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Abstract
Exosomes can be released by a variety of cells and participate in intercellular communication in many physiological 
processes in the body. They can be used as carriers of cancer therapeutic drugs and have natural delivery capabilities. 
Some biologically active substances on exosomes, such as major histocompatibility complex (MHC), have been shown to 
be involved in exosome-mediated anticancer immune responses and have important regulatory effects on the immune 
system. Exosome-based drug delivery systems hold great promise in future cancer immunotherapy. However, there are 
still substantial challenges to be overcome in the clinical application of exosomes as drug carriers. This article reviews 
the biological characteristics of exosome drug delivery systems and their potential applications and challenges in cancer 
immunotherapy.
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MHC	� Major histocompatibility complex
ILVs	� Intraluminal vesicles
MVEs	� Multivesicular endosomes
ESCRT​	� Endosomal sorting complex
RES	� Reticuloendothelial system
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DCs	� Dendritic cells
Dex	� DCs-derived exosomes
ICAM-1	� Intercellular adhesion molecule-1
NSCLC	� Non-small cell lung cancer
PFS	� Progression-free survival
AFP	� Alpha-fetoprotein
HCC	� Hepatocellular carcinoma
TNBC	� Triple-negative breast cancer
M1-exos	� M1 macrophage-derived exosomes
NKT	� Natural killer T cells
Th	� T helper
T regs	� Regulatory T cells
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CARs	� Chimeric antigen receptors
MSLN	� Mesothelin
NK	� Natural killer cells
NK-Exos	� NK cell-derived exosomes
CTCs	� Circulating tumor cells
TEXs	� Tumor-derived exosomes
MSCs	� Mesenchymal stem cells
MSCs-Exo	� Mesenchymal stem cells-secreted exosomes
BMSCs-exo	� Bone marrow mesenchymal stem cell-derived exosomes

1  Introduction

The term “exosomes” first appeared in the 1980s. Trams et al. discovered a set of vesicle-like structures with diameters 
ranging from 40 to 1000 nm using transmission electron microscopy [1]. Later, Johnstone isolated these vesicles from 
sheep reticulocytes by ultracentrifugation at 100,000×g for 90 min, and these vesicle-like structures were called exosomes 
for the first time [2].

The extracellular vesicles (EVs) collectively refers to various vesicles with membrane structures released by cells. 
Due to their different sizes and how they are formed, they are divided into three subgroups: exosomes, microvesicles, 
and apoptotic bodies (Table 1). Exosomes, also known as intraluminal vesicles (ILVs), are approximately 40–160 nm in 
size and are produced by inward budding of multivesicular endosomes (MVEs) during maturation [3, 4]. Cells release 
exosomes after MVEs fuse with the cell membrane. The endosomal sorting complex (ESCRT), Rab protein, CD36 and 
sphingolipid ceramide required for the transport mechanism have been shown to play important roles in biological 
processes [5–8]. Exosomes can be secreted under physiological and pathological conditions by almost all types of cells, 
including prokaryotic cells and eukaryotic cells [9, 10]. They are widely present in culture supernatants and biological 
fluids such as blood, urine, breast milk, pleural fluid and cerebrospinal fluid. The exosomes released from one cell type 
(donor cells) can be taken up by another (recipient cells). If release and uptake of exosomes are arisen by same cells, it 
is called to be autologous (or autocrine). If these actions are achieved between different or remote cell types, it is called 
to be heterologous (or paracrine) [8, 11].

In recent years, the concept of precision medicine has been widely accepted. To improve the therapeutic effect of 
drugs and reduce toxicity and side effects, researchers have gradually begun to pay attention to precise and efficient drug 
delivery systems. Exosomes have been found to be good carriers for drug delivery systems [12–14]. They can transport 
biologically active substances into the cytoplasm of immune cells or cancer cells and perform their biological functions 
precisely and efficiently [15, 16]. Exosomes have numerous advantages as therapeutic drug delivery vehicles, including 
a small size, good stability, and good biocompatibility and safety. Additionally, they are able to avoid phagocytosis by 
the reticuloendothelial system (RES) and penetrate deep into a tumor to release drugs by degrading the extracellular 
matrix [17].

The involvement of exosomes in cancer diagnosis and treatment is one of the current hotspots of cancer research 
(Fig. 1). An increasing number of studies have found that exosomes play an important role in the occurrence, devel-
opment, metastasis, detection and treatment of cancer [18–24]. Comparing cancer cell exosomes to normal cell 
exosomes revealed that the levels of many of the proteins identified were particularly high in cancer exosomes. This 
is important because these markers can be used to diagnose exosomes from cancer cells and even identify which 
tissue they came from. For example, in 2015, a non-small cell lung cancer (NSCLC)-related study, which included 
blood sample data from 109 patients with stage IIIa-IV NSCLC and 110 controls, found that in the advanced NSCLC 

Table 1   Classification of extracellular vesicles

Characters Exosomes Microvesicles Apoptotic body

Size 40–160 nm 100–1000 nm 100–5000 nm
Markers LAMP1, Tetraspanins, Alix, MHC I/II, HSP70, 

TSG100
Selectins, integrins, tissues factors and 

cell-specific markers
Histones, organelles

Origin Endosomal compartments of cells Cell surface plasma membrane When cells undergo apoptosis
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patients, CD317 and EGFR were highly expressed on the surface of exosomes [25]. Additionally, exosomes in the 
blood of treated patients can be monitored to understand the response to cancer treatment. If the exosomes 
decrease in number or disappear, it may indicate that the treatment is effective. If new mutations are found in 
exosomes, this could indicate that the cancer is developing new resistance to treatment. Potential tumor detection 
and treatment markers in exosomes in different tumors are described in detail in Table 2.

An emerging research area related to exosomes that has gained considerable attention is the application of 
exosomes in immunotherapy [12]. Exosomes derived from immune cells, tumor cells, and mesenchymal stem cells 
are the most widely used drug delivery systems [13, 100, 101]. Studies have confirmed that tumor-derived exosomes 
can carry drugs and target the drugs to tumor cells to inhibit their growth [14, 102–106]. Exosomes released by vari-
ous immune cells (T cells, DCs, macrophages, etc.) play an important role in immune system regulation [107–110]. 
Immune cell-derived exosomes can mimic the characteristics of immune cells targeting tumor cells, conferring 
therapeutic benefits by attenuating or stimulating immune responses [13, 111]. Therefore, exosomes have great 
potential in cancer immunotherapy.

Although exosomes have been the subject of many review articles, few reviews have comprehensively summa-
rized the role of exosomes as drug carriers in immunotherapy. In this review, we mainly focus on the application 
of exosomes for targeted drug delivery in cancer immunotherapy. The characteristics of exosomes as drug carriers 
and future prospects are also introduced.

Fig. 1   Exosome-based cancer diagnosis and treatment. Exosomes from different sources can be used for cancer diagnosis. Exosomes can be 
used as drug delivery systems for cancer treatment
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2 � Exosomes as a drug delivery system

Exosomes are widely found in various body fluids [107, 112]. In vivo, exosomes carry the membrane and cytoplasmic 
components of the parent cell and play the role of "courier", maintaining the exchange of substances (lipids, proteins, 
nucleic acids, etc.) between cells [113]. There are various membrane proteins with specific functions on the exosome 
membrane. For example, CD9 and CD81 help exosomes fuse with recipient cells, CD55 and CD59 protect against com-
plement attack, and CD47 protects against phagocytosis by macrophages [114, 115] (Fig. 2).

Exosomes are naturally nontoxic and highly biocompatible, and they remain in blood circulation for long periods 
[116, 117]. These unique functions make exosomes a potential ideal drug delivery vehicle. However, autologous- and 
heterologous-dependent approaches need to be considered when choosing exosomes as drug delivery systems. The 
study found that the uptake of autologous and heterologous exosomes by recipient cells was significantly different. 
Autologous exosomes are more biologically similar to their parental cells and may be more suitable for drug delivery 
[118]. However, heterologous exosomes cannot be completely ignored. The acquisition of heterologous exosomes is 
often easier than that of autologous exosomes. Studies have found that heterologous exosomes can safely and reliably 
deliver drugs. Lessi et al. found that primary human macrophage-derived exosomes can be efficiently used for drug 
delivery [119].

In recent years, exosomes have been found to be a good drug delivery vehicle for cancer treatment [107, 120–122]. 
Several therapeutic approaches based on exosome drug delivery systems have entered clinical trials, as shown in Table 3.

As a drug delivery system, exosomes also face numerous challenges and are affected by many factors. Prof. Gaurav, 
I. and Thakur, A. systematically reviewed the various factors affecting extracellular vesicle-based drug delivery systems 

Fig. 2   Schematic diagram of exosomes. The membrane and inside of exosomes carry a variety of proteins (CD13, LAM1/2, PGRL, PD1, PDL1, 
et al.), metabolites and nucleic acids (mRNA, miRNA, lncRNA, et al.)
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[118]. For example, one issue is exosome isolation and yield. Although techniques for isolating exosomes have been 
widely reported and commercial extraction kits have been developed, current extraction techniques are still an important 
limiting factor in the application of exosomes for drug delivery [124]. There is no consensus on a standard procedure for 
the optimal isolation of exosomes. There are still insufficient technologies to obtain exosomes that can be used in drug 
delivery systems with high efficiency, high quality and low cost. In addition, exosomal surface modification is an impor-
tant factor that affects targeted delivery [118]. Chemical modification and genetic engineering are two techniques that 
can be used for surface modification of exosomes. Surface modifications can affect the delivery capacity and biological 
effects of exosomes. However, neither is perfect. Due to the complexity of exosome surfaces, chemical modifications 
often lack site-specific control and even affect the structure and function of the carrier. Genetic engineering is the fusion 
of the gene sequence of the guide protein or polypeptide with the gene sequence of the selected exosomal membrane 
protein. This approach is effective for the surface display of polypeptides and proteins but is limited to genetically 
encoded targeting motifs.

In terms of drug loading, bioactive substances such as proteins, small RNAs and drugs can be loaded into exosomes 
using chemical methods and genetic engineering techniques [13, 102, 120]. At present, there are two methods to achieve 
drug loading in exosomes: endogenous loading and exogenous loading.

Endogenous loading, also known as preloading, refers to the loading of drugs into cells before the cells release 
exosomes. This method turns cells into living factories that release drug-loaded exosomes and directly secrete the 
desired drug-loaded exosomes. For example, Ran et al. transfected mouse embryonic fibroblasts (NIH3T) with a pro-
peptide-expressing lentivirus (CD63-propeptide-expressing lentivirus), which ultimately enabled the fibroblasts to 
release exosomes carrying propeptides on their surface [125]. Choi et al. constructed a cell line that stably expressed 
two recombinant anti-inflammatory proteins, CIBN-EGFP-CD9 and srIκB-mCherry-CRY2. Then, irradiation with blue light 
(460 nm) induced cells to actively load anti-inflammatory proteins into exosomes [126]. The engineered cells can easily 
and conveniently produce the target exosomes, which have great potential in the commercialization of exosomal protein 
therapy. Fu et al. used genetic circuits to reprogram the host liver to direct the synthesis and self-assembly of siRNA into 
exosomes and facilitate the delivery of siRNA in vivo through circulating exosomes [127].

Exogenous loading, also known as postloading, refers to the processing of exosomes after isolation and purification 
of natural exosomes. There are various ways to load drugs into exosomes: coincubation, sonication, electroporation, 
freeze‒thaw, extrusion and permeabilization [16, 121, 128–137]. Thakur, A et al. successfully loaded two blood‒brain 
barrier (BBB)-impermeable anticancer drugs, DOX and PTX, into SF7761 stem cell-like GM-derived exosomes with an 
Exo-Load microfluidic device and found that this treatment exerted a strong tumor growth inhibitory effect [138]. Xu 
et al. found that exosomes secreted by M1 macrophages provide a proinflammatory environment and that paclitaxel 
(PTX) encapsulated by coincubation increases the antitumor ability of PTX in breast cancer cells through the caspase-3 
pathway [139]. Prof. Alvarez-Erviti used electroporation to load exogenous siRNA into purified exosomes. Intravenous 
injection of exosomes carrying exogenous siRNA targeted for delivery to oligodendrocytes, microglia, and neurons in the 
brain results in specific gene knockout [140]. Li et al. used polycarbonate membrane extrusion to fuse drug-encapsulated 
nanoparticles with exosomes, and the cellular uptake efficiency and antitumor effect of doxorubicin (DOX) were signifi-
cantly improved [13].

3 � Immune cell‑derived exosomes

3.1 � Dendritic cells

Dendritic cells (DCs) are responsible for processing and presenting antigenic information in vivo [141, 142]. When DCs 
mature, they have many pseudopods similar to dendrites, so they are called dendritic cells [143]. Mature DCs special-
ize in processing and presenting various antigenic substances and play a central role in the immune regulation of the 
human body [144]. They can regulate the body’s humoral immunity, cellular immunity and tumor immunity. Through 
the processing of tumor cells, DCs can activate human T lymphocytes and enhance the phagocytosis of T lymphocytes 
on tumor cells, thereby exerting an effective antitumor effect [145]. DC-derived exosomes (Dexs) are able to enhance 
immune responses by transferring MHC complexes from antigen-exposed to unexposed DCs [111, 146]. These DCs load 
processed antigen onto major histocompatibility complex I and II (MHCI and MHCII) molecules, present to naïve CD8+ 
and CD4+ T cells, respectively, and transmit antigen memory to T cells [100]. Mature DCs are able to carry more intercel-
lular adhesion molecule-1 (ICAM-1) and MHCII and exert stronger T-cell stimulation [147, 148].
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In a phase II clinical trial, investigators used second-generation Dex (IFN-γ-Dex) for maintenance immunotherapy in 
patients with advanced non-small cell lung cancer (NSCLC). The study included 22 patients, and the primary endpoint 
was progression-free survival (PFS) 4 months after chemotherapy was stopped. This phase II clinical trial demonstrated 
the ability of Dex to enhance the antitumor immune response of NK cells in patients with advanced NSCLC [109]. Zhen 
et al. reported that alpha-fetoprotein (AFP)-expressing Dex could induce potent antigen-specific immune responses in 
ectopic or orthotopic hepatocellular carcinoma (HCC) mice, improved the immune microenvironment of autologous 
tumors, and decrease the amount of immune stimulation cell and CD8+ CTL infiltration, levels of immunosuppres-
sive cytokines and the number of Treg cells [149]. A recent study reported that Dex vaccine (DEXP&A2&N) promoted the 
recruitment and activation of DCs in mice with liver cancer, thereby enhancing tumor-specific immune responses [150]. 
Studies have reported that DC cell-derived exosomes can cross the BBB to deliver RNAi to the brain and play a biological 
role, such as inhibiting tumor growth [151]. Xu et al. reported that fluorouracil could be encapsulated in DC cell-derived 
exosomes by electroporation and found that FU-DC-Exos had a strong inhibitory effect on the proliferation of colon 
cancer cells [152]. Using the property of rabies virus glycoprotein (RVG) to specifically bind to nicotinic acetylcholine 
receptors (AchR) on neurons and BBB vascular endothelium, Lakhal et al. established membrane-expressing LAMP2B-
RVG exosomes (derived from DCs) for targeted delivery [151]. In conclusion, DC-derived exosomes offer great promise 
for cancer therapy as drug delivery vehicles.

3.2 � Macrophages

Macrophages are specialized, long-lived phagocytic cells of the innate immune system [153, 154]. They are the largest 
immune cell population in solid tumors and play an important role in maintaining homeostasis [155]. Macrophages have 
two main polarization states: the proinflammatory M1 phenotype and the anti-inflammatory and reparative M2 pheno-
type [156]. Macrophages can regulate their microenvironment and provide instructions to neighboring cells to maintain 
balance. Studies have found that macrophages can not only inhibit tumor growth and progression but also promote 
tumor cell growth, survival, and angiogenesis through an immunosuppressive microenvironment [156–158]. Feng et al. 
developed a macrophage-derived exosome-coated poly(lactic-glycolic acid) nanoplatform for targeted chemotherapy in 
triple-negative breast cancer (TNBC). This engineered exosome was found to have a significant tumor-targeting effect and 
to improve the cellular uptake efficiency and antitumor efficacy of doxorubicin [13]. M1 macrophage-derived exosomes 
(M1-exos) have been demonstrated to deliver anticancer drugs for cancer therapy. Kim et al. found that exosome mem-
brane reorganization under the action of ultrasound could improve drug loading efficiency and sustained drug release. 
Therefore, the ultrasonic method was used to load PTX into M1-exos, and the results confirmed that M1-exos-PTX has a 
significant therapeutic effect on lung cancer [137]. Cianciaruso et al. found that macrophage-secreted exosomes have 
molecular features related to Th1/M1 polarization and enhance inflammatory and immune responses [159]. TAM-EVs 
also contain bioactive lipids and biosynthetic enzymes that may alter proinflammatory signaling in cancer cells. There-
fore, although studies have found that macrophages can promote the malignant progression of tumors by stimulating 
angiogenesis, increasing tumor cell invasion and metastasis, and inhibiting antitumor immunity, the exosomes they 
secrete may stimulate rather than limit antitumor immunity [158, 159].

In conclusion, the potential of macrophage-derived exosomes for cell-to-cell communication in oncology research 
is unclear. Since macrophages are the largest immune cell population in solid tumors, the status and importance of 
macrophage-derived exosomes in future cancer research cannot be underestimated.

3.3 � T‑lymphocytes

T lymphocytes are important immune cells in the body that fight diseases such as infections and tumors [160–162]. T 
lymphocytes include three types: natural killer T cells (NKT), T helper (Th) lymphocytes, and regulatory T cells (Tregs) 
[163]. Their functions include: (1) killing and eliminating virus-infected cells and cancer cells via cytotoxicity; (2) secreting 
cytokines to regulate the role of other immune cells; and (3) distinguishing exogenous pathogenic antigens and self-
antigens to prevent inappropriate autoimmune responses. Qiu et al. found that PD-1 carried by T-cell-derived exosomes 
could interact with PD-L1 on the distal cell surface or exosomes. The internalization of PD-L1 is induced by endocytosis, 
preventing the binding of PD-L1 to PD-1 and thereby inhibiting the occurrence of immune escape [162].

Chimeric antigen receptors-modified T cells (CAR-T) have emerged as a promising new type of immunotherapy 
[164–167]. Johnson et al. used CAR-T cells to deliver RN7SL1, an endogenous RNA, to activate RIG-I/MDA5 signaling, 
stimulate a characteristic dendritic cell (DC) subset, and improve immune function [168]. Studies have found that CAR-T 
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cells can release CAR-carrying exosomes and that CAR-expressing exosomes can significantly inhibit tumor growth, 
which may become a new antitumor therapy in the future [169]. Yang et al. found that exosomes derived from mesothelin 
(MSLN)-targeted CAR-T cells maintained the characteristics of parental T cells, such as CD3 expression on the membrane 
surface [170]. CAR-carrying exosomes can significantly inhibit the malignant progression of TNBC [170]. In conclusion, 
T-cell-derived exosomes are important mediators involved in immune regulation, and their application as drug delivery 
vehicles in cancer therapy is still in the exploratory stage.

3.4 � Natural killer cells (NK cells)

Natural killer cells (NK) are important immune cells that are related to antitumor and immune regulation [171]. NK cells 
can exert cytotoxic effects on a variety of cells, destroying infectious and tumor cells in the absence of antigen presenta-
tion [172]. NK-cell-derived exosomes (NK-Exos) contain the same molecules that kill cancer cells; they are much smaller 
than NK cells and are better able to penetrate tumors [173]. Exosomes secreted by NK cells also have a tumor-homing 
ability [110].

Kang et al. found that samples from patients with NSCLC contained more NK cells and NK-Exos, which were correlated 
with the number of circulating tumor cells (CTCs) [173]. CD56 and FLOT1 expressed by NK-Exos can be recognized and 
taken up by cancer cells, leading to cytotoxic death of cancer cells [173]. NK-Exos are also cytotoxic to melanoma cells and 
induce melanoma cell apoptosis. FasL inhibitors attenuate NK-Exos cytotoxic effects on melanoma. In vivo experiments 
in mice also showed that tumor size was significantly reduced after NK-Exos treatment [113]. NK-Exos have cytotoxic 
effects on tumors and good application prospects in cancer immunotherapy. miR-3607-3p in NK-Exos can target IL-26, 
thereby inhibiting the proliferation, invasion and migration of pancreatic cancer cells [174]. Taken together, these results 
show that NK-cell-derived exosomes are very promising in the field of tumor therapy, and the substances with antitumor 
effects that they carry are expected to become a promising new cancer treatment.

4 � Tumor cells‑derived exosomes

Tumor-derived exosomes (TEXs) promote tumor growth and development in many ways, affect the differentiation and 
activation of immune cells and regulate antigen presentation [104, 175–178]. TEXs are key mediators of intercellular 
communication, can remodel distant microenvironments, such as premetastatic niches, and play an important role in 
the distant metastasis of tumors [106, 179, 180]. David et al. found that the tumor exosomal CEMIP protein can act on 
cerebral blood vessels and microglia, remodel the brain microenvironment, and promote the metastasis of cancer cells 
to the brain [181]. Tumor-derived exosomal miR-1247-3p directly targets B4GALT3, induces activation of the β1-integrin-
NF-κB signaling pathway in cancer-associated fibroblasts, and promotes lung metastasis of liver cancer [104]. Studies have 
found that glioblastoma cell (GM)-derived exosomes can spread to systemic biological fluids through the BBB, which is 
considered to be an effective biomarker for the discovery of tracking glioma progression [8, 182]. GM-derived exosomes 
can penetrate the BBB, making it possible to deliver drugs that cannot penetrate the BBB to intracranial tumors. In addi-
tion, studies have reported that hypoxia increases the expression of MCT1 and CD147 in GMs, which leads to changes 
in the biological characteristics of exosomes released by GMs and affects the uptake of exosomes by receptor cells (e.g., 
endothelial cells) [182].

The diverse biological characteristics of TEXs make them effective molecular markers and therapeutic targets, espe-
cially for immunotherapy. Tumor cell-derived exosomal miR-21 and miR-29a can bind to TLR8 and TLR7 in immune cells, 
leading to the activation of NF-κB and the secretion of inflammatory factors [101]. NSCLC cell-derived exosomal circUSP7 
suppresses CD8+ T-cell function by upregulating SHP2 expression by sponging miR-934, thereby promoting the resist-
ance of NSCLC patients to anti-PD1 immunotherapy [105]. Samantha et al. found that primary tumor-derived exosomes 
can induce tissue-resident macrophages in the premetastatic microenvironment to upregulate the immunosuppressive 
molecule PD-L1 and secrete high levels of lactate, thereby establishing an immunosuppressive microenvironment that 
promotes tumor metastasis [176]. These research results confirm the regulatory effect of tumor-derived exosomes on 
the immune system and provide new targets for tumor immunotherapy.

Mauro et al. found that tumor-derived exosomes carrying PDL1 to lymph nodes can inhibit the function of T cells. 
Knocking out the TRAMP-C2 gene inhibited the release of exosomes from tumor cells, which in turn inhibited tumor 
growth. These results are in contrast to those obtained by the injection of exosomes carrying PDL1 collected in vitro 
[183]. Some studies have also found that tumor-derived exosome-loaded drugs can reduce the number of cancer cells 
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[14, 102, 103]. This study confirms the important value of targeted inhibition of tumor-derived exosomes in tumor immu-
notherapy. In-depth exploration of the immunoregulatory mechanism of tumor-derived exosomes on various immune 
cells will help guide immunotherapy and overcome the resistance of current immune checkpoint inhibitors.

5 � Mesenchymal stem cells‑derived exosomes

Mesenchymal stem cells (MSCs) are a type of pluripotent stem cell that have all the commonalities of stem cells, namely, 
self-renewal and multidirectional differentiation capabilities. MSCs exist not only in bone marrow but also in skeletal 
muscle, periosteum, and trabecular bone [184]. Mesenchymal stem cell-secreted exosomes (MSC-Exos) possess not only 
the tumor-regulating properties of parental cells but also the ability to transport valuable cargoes (such as proteins, 
lipids, RNAs) across physiological barriers to target cells and play a role in communication and regulation [185]. A recent 
study found that MSC-Exos can affect the occurrence and development of tumor cells by promotion or inhibition in two 
ways [186]. Wang et al. found that MSC-Exos could transfer miRNA-221 to HGC27 gastric cancer cells, thereby promoting 
the growth and migration of tumor cells [187]. Zhang et al. found that bone marrow mesenchymal stem cell-derived 
exosomes (BMSC-exos) carry miR-193a-3p, miR-210-3p and miR-5100 to recipient cells, activate the STAT3 signaling path-
way to induce epithelial-mesenchymal transition, and enhance the invasive ability of lung cancer cells [188]. In addition, 
a study found that exosomal miR-145 derived from adipose MSCs inhibited prostate cancer growth by reducing Bcl-xl 
activity and promoting tumor cell apoptosis [189].

MSC-Exos have a certain targeting ability, and the modification of MSC-Exos can target the tumor site and have a 
stronger anticancer effect. Kamerkar et al. found that in a mouse model of pancreatic cancer, loading specific siRNA 
or shRNA carrying the oncogene KRAS into MSC-Exos significantly enhanced its efficacy and improved overall survival 
depending on CD47 [123]. Bagheri et al. used MSC-Exos as carriers to transport RNA, protein and small-molecule drugs 
to specific parts of the tumor for tumor therapy. For example, doxorubicin loaded into MSC-Exos by electroporation 
inhibited colon cancer growth. This mode of administration can significantly increase the accumulation of doxorubicin 
in tumor tissue [184, 190].

MSC-Exos still have considerable research potential and broad application prospects in the field of in vivo drug deliv-
ery, which can provide new research methods and ideas for cancer treatment. However, the research conclusions are 
still in the preclinical stage, and more in-depth basic research is needed to clarify its molecular mechanism in the future.

6 � Conclusions and prospects

In this review, we discuss the application value of exosome-based drug delivery systems, as well as the recent progress 
and application prospects of exosomes derived from immune cells, tumor cells and mesenchymal stem cells in the field 
of cancer immunotherapy. Exosomes can be released into the extracellular environment by immune cells or cancer 
cells. An increasing number of studies have shown that exosomes have important regulatory effects on the immune 
system [13, 107, 111]. Some biologically active substances on exosomes, such as MHC and costimulatory molecules, have 
been shown to be involved in exosome-mediated anticancer immune responses. A more comprehensive and in-depth 
understanding of the molecular mechanism of exosomes in immune regulation is of considerable importance for the 
development of anticancer immunotherapy based on exosome drug delivery systems.

Multiple studies have confirmed engineered exosomes to be an important tool for drug delivery, and multiple clinical 
trials are underway. For example, Thakur, A’s team successfully loaded BBB-impermeable anticancer drugs into SF7761 
stem cell-like GM-derived exosomes with an Exo-Load microfluidic device and inhibited tumor growth [138]. However, 
to facilitate the true application of exosomes in the clinic, there are still some hurdles that need to be further addressed. 
For example, exosome surface modification directly affects the efficiency of drug delivery. Although chemical modifica-
tion and genetic engineering, two techniques that can be used for surface modification of exosomes, are widely used, 
both still have shortcomings. In the future, advances in exosome surface modification technology are crucial for the 
application of exosome-based drug delivery systems. In addition. isolating high-purity living NK-cell populations and 
extracting exosomes from these cells also face technical difficulties. At present, the extraction method of exosomes is 
mainly ultracentrifugation; however, the extraction yield is low, the cost is high, and it is difficult to achieve industrial 
production and large-scale clinical application [191]. Large-scale production and storage, biodistribution and hetero-
geneity, and engineered processing are all prominent challenges that must be overcome for clinical applications. At the 
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same time, maintaining the stability and functionality of exosomes, the targeted therapeutic effects and the side effects 
of exosomes are also issues that must be considered.

In conclusion, we have made significant progress in understanding the biological properties of exosomes and their 
applications in the field of cancer over the past decade. Exosome-mediated drug delivery is expected to overcome 
important challenges in therapeutic areas, for example, drug delivery across biological barriers such as the BBB, and the 
use of patient tissue-derived exosomes as personalized and biocompatible therapeutic drug delivery vectors. However, 
there is still a long way to go before we can fully understand all the molecular mechanisms associated with exosomes 
and apply them in the clinic.
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