, gene mutation spectrum, and tumor microenvi-
ronment immune infiltration between the two groups. Therefore, we further explored the molecular mechanism between 
the two groups. DEGs of the high- and low-RiskScore groups in the TCGA dataset were explored in depth (Fig. 7A) (Sup-
plementary Table S8). It could be seen that 348 genes were up-regulated and 351 genes were down-regulated due to 
the difference in RiskScores. The possible primary mechanism of the RiskScore affecting the clinical immunophenotype 
of breast cancer was explored. We performed GO (Fig. 7B) (Supplementary Table S9), KEGG (Fig. 7C) (Supplementary 
Table S10), and GSEA (Fig. 7D) analyses. According to KEGG, the RiskScore mainly affected cytokine-cytokine receptor 
interaction, primary immunodeficiency, and natural killer cell-mediated cytotoxicity. According to GSEA, high-RiskScore 
activated OXIDATIVE PHOSPHORYLATION, E2F TARGETS, G2M CHECKPOINT, and GLYCOLYSIS, and it suggested that APOP-
TOSIS and INFLAMMATORY RESPONSE were suppressed.

3.9  Relationship between IFNG and CD8+ T cell infiltration in breast cancer tumor microenvironment

Our study traced the differential expression changes of these seven crucial genes constructed in the signature between 
Cluster 1 and Cluster 3 (Fig. 8A). IFNG was most differentially changed in Cluster 1 and Cluster 3. Meanwhile, according 
to the above studies, IFNG was significantly positively correlated with the PD-1/PD-L1 pathway and immunotherapy 
response in breast cancer, so we focused on IFNG. In the TCGA dataset, the samples with high expression of IFNG had 

Fig. 6  Construction of the nomogram. A The nomogram was constructed by combining different clinical parameters. B Calibration curves, 
which could be used to show the actual survival probability and the predicted probability; C DCA, which could be used to evaluate the clini-
cal utility of the nomogram. ***P < 0.001
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a better prognosis (P < 0.01) (Fig. 8B). The study further explored the distribution of IFNG expression in the samples. 
Expression of IFNG in breast tumor tissues was significantly increased in bulk samples of TCGA and GSE76250 (Fig. 8C). 
In the single-cell sequencing data (Fig. 8D), the distribution of expression of IFNG in the tumor was analyzed, and IFNG 
was mainly expressed by T cells in tumor tissues. Through TIMER2.0 (Fig. 8E), we analyzed the relationship between IFNG 
and the infiltration degree of various T cells (CD8+ T cell, CD4+ T cell, NK T cell, Tregs, γδ T cell, and T follicular helper cell) 
in the tumor microenvironment, indicating that IFNG was positively correlated with CD8+ T cell infiltration. At the same 
time, immunohistochemical staining was further performed on the breast cancer TMA (Fig. 8F). There were nine paired 
breast tissues to be evaluated, and there was no significant difference in the nuclear and cytoplasmic expression of IFNG 
between tumor cells and normal epithelial cells (Fig. 8G).

4  Discussion

Breast cancer is a significant threat to women’s health, with substantial heterogeneity and few effective treatment drugs. 
In previous studies, the clinical subtype of breast cancer is the most important indicator to predict the effectiveness of 
immunotherapy, and triple-negative breast cancer, which has been reported as the most immunogenic subtype, only 
accounts for about 20% [39, 40]. However, immunotherapy has little effect on hormone receptor-positive patients, who 
account for 80% or more [12, 41], and the application of immunotherapy in breast cancer is minimal. Although some 
studies have predicted the immune efficacy of breast cancer patients through TMB, PD-L1 expression, tumor-infiltrating 
lymphocyte, or mismatch repair, there is still a big gap between them and their actual clinical application [9, 42].

Fig. 7  Exploration of molecular mechanisms between different RiskScore groups in the TCGA database: A The volcano plot: RiskScore-
related DEGs in TCGA-BRCA samples; B GO analysis of RiskScore-related DEGs; C KEGG analysis of RiskScore-related DEGs; D GSEA of 
RiskScore-related DEGs
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PD-1 is mainly expressed in T cells, B cells, monocytes, or dendritic cells. As a transmembrane protein–ligand, 
PD-L1 on tumor cells is often up-regulated by 20% to 34% in breast cancer [43]. PD-L1 binds to PD-1 on the surface 
of immune cells to inhibit immune responses in the tumor microenvironment, leading to immune escape [7]. The 
specific mechanism of the PD-1/PD-L1 pathway in breast cancer has not been elucidated, and the characteristic 
genes have been studied relatively little. Therefore, it is urgent to evaluate and explore the PD-1/PD-L1 pathway 
and its characteristic immunological genes in breast cancer by multi-dimensional and multi-omics. In our study, the 
characteristic genes affecting the breast cancer PD-1/PD-L1 pathway were obtained by associating WGCNA with the 
PD-1/PD-L1 pathway. Based on this, molecular subtypes of breast cancer were explored. There are significant dif-
ferences in each subtype’s clinical and immunological characteristics, indicating that the PD-1/PD-L1 pathway can 
distinguish breast cancer subtypes, which has essential clinical guiding value.

Then, the prognostic signature was constructed according to genes related to PD-1/PD-L1 pathway molecular typ-
ing. The C-index of the TCGA training set was 0.747, and the C-index of the nomogram was 0.812. We first conducted 
the RiskScore assessment on different molecular subtypes of breast cancer, and the results also suggested that 
the signature constructed by us could better predict the prognosis of each subtype. Many scholars have proposed 
signatures of their related research from different perspectives. Wang et al. [44] constructed a prognostic signature 
consisting of nine ferroptosis-related genes (AUC = 0.618, 0.653, and 0.663 at 1-, 2- and 3-year, respectively). Li et al. 
[45] established a prognostic signature related to macrophage marker genes (AUC = 0.662 and 0.701 at 3- and 5-year, 
respectively). He et al. [46] created the glycolysis signature to predict the survival time of breast cancer patients, and 
the AUC of the training set was 0.719. Compared with previous related studies, our study improves reliability through 

Fig. 8  Analysis of IFNG in breast cancer. A The bubble diagram of gene expression changes; B Survival analysis: effect of IFNG expression on 
the survival of TCGA-BRCA; C The box plot: IFNG expression in different breast cancer datasets; D Single-cell sequencing of breast cancer: 
expression of IFNG among different cells in the tumor microenvironment (Single Cell Portal); E Relationship between IFNG and different T 
cell infiltration in the breast cancer tumor microenvironment (TIMER 2.0); F IFNG staining of paired samples in the tissue microarray (×200); 
G IFNG staining score of paired samples in TMA: the left side showing the nuclear staining score and the right side showing the cytoplasm 
staining score. ****P < 0.0001; **P < 0.01; ns no significance
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multiple validations of external databases. The prediction ability of this signature is better than that of these pub-
lished signatures. Our nomogram shows a higher C-index. The prognostic signature constructed by the PD-1/PD-L1 
pathway molecular typing in this study may improve the predictive ability of breast cancer. On the other hand, our 
study still has some limitations, and the prognostic signature needs further clinical validation.

The biomarkers obtained by integrated multi-omics analysis of tumors often suggest clinical precision medicine [47]. 
We observed that breast cancer patients with different RiskScores had significantly different  IC50 values for common 
clinical antitumor drugs, which provided the direction for subsequent precision drug use. By observing the mutation 
spectrum of breast cancer samples with different RiskScores, it was also found that there were significant differences in 
gene mutations among different RiskScore samples. We further analyzed the tumor microenvironment between differ-
ent RiskScore groups, and it was also apparent that the expression of PDCD1, CD274, CTLA-4, HAVCR2 and LAG3 in the 
low-RiskScore group was relatively high. The RiskScore constructed based on the PD-1/PD-L1 pathway influenced the 
degree of infiltration of multiple cells in the breast cancer tumor microenvironment and further influenced the response 
of breast cancer patients to immunotherapy. The low-RiskScore group had a higher immunotherapy score and this sug-
gested that patients with low RiskScores might be more likely to benefit from immunotherapy. In breast cancer, PD-1/
PD-L1 may affect various signaling pathways, such as PTEN/PIK3CA, ERBB2 and STAT3, affecting various biological pro-
cesses of tumor cells and the interaction between tumor cells and immune cells [48]. Similarly, this study also profoundly 
explored the possible mechanism of different RiskScore causing different biological behaviors. We hypothesize that in 
high-RiskScore breast cancer, the suppression of inflammation and apoptosis and the promotion of abnormal energy 
metabolism such as glycolysis may lead to the reduction of CD8+ T cells, M1 macropahge and activated NK cells in the 
tumor microenvironment of breast cancer.

Our study constructed the prognostic signature based on breast cancer PD-1/PD-L1 pathway molecular typing-related 
genes (IFNG, JCHAIN, ELOVL2, PIGR, PAGE5, ACTL8, and CLEC3A). These key genes were the highlight of the study. Inter-
estingly, in previous experimental studies, some of these genes have been suggested to play an essential role in breast 
cancer. In the subgroup analysis of the NeoSphere trial, high IFNG expression was associated with a pathological com-
plete response in the breast [49]. Knockdown of ELOVL2 induced reprogramming of lipid metabolism in breast cancer 
and contributed to its malignant phenotype [50]. The increased expression of PIGR in breast cancer might reflect the 
polarization of tumor-associated immune cells [51]. ACTL8 was up-regulated in triple-negative breast cancer and was 
associated with poor prognosis [52]. Patients with breast invasive ductal carcinoma with high CLEC3A expression were 
associated with higher lymph node metastasis and poor overall survival [53]. We analyzed the correlation between 
signature genes and the PD-1/PD-L1 pathway in breast cancer and the efficacy of immunotherapy in patients, as well 
as the differential expression of signature genes in samples. Our results suggested that IFNG was the most promising 
predictor we found and was most closely related to immunotherapy in breast cancer patients. It pointed out the direc-
tion for our follow-up research.

IFNG, a gene encoding a kind of cytokine in the type II interferon family, is mainly expressed by immune system 
cells and plays a vital role in immune monitoring in the tumor microenvironment [54]. Several studies have revealed 
a link between IFNG and breast cancer. In triple-negative breast cancer, tumors with high CD8 scores have abundant 
interferon-α and interferon-γ response and have more anti-cancer immune cell infiltration [55]. IFNG is a driver of the 
association between NK cells and clinical response to trastuzumab in patients with HER2-positive breast cancer [56]. The 
clinical surgical specimens of triple-negative breast cancer patients after neoadjuvant chemotherapy were detected. 
The expression of IFNG in the pathologic complete response (pCR) group was higher than that in the non-pCR group 
[57]. Tumor tissue contains not only tumor cells, but also a variety of infiltrating immune cells, and the bulk RNA-seq 
technique could not distinguish whether gene expression in a sample was due to a specific cell class. The expression of 
IFNG detected was the total number of cells in samples. Therefore, we further analyzed the expression of IFNG in tumor 
cells and normal mammary epithelial cells in paired breast cancer samples in the TMA, and the immunohistochemical 
results showed that there was no significant difference in the expression of IFNG between tumor cells and normal mam-
mary epithelial cells. We speculated that the increased expression of IFNG might be caused by other components of non-
tumor cells in the tumor microenvironment. Therefore, we further used the single-cell sequencing results to answer our 
questions. Single-cell sequencing indicated that IFNG was mainly expressed in T cells in the tumor microenvironment. 
Further analysis indicated that IFNG expression in tumor tissues was positively correlated with the degree of CD8+ T cell 
infiltration in breast cancer. Our results suggest that IFNG may be mainly expressed by CD8+ T cells in the breast cancer 
tumor microenvironment. Patients with high expression of IFNG have a better prognosis, which is consistent with IFNG 
as a protective factor in the risk signature.
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In summary, our study conducted a multi-dimensional and multi-directional analysis of the characteristics of the breast 
cancer PD-1/PD-L1 pathway, and further constructed a prognostic signature. This study revealed the value of prognostic 
signature according to PD-1/PD-L1 pathway molecular typing in breast cancer clinical practice. The signature obtained 
in this study can evaluate the efficacy of clinical drug treatment and the prognosis of patients as a whole, which provides 
a new direction and reference for the development of subsequent clinical trials. In the subsequent clinical research or 
practice, researchers can construct a detection panel, detect the blood or tissue samples of patients, and screen the 
sensitive population for immunotherapy before treatment. Based on this, researchers can determine the survival risk of 
patients before treatment, screen out the people with poor prognosis in advance, and further switch treatment strate-
gies. The relationship between the vital signature gene IFNG expression and CD8+ T cell infiltration in the breast cancer 
microenvironment was further analyzed. There are still some shortcomings in our study. Future research needs to explore 
the mechanism of IFNG in the breast cancer tumor microenvironment and actively promote the clinical application.

5  Conclusion

The signature related to breast cancer PD-1/PD-L1 pathway molecular typing combined with clinical characteristics 
can more accurately predict patients’ 1-year, 3-year, and 5-year survival. IFNG, as a component gene in the prognostic 
signature, is closely related to CD8+ T cell infiltration in the breast cancer tumor microenvironment.
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