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Abstract
Osteosarcoma (OS) is the most common primary solid malignant tumour of bone, with rapid progression and a very 
poor prognosis. Iron is an essential nutrient that makes it an important player in cellular activities due to its inherent 
ability to exchange electrons, and its metabolic abnormalities are associated with a variety of diseases. The body tightly 
regulates iron content at the systemic and cellular levels through various mechanisms to prevent iron deficiency and 
overload from damaging the body. OS cells regulate various mechanisms to increase the intracellular iron concentration 
to accelerate proliferation, and some studies have revealed the hidden link between iron metabolism and the occurrence 
and development of OS. This article briefly describes the process of normal iron metabolism, and focuses on the research 
progress of abnormal iron metabolism in OS from the systemic and cellular levels.
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IL-6	� Interleukin-6
STAT3	� Signal transducer and activator of transcription 3
TNF-α	� Tumor necrosis factor-α
NF-kappaB	� Nuclear factor-kappaB
IKK	� Inhibitor of NF-kappaB kinase
HIFs	� Hypoxia-inducible factors
FTL	� Ferritin light chain
FTH	� Ferritin heavy chain
PEITC	� β-Phenethyl isothiocyanate

1  Introduction

OS is the most common primary solid malignant tumor of bone. It is a highly malignant tumor derived from mesenchymal 
tissue with unique clinical and pathological characteristics. The incidence of OS in the general population is 2–3/million/
year, but the incidence is higher in adolescents. At the age of 15–19, the annual incidence rate is as high as 8–11/million/
year [1], and it is the second leading cause of cancer-related deaths in children and young people [2]. The occurrence 
of OS is a complex process involving multiple factors; it is characterized by rapid disease progression, high malignancy, 
and easy recurrence and metastasis. Even after the standard treatment regimen of OS, the survival rate of OS without 
distant metastasis is 70%, while the 5-year survival rate of metastatic OS is only 20% to 30% [3].

As a vital nutrient element in human life activities, iron is an important participant in cell proliferation and growth, 
including mitochondrial function, and an essential cofactor in oxidative phosphorylation in the aerobic respiration chain 
of cells. Iron is involved in the synthesis of hemoglobin and DNA synthesis and repair and other important life activities 
[4, 5]. Therefore, iron is essential for cell growth and proliferation. In addition, iron can gain and lose electrons, and iron 
overload promotes the production of reactive oxygen species (ROS). ROS not only damage proteins and lipids but can 
also damage DNA and cause DNA mutations to promote tumorigenesis [6–8]. A large number of studies suggest that 
intracellular iron metabolism disorders are related to the occurrence and development of tumors [9–12]. In this review, 
we first briefly introduce the characteristics of normal iron metabolism in human body, and also expounds the research 
progress of abnormal iron metabolism in OS from the systemic and cellular levels.

2 � Normal iron metabolism

Iron metabolism in the body includes the absorption, storage, transport, utilization and excretion of iron. The body iron 
content of a normal healthy adult is between 3–4 g, and 60–70% of iron is present in the haemoglobin of red blood cells 
[13]. Approximately 10% of the iron required for normal physiological activities is absorbed from food by enterocytes 
and 90% comes from the reuse of red blood cells. An appropriate amount of iron is essential for the survival, growth and 
reproduction of cells, while excessive iron potentially damages cells. Therefore, the process of iron uptake, storage and 
excretion has a strict regulatory mechanism.

2.1 � Iron absorption and import

In the intestine, iron (Fe3+) in its oxidized state in food is reduced to Fe2+ by iron reductase (duodenal cytochrome B, 
DcytB) and then taken up by the divalent metal transporter 1 (DMT1) into intestinal epithelial cells [14, 15]. Heme carrier 
protein 1 (HCP1) is highly expressed on the brush-like margin of intestinal epithelial cells in the duodenum, and HCP1 
mediates the absorption of heme iron by intestinal cells [16].

Mammalian cells obtain iron mainly through transferrin receptor 1 (TfR1). After binding to TfR1, transferrin bound iron 
(TBI) enters iron-requiring cells through endocytosis. Cells capture circulating heme by endocytosis and degrade heme 
to iron by the action of heme-responsive gene 1 (HRG1) and heme oxygenase 1 (HO1) [17, 18]. Iron can be kept free in 
the cell, forming an unstable iron pool (LIP). In addition, non-transferrin-bound iron (NTBI) enters cytosol LIP through 
multiple divalent metal transporters, including ZRT/ IRT-like protein 8 (ZIP8) or ZIP14 (Fig. 1) [19].
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2.2 � Iron utilization, export and storage

Iron in the body is divided into two parts: functional state iron and storage iron. Functional status iron mainly includes: 
hemoglobin iron (67% of body iron), myoglobin iron (17% of body iron), transferrin iron, lactoferrin, enzyme and cofactor-
bound iron. Stored iron includes ferritin and hemosiderin.

Of the iron that enters the cell, some constitutes the cytoplasmic LIP, but most enters the mitochondria via the mitofer-
rins (MFRN) 1 and 2 in the cell for the synthesis of heme and iron-sulfur clusters [20]. Protoporphyrin IX chelates with Fe2+ 
to form heme under the action of ferro chelatase in mitochondria. The synthesis and function of heme and iron-sulfur 
clusters have been extensively explored [21–23].

Intracellular iron excretion is mainly performed by ferroportin (FPN), which is expressed on the cell membrane of a 
variety of human tissue cells and is considered to be the only ferrous iron exporter. Iron is transported outside the cell 
via FPN on the basolateral membrane of the cell where it is oxidized to Fe3 + by multicopper oxidases (MCOs); then, 
Fe3 + binds to transferrin (Tf ) to form TBI in the bloodstream [24, 25].

Unutilized and unexcreted iron in the cell is stored in the form of ferritin and hemosiderin to prevent excessive iron 
from damaging the cell (Fig. 1).

2.3 � Regulation of iron

The body regulates iron metabolism through hepcidin and iron-regulatory proteins (IRPs). The FPN/hepcidin system is 
primarily responsible for the stabilization of iron metabolism at the systemic level. Unlike TfR1, TfR2 is mainly expressed in 
the liver, acting as an iron sensor and regulating hepcidin production [26]. When serum iron increases, hepcidin, which is 
synthesized by the liver, increases and binds to FPN; this weakens the function of FPN, thus inhibiting the release of iron 
into the blood and reducing serum iron concentration [27–29]. The regulation of intracellular iron metabolism is mainly 
dependent on IRPs/iron response element (IRE) system. IRPs can be divided into IRP1 and IRP2, which have similar func-
tions. IRPs mainly affects the expression of TfR1 and the synthesis of ferritin. When intracellular iron deficiency occurs, 
IRPs can bind to the iron response element on TfR1 mRNA, promoting the expression of TfR1 and inhibiting the synthesis 
of ferritin. IRPs also inhibits the translation of FPN, which in turn inhibits iron output. When intracellular iron overload 

Fig. 1   Iron metabolism in normal cells. Ferric iron in food is reduced to Fe2+ by DcytB and then taken up by DMT1 into the intestinal epithe-
lium. HCP1 mediates the absorption of heme iron by intestinal cells. Fe-Tf-TfR1 complexes enter the cell by endocytosis, forming the endo-
some, where Fe3+ is reduced to Fe2+ by the STEAP. Then, Fe2+ is transported from the endosome to the cytoplasm via DMT1, and the Tf-TfR1 
complex immediately returns to the cell membrane for the next cycle of transport. The figure also shows the pathway of circulating heme 
and NTBI into cells. DcytB duodenal cytochrome B, DMT1 divalent metal transporter 1, HCP1 Haem carrier protein 1, LIP Labile iron pool, HO1 
heme oxygenase 1, HRG1 heme-responsive gene 1, FPN ferroportin, MCOs multicopper oxidases, Tf transferrin, TfR1 transferrin receptor 1, 
STEAP six transmembrane epithelial antigen of the prostate, NTBI non-transferrin-bound iron, ZIP8/14 ZRT/IRT-like protein 8/14, MFRN 1/2 
mitoferrins ½, PPIX Protoporphyrin IX, FECH ferro chelatase
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occurs, the conformation of IRPs changes and IRPs lose their activity. Excess iron can also change the conformation of 
IRE and reduce the affinity of IRE to IRPs [30–32]. In addition, IRP1 and IRP2 have different functions. Overexpression of 
IRP1 can reduce tumour growth, while overexpression of IRP2 can have the opposite effect. It has been suggested that 
IRP2 has other functions that account for this different phenotype [33].

3 � Iron metabolism in OS

3.1 � Systemic changes in iron metabolism

As with most cancers, systemic iron metabolism is disrupted in patients with OS. OS patients often have clinical manifes-
tations of anaemia, which is called anaemia of chronic disease, and this is caused by the inhibition of iron utilization and 
decreased red blood cell production [34, 35]. Interleukin-6 (IL-6) is an important factor in promoting the proliferation, 
metastasis and angiogenesis of OS [36, 37]. Signal transducer and activator of transcription 3 (STAT3) is overexpressed 
in OS cells and is related to poor OS prognosis [38, 39]. However, IL-6 and STAT3 can upregulate hepcidin and reduce 
serum iron concentrations [40, 41]. Tumour necrosis factor-α (TNF-α) can inhibit the synthesis of erythropoietin and 
plays a role in inhibiting the production of erythrocytes [42–44]. These molecules are closely related to the occurrence 
and development of OS and disrupts the body’s normal iron metabolism by interacting with iron metabolism-related 
proteins, resulting in sufficient iron reserves in the body of patients with OS but reduced availability of circulating iron 
for red blood cell production [45, 46].

3.2 � Iron metabolism in OS cells

3.2.1 � TfR1

With the discovery of more iron metabolism-related proteins and the elucidation of iron metabolism mechanisms, the 
relationship between iron metabolism and cancer at the molecular level has become increasingly clear [47, 48]. Due to 
the vigorous growth and proliferation of tumour cells, they require synthesis of a large amount of DNA in a relatively short 
period of time. At this point, tumour cells need much more iron than normal cells. TfR1 is an essential protein involved 
in iron uptake and regulation of cell growth [49]. Several studies have shown that tumour cells express higher levels of 
TfR1 than normal cells to increase the transport of iron to meet the metabolic requirements of tumour cells [50].

TfR1 is highly expressed in many types of malignancies, including hepatocellular carcinoma, breast cancer, leukaemia, 
lymphoma, lung cancer, and colorectal cancer [51–53]. Clinical trials have shown a positive correlation between elevated 
TfR1 expression and tumour malignancy and poorer prognosis.

Our previous study showed that TfR1 is highly expressed in OS and is significantly correlated with histological grade, 
Enneking stage and distant metastases; therefore, TfR1 can be used as an independent prognostic indicator for OS 
patients [54]. Increased expression of TfR1 increases the rate of iron uptake by OS cells, thereby promoting OS prolif-
eration. In addition, TfR1 is involved in the regulation of the NF-kappa B (nuclear factor-kappa B) signalling pathway in 
cancer cells, and by interacting with IKK (inhibitor of NF-kappaB kinase), it activates the NF-kappa B signalling pathway 
to inhibit apoptosis, thereby promoting the survival rate of cancer cells (Fig. 2) [55].

While OS is rapidly increasing in size and lacks blood vessels in some areas of the tumour, this fraction of OS cells is 
chronically hypoxic, and OS cells can only adapt to hypoxia by expressing a range of hypoxia-inducible factors (HIFs). The 
current study showed that HIF expression is significantly increased in OS cell lines and that aberrant expression of HIF 
is closely associated with OS progression [56]. Activation of HIF in OS can affect cellular iron metabolism by increasing 
the expression levels of TfR1, inducing degradation of haem iron and promoting iron uptake to increase intracellular 
iron concentrations (Fig. 2) [57–59].

3.2.2 � Ferritin

Ferritin is a metal-binding protein whose primary function is responsible for maintaining iron bioavailability. Ferritin 
exists in osteoblast cell lines and regulates metal homeostasis in bone [60]. Ferritin has two functionally distinct isoforms: 
ferritin light chain (FTL) and ferritin heavy chain (FTH). The level of intracellular ferritin has a certain value in the diagno-
sis, treatment and prognosis of osteosarcoma. A study on FTL and osteosarcoma showed that the expression of FTL in 
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osteosarcoma cells was significantly lower than that in normal tissues in the transcriptome database. Tissue microarray 
analysis showed that lower FTL expression was associated with shorter tumor metastasis and survival, and the higher 
the FTL level, the better the treatment effect [61].

In the development of OS, TP53 is the most frequently altered gene [62, 63]. The current study found that p53 (encoded 
by TP53) inhibits IRPs activity, decreases TfR1 expression on the cell membrane surface, promotes intracellular ferritin 
synthesis, and thus restricts iron metabolism to inhibit cell growth [64, 65]. TP53 was shown to be mutated in OS cells 
resulting in inactivation of p53; thus, p53 could not maintain its inhibitory effect on iron metabolism, intracellular ferritin 
synthesis was inhibited, and intracellular free iron was increased. In an in vitro study on hepatocytes, activation of p53 was 
found to increase the expression of hepcidin and had an antitumor effect by reducing the intracellular concentration of 
iron [66]. The inactivation of p53 in OS cells may decrease the expression of hepcidin, inhibit the efflux of iron, and then 
increase the concentration of iron in OS cells [67]. Interestingly, high concentrations of iron can in turn contribute to the 
degradation of p53, creating a vicious cycle within the cell that promotes the development and progression of OS [68].

3.2.3 � Free iron

Increased intracellular iron concentrations can play a role in tumorigenesis and progression by inducing high levels of 
ROS production in mitochondria through the Fenton reaction, causing DNA mutations [69, 70]. An in vitro study showed 
that iron promotes the proliferation, migration and invasion ability of OS cells and that high levels of intracellular iron 
increase the production of ROS in mitochondria and play a key role in the Warburg effect in OS [71]. In addition, arsenite, 
which has long been considered a common carcinogen, can also affect the occurrence and progression of OS by inter-
fering with iron metabolism. Arsenite inhibits the synthesis of ferritin, which increases the concentration of free iron in 
OS cells. This makes OS cells more prone to ROS production, making DNA more vulnerable to damage and leading to 
arsenite-induced carcinogenic effects [72]. This study suggests that disturbances in iron metabolism play an important 
role in the progression of OS. In addition, the oxidative stress caused by iron overload depletes the body of antioxidant 
substances, which can also have a mutagenic effect within cells; thus, the carcinogenic effect of iron overload is cumula-
tive and results in the transformation of normal cells to cancer cells [73].

Intracellular iron overload can also disrupt the normal functioning of the immune system, allowing tumour cells to 
escape immune system surveillance. In the murine fibrosarcoma cell line L929, iron overload was found to inhibit NO 

Fig. 2   Iron metabolism in OS 
cells. Iron overload induces 
high levels of ROS production 
in mitochondria through the 
Fenton reaction, which in turn 
leads to DNA damage. TfR-1 
interacts with the IKK complex 
and is involved in IKK-NF-κB 
signalling, thereby inhibiting 
OS cell apoptosis. In addition, 
the relationship between p53, 
IRP and TfR1 is also briefly 
depicted in the figure
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production in macrophages, leading to a loss of the antitumour activity of macrophages and aiding in the survival of 
tumour cells [74].

3.3 � Iron metabolism and treatment of OS

Given the specific role of disorders of iron metabolism in the development and progression of OS, targeting iron 
metabolic pathways for the treatment of OS is possible. Current attention targeting iron metabolism to treat OS 
has focused on ferroptosis, a non-apoptotic form of cell death caused by iron catalysis and lipid peroxidation [75]. 
Excessive iron not only promotes the occurrence and development of OS, but also makes OS cells, which have lit-
tle response to traditional necroptosis, more susceptible to ferroptosis. Tirapazamine, curcumin and its analogues, 
artemisinin, etc., have shown the potential to inhibit or treat OS by inducing ferroptosis in cells [12, 76].β-phenethyl 
isothiocyanate (PEITC) has potential anti-cancer activity. A study involving human OS cell lines showed that PEITC 
affected the level of iron metabolism by up-regulating TfR1 and down-regulating iron-related proteins such as FPN, 
FTH1 and DMT1. In addition, PEITC also promoted ROS accumulation, activated MAPK signaling pathway, and trig-
gered ferroptosis, thereby inhibiting or treating OS [77, 78].

In conclusion, there is great potential to treat OS by targeting iron metabolism and ferroptosis pathways.
Deferoxamine and deferasirox, two iron chelators, can alter iron metabolism in tumour tissues, activate the MAPK 

signalling pathway, promote ROS deposition in OS cells and induce apoptosis in OS cells, thereby reducing the viability 
of OS cells and inhibiting their proliferation [79, 80].

Research into the use of TfR1 for the treatment of tumour is also underway. As TfR1 is significantly differentially 
expressed in tumours and normal tissues, tumour cells can be identified according to their TfR1 expression levels, facili-
tating targeted tumour therapy. Adriamycin is the most common chemotherapy drug, but it is not selective and can 
cause serious damage to the heart [81]. Coupling adriamycin to TF takes advantage of TF’s recognition of TfR1 to allow 
for precise delivery of adriamycin to cancer cells for targeted tumour therapy [82]. In addition, the TfR1 antibody can 
also precisely recognize TfR1, which can better identify tumour cells and block their uptake of iron due to its antitumor 
effects [83–85]. However, research on TfR1 in the treatment of OS is still in its infancy and faces many challenges; further 
in vitro and in vivo trials are needed (Table 1).

4 � Conclusion

This paper briefly describes the pathways of normal iron metabolism, focusing on a review of the changes in systemic 
iron metabolism in OS patients, the relationship between key genes and molecules and iron metabolism-related proteins 
in OS cells and the application of iron metabolism in the treatment of OS. In OS, the pathways and molecules involved in 
iron import and storage are directly or indirectly activated, and the pathways and molecules involved in iron export are 
restricted and inhibited. Reverse intervention of related molecules and pathways has become a potential treatment for 
OS. In addition, ferroptosis mechanism is also a strategy that cannot be ignored. Excessive iron not only promotes the 
occurrence and development of OS, but also induces ferroptosis leading to apoptosis of OS. Therefore, how to balance 
the relationship between them is an urgent problem to be solved.

Due to the complexity of the molecular mechanisms of iron metabolism, there is still a relative lack of research on 
the mechanisms of action and signalling molecules associated with iron metabolism causing OS. In-depth studies of 
normal iron metabolic pathways and pathological changes in abnormal iron metabolism in OS tissues will help to further 
uncover the relationship between iron metabolism and the occurrence, progression, treatment and prognosis of OS, 
thus providing new ideas for mechanistic studies and therapeutic approaches for OS.
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