
Vol.:(0123456789)

Discover Oncology           (2022) 13:27  | https://doi.org/10.1007/s12672-022-00482-5

1 3

Discover Oncology

Research

The ratio of CD8 + lymphocytes to tumor‑infiltrating suppressive 
FOXP3 + effector regulatory T cells is associated with treatment 
response in invasive breast cancer

Noriko Goda1 · Shinsuke Sasada1 · Hideo Shigematsu2 · Norio Masumoto1 · Koji Arihiro3 · Hiroyoshi Nishikawa5,6 · 
Shimon Sakaguchi4 · Morihito Okada1 · Takayuki Kadoya1

Received: 23 January 2022 / Accepted: 16 March 2022

© The Author(s) 2022  OPEN

Abstract
Purpose FOXP3 + and CD8 + are recognized markers of tumor-infiltrating lymphocytes (TILs) for breast cancer. 
FOXP3 + TILs are composed of effector Tregs (eTregs) and other subpopulations that are classified by their differences 
in suppressive function. In this prospective study, we evaluated Treg subpopulations and CD8 + TILs in breast cancer.
Methods 84 patients with breast cancer were enrolled. Fresh TILs were extracted andTregs were classified into eTregs 
 (CD4+FOXP3highCD45RA−), other  FOXP3+ Treg subsets (naïve and non-Tregs), and total  CD8+CD4− TILs using flow cytom-
etry. The suppression strength of each Treg subpopulation was analyzed. The association between TIL subpopulations, 
clinicopathological characteristics, and response to chemotherapy was evaluated.
Results The mean CD8/eTreg ratio value was 7.86 (interquartile range: 4.08–12.80). The proliferation function of eTregs 
was significantly suppressed compared with that of the other subpopulations (proliferation rates: control: 89.3%, + naiive-
Treg: 64.2%, + non-Treg: 78.2% vs eTreg 1.93%; all P < 0.05). The patients with high with a high CD8 + /eTreg ratio achieved 
excellent pathological complete response (pCR) rate of neoadjuvant chemotherapy (90.2%) and the CD8/eTreg ratio were 
independent predictive factors for pCR (odds ratio:18.7(confidence interval 1.25–279) P < 0.05). A detailed assessment 
of the CD8/eTreg ratio for each patient who underwent NAC revealed that high CD8/eTreg ratio showed a significantly 
higher pCR rate compared to patients with a low CD8/FOXP3 ratio (39.6% vs 13.3, P < 0.05) in triple negative subtype 
patients with stromal TILs < 50%.
Conclusions A high CD8/eTreg ratio enhances pCR rate in patients with invasive breast cancer.
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LPBC  Lymphocyte predominant breast cancer
OR  Odds ratio
PBMCs  Peripheral blood mononuclear cells
TILs  Tumor-infiltrating lymphocytes

1 Introduction

Breast cancer is a common malignancy that leads to morbidity and mortality in women worldwide [1–3]. According 
to the Global Cancer Statistics report in 2021, approximately 2.2 million women were diagnosed with breast cancer 
with nearly 700,000 deaths [2].

Several studies have shown that tumor-infiltrating lymphocytes (TILs) in breast cancer are strongly associated with 
treatment response and patient prognosis [4–7]. TILs are typically quantitatively evaluated using hematoxylin–eosin 
(HE)-stained samples. Subsequently, qualitative assessments are performed as TILs are functionally heterogene-
ous and consist of immunoprogressive or immunosuppressive components [8]. Regulatory T cells (Tregs), the most 
representative immunosuppressive TILs, are positive for transcription factor forkhead box P3 (FOXP3) and regulate 
anticancer immunity [9–11]. Some studies have reported increased Tregs in breast cancer as an adverse prognostic 
factor [12–15]. In contrast, other studies have suggested that Tregs predict favorable outcomes [16–19]. Thus, the role 
of Tregs in breast cancer TILs remains controversial [20]. Meanwhile, CD8 + TILs are representative immunoprogres-
sive TILs and have been confirmed as an independent predictive factor for treatment response [21–23] or survival 
[24]. Furthermore, several studies recommend the evaluation of the CD8 + /FOXP3 + ratio of TILs as sensitive markers 
of tumor immune responses in breast cancer rather than evaluation of FOXP3 + or CD8 + TILs alone [25–29]. These 
studies indicate that the balance of TIL components, which have conflicting functions, influence the prognosis of 
breast cancer.

FOXP3, detected by immunohistochemical staining, is a general Treg marker. However, FOXP3 + cells are functionally 
heterogeneous and can be classified into three fractions using flow cytometry based on the expression levels of FOXP3 
and naïve T cell marker CD45RA: naïve Treg, effector Treg (eTreg), and non-Treg. Only eTreg cells have a suppressive func-
tion; the other fractions are nonsuppressive and secrete inflammatory cytokines [10, 30]. In colorectal cancer, it has been 
reported that the variation in the tumor-infiltrating Treg component is caused by specific chemokines and cytokines and 
that these variations affect disease prognosis [31]. eTregs were recently revealed using dual immunostaining of FOXP3 
and CTLA4 in diffuse large B cell lymphoma [32]. However, the variations in eTreg infiltration have scarcely been evalu-
ated in breast cancer. Thus, the role or significance of Treg subpopulations in breast cancer remains unclear. Herein, we 
examined the association between eTregs and CD8 + TILs and the clinical outcomes of patients with invasive breast cancer.

2  Materials and methods

2.1  Patients and treatments

This prospective study enrolled 84 patients with early breast cancer who underwent complete resection between Decem-
ber 2015 and November 2016 from department of breast surgery, Hiroshima university hospital. Male patients and 
patients with noninvasive or microinvasive carcinoma, rather than primary breast cancer, were excluded from the study. 
The protocol of this study was approved by the Ethics Committee of Hiroshima University and was conducted in accord-
ance with the Declaration of Helsinki. Written informed consent was obtained from all patients.

The Neoadjuvant chemotherapy (NAC) regimen consisted of four cycles of docetaxel (75 mg/m2, every 3 weeks), fol-
lowed by four cycles of FEC (500 mg/m2 5-fluorouracil, 100 mg/m2 epirubicin, and 500 mg/m2 cyclophosphamide; every 
3 weeks). Patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer received trastuzumab 
(8 mg/m2 for the first dose and 6 mg/m2 thereafter) every 3 weeks together with docetaxel. Pathological compete 
response (pCR) was defined as the absence of invasive residuals in the primary lesion and axillary lymph nodes [33].
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2.2  Breast cancer tissue collection and extraction of TILs

Fresh samples of invasive breast cancer tissues were collected via core needle biopsy, vacuum-assisted biopsy (Mam-
motome Elite; Mammotome, Cincinnati, OH, USA), or surgery. Biopsy specimens from patients who had received NAC 
were collected before treatment. Tumor samples were collected as follows: three to five samples using 16-gauge biopsy 
needles, > 6 samples using 13-gauge Mammotome needles, or an area of at least 10 mm × 10 mm × 2 mm shaved using 
a razor during surgery. Fresh TILs were extracted as described previously [31]. Fresh tissues were rapidly cut into small 
pieces using tissue scissors and homogenized using a GentleMACS dissociator (Miltenyi Biotech, Bergisch Gladbach, 
Germany), and the TILs were collected from the cell suspensions. For control samples, lymphocytes from normal breast 
tissue (LNBT) were collected from three patients. Peripheral blood mononuclear cells (PBMCs) from three patients were 
prepared using Ficoll gradient centrifugation as described previously [31].

2.3  Flow cytometry

Fresh TILs were washed with phosphate-buffered saline containing 2% fetal calf serum and allophycocyanin-conjugated 
anti-CD4 mAb (BD Biosciences, Franklin Lakes, NJ, USA), V500-conjugated anti-CD8 mAb (BD Biosciences), fluorescein 
isothiocyanate-conjugated anti-CD45RA mAb (BD Biosciences), and Fixable Viability dye (eBioscience, San Diego, CA, 
USA). Intracellular staining of FOXP3 was performed using an anti-FOXP3 mAb and FOXP3 Staining Buffer Set (eBiosci-
ence) according to the manufacturer’s instructions. The cells were analyzed using LSRFortessa (BD Biosciences) and 
FlowJo software (Tree Star, Ashland, OR, USA).

2.4  Determination of TIL subpopulations

TILs were categorized according to the methods described in a previous report [8, 28]. TILs were gated into CD4 − CD8 + T 
cells and CD4 + CD8˗ T cells, and the CD4 + CD8˗ T cell fraction was further gated based on FOXP3 and CD45RA expres-
sion as follows: naïve Treg, FOXP3lowCD45RA + ; eTreg, FOXP3highCD45RA˗; and non-Treg, FOXP3lowCD45RA˗. The 
ratio of each TIL subpopulation to the total CD4 + CD8˗ TIL population was measured. PBMCs and LNBT were used as a 
control for validation.

2.5  Assessment of suppressive strength in each Treg subpopulation

Treg subpopulations (naïve Treg, eTreg, and non-Treg cells) were isolated from TILs using FACS Aria II (BD Biosciences) 
using a previously reported protocol [28]. Briefly, 1 ×  104 CFSE(carboxyfluorescein diacetate succinimidyl ester)-labeled 
responder CD25 − CD45RA + CD4 + T cells isolated from the PBMCs were cocultured with 1 ×  104 unlabeled Treg subpopu-
lations (naïve Treg, eTreg, and non-Treg cells). Meanwhile, 1 ×  105 irradiated autologous accessory cells were stimulated 
with 0.5 μg/mL plate-bound anti-CD3 (OKT3 mAb) antibody in a 96-well round-bottom plate. Proliferation of CFSE-labeled 
cells was assessed using flow cytometry after 5 days of culture. The proliferation rate of responder T cells was calculated 
by dividing the number of proliferating CFSE-diluting responder cells in the presence of each Treg subpopulation at a 
1:1 ratio by the number of responder cells prior to culture and multiplying the result by 100.

2.6  Pathological assessment and evaluation of stromal TILs

Histological characteristics, such as histology, nuclear grade, estrogen receptor (ER) and HER2 status, Ki-67 labeling index, 
and stromal TILs, were assessed by two pathologists. ER and HER2 were assessed according to the American Society of 
Clinical Oncology/College of American Pathologists Guidelines, in which the molecular subtypes of invasive breast cancer 
are classified as luminal (ER + HER2), HER2 (ER ± HER2 +), or triple-negative (TN) (ER-HER2-) [34]. The Ki-67 labeling index 
was scored as high (≥ 20%) or low (< 20%). Stromal TILs were assessed on HE-stained slides of maximum number of tumor 
lesions using the methodology proposed by the 2014 International TILs Working Group [35]. Lymphocyte-predominant 
breast cancer (LPBC) was defined as stromal TIL ≥ 50%.
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2.7  Statistical analyses

Basic statistics for the TIL subpopulations are expressed as the median and interquartile range (IQR). Analysis of variance 
was used to compare different factors between groups. The Wilcoxon rank-sum test was performed for multiple pairwise 
comparisons. Receiver operating characteristic (ROC) curve analysis was used to evaluate the cut off value of each TIL 
parameter. The sensitivity, specificity, and accuracy (with 95% confidence intervals) were calculated, and the optimal 
threshold was determined using the Youden index. Statistical significance was set at P < 0.05. All statistical analyses were 
performed using JMP Pro14 SAS software (SAS Institute Inc., Cary, NC, USA).

3  Results

Table 1 summarizes the clinicopathological characteristics of 84 patients with invasive breast cancer. Among them, 32 
patients (32.2%) had nodal metastasis and 25 (29.8%) had lymphocyte predominant breast cancer (LPBC). In total, 50 
patients (59.5%) had ER-positive diseases and 28 (33.3%) were HER2-positive. A total of 39 patients received NAC and 
20 (51.3%) achieved pCR. Among the fresh TILs, the median number of total TILs was 6.9 ×  105 (IQR: 1.2–82 ×  105) cells, 

Table 1  Patient characteristics

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, LPBC lymphocyte predominant 
breast cancer, LVI lymphovascular invasion, pCR pathological complete response, TILs tumor-infiltrating 
lymphocytes

Number (%)

Age (year), median (range) 57 (33–83)
Histological type
 Infiltrating duct carcinoma 75 (88.2)
 Lobular carcinoma 6 (7.0)
 Other 3 (3.5)

T status
 T1 22 (26.1)
 T2 54 (64.2)
 T3 4 (4.7)
 T4 4 (4.7)

Nodal metastasis
 Negative 52 (61.9)
 Positive 32 (38.1)

Nuclear grade
 1 4 (4.8)
 2 27 (32.1)
 3 53 (63.1)

LVI positive 31 (36.9)
ER positive 50 (59.5)
HER2 positive 28 (33.3)
Ki-67 labeling index
 < 20% 20 (23.8)
 ≥ 20% 64 (76.2)

Stromal TILs
 Non-LPBC (stromal TIL < 50%) 59 (70.2)
 LPBC (stromal TILs ≥ 50%) 25 (29.8)

Neoadjuvant chemotherapy 39 (46.4)
 Non-pCR 19 (48.7)
 pCR 20 (51.3)
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which was considered sufficient for the analyses.  CD4+CD8− T cells were categorized as eTregs, naïve Tregs, and non-Tregs 
via flow cytometric analysis for CD45RA and FOXP3 expression. CD8/FOXP3 and CD8/eTreg values were calculated for 
these populations. Both CD8/FOXP3 and CD8/eTreg values were significantly decreased in breast cancer TILs compared 
to those of PBMC and LNBT (CD8/FOXP3 ratios: PBMC 38.11 [IQR: 26.23–53.2], LNBT 44.28 [IQR: 39.89–56.94] vs breast 
cancer TILs 3.16 [IQR: 2.69–4.90]; CD8/eTreg ratios: PBMC 113.82 [IQR: 89.43–145.2], LNBT 136.64 [IQR: 99.12–163.18) vs 
breast cancer TILs 7.86 [IQR: 4.08–12.80], all P < 0.05) (Fig. 1a).

The suppression strength of each Treg subpopulation was evaluated. The CSFE labeled-responder T cells cultured 
alone (the control), naïve Treg, and non-Treg subpopulations showed several proliferation peaks following CSFE dilution. 

Fig. 1  Treg subpopulations as categorized using flow cytometry. a  CD4−CD8+ T cells and  CD4+CD8− T cells were separated using flow 
cytometry.  CD4+CD8− cells were further classified into naïve Treg, eTreg, and non-Treg cells using FOXP3 and CD45RA staining. The TIL sub-
populations in LPBC, LNBT, and breast cancer TILs are shown in the center. CD8/FOXP3 and CD8/eTreg ratios were calculated using the pro-
portions of these subpopulations. The values of PBMC (n = 10) and LNBT (n = 10) are shown as the median value (IQR). Breast cancer TILs 
(Cases A and B) are shown as representative samples, and the CD8/FOXP3 and CD8/eTreg ratios are calculated. b In vitro suppression assay 
of breast cancer TILs. CFSE labeled CD4 + CD25- responder T cells from PBMC cultured alone (control) or with naïve Treg, eTreg, or non-Treg 
cells sorted from freshly extracted breast cancer TILs were cocultured at a 1:1 ratio for 5  days. The proliferation peaks of each group fol-
lowing CSFE dilution were counted (right) and the proliferation rates were calculated (left). These are representative of three independent 
experiments; each value is the median value. c The proportion of total FOXP3 + cells and that of the Treg subpopulation of PBMC(n = 10), 
LNBT(n = 10), and breast cancer TILs(n = 84). % indicates the ratio of CD4 + T cells. d The proportion of total FOXP3 + cells and that of the 
Treg subpopulation of breast cancer TILs according to molecular subtypes. The data of Luminal (n = 44), HER2(n = 28) and TN(n = 20) subtype 
cases and were demonstrated by each value (dot) median(bar), and IQR(square)
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Fig. 1  (continued)
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Few proliferation peaks were identified in the CSFE labeled-responder T cells cocultured with + eTregs, indicating their 
strong immunosuppressive function. The proliferation rate of the responder T cells cultured alone (the control), naïve 
Tregs, and non-Tregs was significant compared to that of eTregs (proliferation rates: control: 89.3%, + naïveTreg: 64.2%, 
and + non-Treg: 78.2% vs eTreg 1.93% all P < 0.05) (Fig. 1b).

The proportion of eTregs and non-Tregs among CD4 + TILs was significantly higher in breast cancer TILs compared to 
those of PBMC or LNBT (mean eTreg of breast cancer TILs: 25.6% [IQR: 312.2–29.1%] vs PBMC: 4.2% [IQR: 3.5–5.2%] and 
LNBT: 4.0% [IQR: 3.9–5.1%]; mean non-Treg of breast cancer TILs: 5.2% [IQR: 3.2–9.8%] vs PBMC: 2.4% [IQR: 2.1–3.1%] and 

Table 3  Pathological response 
according to tumor subtype 
and TIL subpopulation

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, LPBC lymphocyte predominant 
breast cancer, TILs tumor-infiltrating lymphocytes

Non-pCR pCR P

19 (48.7) 20 (51.3)
ER 0.056
 Negative 7 (33.3) 14 (66.7)
 Positive 12 (66.7) 6 (33.3)

HER2 1
 Negative 8 (47.1) 9 (52.9)
 Positive 11 (50.0) 11 (50.0)

Ki-67 labeling index 0.407
 < 20% 4 (66.7) 2 (33.3)
 ≥ 20% 15 (45.5) 18 (54.5)

Stromal TILs 0.03
 Non-LPBC 17 (58.6) 12 (63.1)
 LPBC 2 (20.0) 8 (80.0)

FOXP3 0.32
 Low 11 (42.3) 15 (57.7)
 High 8 (61.5) 5 (38.5)

eTreg 0.082
 Low 11 (39.3) 17 (60.7)
 High 8 (72.7) 3 (27.3)

CD8 0.02
 Low 18 (60.0) 12 (40.0)
 High 1 (11.1) 8 (88.9)

CD8/FOXP3 0.007
 Low 16 (66.7) 8 (33.3)
 High 3 (20.0) 12 (80.0)

CD8/eTreg ratio 0.001
 Low 18 (66.7) 9 (33.3)
 High 1 (8.3) 11 (91.7)

Table 4  Logistic regression 
analysis for predicting 
pathological complete 
response

CI confidence interval, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, LPBC lym-
phocyte predominant breast cancer, OR odds ratio

Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

ER-positive 0.25 (0.07–0.95) 0.042 0.17 (0.02–1.19) 0.074
HER2-positive 0.89 (0.25–3.16) 0.855 0.32 (0.04–2.44) 0.274
Ki-67 labeling index ≥ 20% 2.40 (0.39–15.0) 0.349 1.19 (0.11–12.6) 0.884
LPBC 10.4 (1.88–57.4) 0.007 10.1 (1.08–94.2) 0.043
CD8/eTreg ratio high 22.0 (2.44–198) 0.006 18.7 (1.25–279) 0.034
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LNBT: 4.9% [IQR: 3.6–7.1%]) (Fig. 1c). No significant differences among the biomarker subtypes of tumors (ER + , HER2( +), 
and TN) were found in any breast cancer TIL Treg subpopulation (Fig. 1d). The median percentage of  CD8+ TILs was 124% 
(IQR: 87.5–140). Table 2 shows the association of further clinicopathological features with  FOXP3+, eTregs, and  CD8+TILs. 
 CD8+TILs were significantly associated with HER2 amplification(HER2-:113.0% [IQR:83.8–131.0%]vs HER2 + 130.5% [IQR: 
93.3–192.8%], P < 0.05) and LPBC(non LPBC:155% [IQR:92.0–213.5%]vs LPBC:110.0% [IQR: 86.0–128.8%], P < 0.05).

The therapeutic responses of the 39 patients receiving NAC were evaluated. The cut-off values that predict pCR were 
used to stratify patients into groups with high or low levels of each parameter (eTregs, 9.1%  CD4+ cells: high n = 20, low 
n = 19;  CD8+, 113% of  CD4+ cells: high n = 18, low n = 21;  CD8+/eTreg, 13.3: high n = 13, low n = 26;  CD8+/FOXP3+, 4.6: 

Fig. 2  Detailed data of patients who underwent NAC of a luminal, b HER2, and c TN subtypes. The stroma TIL, CD8/FOXP3 + ratio (blue dot, 
cut off value: 4.6), CD8/eTreg ratio (red dot, cut off value;13.3), and treatment response (pCR or non pCR) are shown in each case. pCR patho-
logical compete response, TN triple negative
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high n = 12, low n = 27). Patients with TN, HER2 subtypes achieved higher pCR rates than those with the luminal subtype 
(P < 0.05). Patients with LPBC achieved higher pCR rates than those with non-LPBC (P < 0.05). There was no significant dif-
ference in the pCR rate between patients with high and low eTregs. Patients displaying a high  CD8+/eTreg ratio achieved 
significantly higher pCR than those displaying a low  CD8+/eTreg ratio (P = 0.001). In contrast, pCR rates did not differ 
significantly according to  CD8+/FOXP3+ ratio (Table 2). We evaluated specific cilinicopathological factors predicting 
pCR (Table 3). LPBC and the presence of a high-CD8 tumor were significant predictors of pCR (P = 0.006 and P = 0.020, 
respectively). After investigating the balance of CD8 + CTLs and Treg subpopulations, the CD8/eTreg ratio was identi-
fied as the most promising parameter for predicting pCR, with a positive predictive value of 91.7%. In the multivariate 
analysis, both LPBC and a high CD8/eTreg ratio were independent predictors for pCR (odds ratio [OR] 10.1, P = 0.043 and 
OR 18.7, P = 0.034, respectively) (Table 4).

We carried out a detailed assessment of the CD8/eTreg ratio for each patient who underwent NAC because pCR is 
empirically associated with LPBC (Fig. 2). We focused on non-LPBC patients who achieved pCR. HER2 patients with a 
high CD8/eTreg ratio tended to have a higher pCR ratio compared to patients with a low CD8/FOXP3 ratio (pCR rate: 
CD8/eTreg ratio 27.3% vs CD8/eTreg ratio 9.1%, P = 0.23). TN patients with a high CD8/eTreg ratio had a significantly 
higher pCR rate compared to patients with a low CD8/FOXP3 ratio (39.6% vs 13.3, P < 0.05) (Fig. 2b, c). We were not 
able to analyze the luminal subtype because of the number of cases was insufficient.

4  Discussion

In this study, we focused on the immunological functional heterogeneity of FOXP3 + TILs and evaluated the balance 
of eTreg and CD8 TILs as representative of the immunoprogressive and immunosuppressive power of TILs in patients 
with breast cancer. We aimed to assess eTregs in breast cancer TILs and verify the association between the functional 
balance of TILs and clinical outcome of breast cancer. We demonstrated the functional heterogeneity of FOXP3 + Tregs 
using fresh TIL samples. Tregs are components of CD4 + T cells and essential effector cells that maintain immune 
homeostasis [9, 10, 36–38]. Although Tregs are considered to be homogeneously immunosuppressive TILs in breast 
cancer, in this study, we demonstrated the strong suppressive function of eTregs and the non-suppressive function 
of other Treg subpopulations. We found that eTreg cells were more abundant in breast cancer tissues than in PBMCs 
and LNBTs, which is consistent with previous reports on other cancer types, such as colorectal [31] and gastric cancer 
[37]. The difference in the infiltration of Treg subpopulations indicates that T cells are activated and acquire functions 
in the tumor microenvironment. It is worth noting that patients with low levels of eTreg to total FOXP3 + TILs can 
overestimate their immunosuppressive function by the FOXP3 immunohistochemical staining method. Thus, these 
patients may lead to conflicting results in some studies that are based on immunohistochemical evaluation of FOXP3 
for breast cancer prognosis. LPBC is considered as a strong biomarker for pathological response to NAC regardless 
of molecular subtypes [4, 6] and survival in triple-negative and HER2 + subtype [5, 38]. Our findings indicate that the 
CD8 + /eTreg ratio is a more sensitive predictor of pCR compared to the CD8 + /FOXP3 + ratio, especially in TN subtypes.

It has been reported that CD15s antibodies can specifically identify eTreg cells [39]. Recently, eTregs were identified 
in diffuse large B cell lymphoma using dual immunostaining of FOXP3 and CTLA4 [32]. Dual immunohistochemical 
staining methods may be a promising method for the evaluation of eTreg infiltration with a large sample size in 
breast cancer.

Despite the findings of this study, it has several limitations. First, the number of cases was small, and the follow-up 
period was short. Our findings cannot elucidate the mechanism underlying increased eTregs in the tumor micro-
environment. Moreover, we did not evaluate the other TIL components. Recently, an exhaustive and promising 
evaluation of breast cancer TILs by single-cell RNA sequencing has been reported [40]. The genomic background 
or mechanism that causes these variations in TIL components will be elucidated in the near future. In addition, 
eTregs express immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and 
programmed cell death-1 (PD-1), suggesting that controlling tumor-infiltrating Tregs may be a potential target for 
cancer immunotherapy [41–44]. Our findings may be linked to other studies evaluating the response to immune 
checkpoint inhibitors in patients with breast cancer to build on their significance.

In summary, our study indicates that the functional heterogeneity of FOXP3 + TILs represents specific variations 
in the immunological balance in invasive breast cancer. A high CD8/eTreg ratio enhances the treatment response 
in patients with invasive breast cancer, especially in patients with non-LPBC and TN subtypes. Further studies are 
warranted to validate these findings.
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5  Conclusion

We clarified Treg subpopulations TILs and balance between them and CD8 + TILs. A high CD8/eTreg ratio enhances 
the treatment response in patients with invasive breast cancer, especially in patients with non-LPBC and TN subtypes.
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