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Abstract
Background Recurrence after cisplatin therapy is one of the major hindrances in the management of cancer. This neces-
sitates a deeper understanding of the molecular signatures marking the acquisition of resistance. We therefore mod-
eled the response of osteosarcoma (OS) cells to the first-line chemotherapeutic drug cisplatin. A small population of 
nondividing cells survived acute cisplatin shock (persisters; OS-P). These cells regained proliferative potential over time 
re-instating the population again (extended persisters; OS-EP).
Result In this study, we present the expression profile of noncoding RNAs in untreated OS cells (chemo-naive), OS-P, 
OS-EP and drug-resistant (OS-R) cells derived from the latter. RNA sequencing was carried out, and thereafter, differential 
expression (log2-fold ± 1.5; p value ≤ 0.05) of microRNAs (miRNAs) was analyzed in each set. The core set of miRNAs that 
were uniquely or differentially expressed in each group was identified. Interestingly, we observed that most of each 
group had their own distinctive set of miRNAs. The miRNAs showing an inverse correlation in expression pattern with 
mRNAs were further selected, and the key pathways regulated by them were delineated for each group. We observed 
that pathways such as TNF signaling, autophagy and mitophagy were implicated in multiple groups.
Conclusion To the best of our knowledge, this is the first study that provides critical information on the variation in the 
expression pattern of ncRNAs in osteosarcoma cells and the pathways that they might tightly regulate as cells acquire 
resistance.
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1 Introduction

Osteosarcoma (OS) is the primary malignant tumor of the bone with the highest incidence rate in adults and children 
[1, 2]. The disease is very aggressive and often manifests as both local and systemic spread, resulting in severe mortal-
ity. Additionally, despite aggressive local surgery, OS eventually metastasizes, leading to associated complications and 
death [3]. This despondency necessitated the development of an alternate arsenal or a belligerent chemotherapeutic 
regimen for the treatment of OS [4]. Today, pre- and postoperative chemotherapy is an integral part of the OS treatment 
strategy. However, despite such an aggressive treatment regimen, chemotherapy often fails, resulting in acquired drug 
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resistance and associated recurrence. Therefore, the 5-year survival rate of advanced OS is abysmally lower than 20% [5, 
6]. Furthermore, recent efforts to enhance the efficacy of chemotherapy by either drug dose escalation or by modify-
ing drug combinations have been mostly futile, rendering minimal impact on the survival outcome of OS patients [7]. 
Additionally, to add to desperation, there is hardly any available treatment option for OS that has failed first-line therapy. 
Hence, the current status of OS pathogenesis and its treatment options perpetually demands an extensive study of 
molecular alterations, especially those facilitating drug resistance to existing treatment modalities. This might be useful 
for the identification of novel molecular treatment targets to successfully reinstate drug sensitivity.

In recent years, an increasing number of studies have illustrated the critical role of noncoding RNAs, such as microRNAs 
(miRNAs) and long noncoding RNAs (lncRNAs), in regulating tumor cell fate. In this context, several studies have por-
trayed the positive correlation of ncRNA expression with the chemotherapeutic response of tumor cells [8–10]. Therefore, 
undoubtedly, this emphasizes the importance of these molecules in tumor prognosis. Futuristic studies dissecting the 
possible contributions of ncRNAs can provide critical insights into the identification of alternate markers that can be 
exploited for targeting chemotherapy resistance and subsequent relapse.

Structurally, the length of miRNAs varies between 18 and 25 nucleotides, while lncRNAs are predominantly more than 
1 kb long. However, both can play a critical role in regulating gene expression at the posttranscriptional level through 
various mechanisms. This may include direct binding of miRNAs to the target mRNAs, primarily but not exclusively to 
the 3′-UTR, leading to their translational suppression or degradation. lncRNAs may act as sponges for small RNAs, thus 
regulating their stability and function [11–15]. However, ncRNA-mediated regulation is both unique and complex; for 
example, a single miRNA can interact with several regions of one or multiple target mRNAs; similarly, a single mRNA 
can be regulated by multiple miRNAs. Therefore, understanding the expression profile of ncRNAs and their subsequent 
complex interaction with target mRNAs can be critical to the design of therapeutic strategies. The fact that recent stud-
ies emphasize the growing importance of ncRNAs in chemoresistance allowed us to perform the current study [16, 17].

Herein, we followed a unique strategy to track the molecular changes associated with the sequential process of acqui-
sition of drug resistance in OS cells. The parental HOS cells (referred to as OS) were initially exposed to acute cisplatin 
shock, allowing the population to crash, setting aside a small subpopulation of nondividing cells (referred to as OS-P) 
that could sustain toxic drug insult. These cells could survive the drug pressure bottleneck and eventually overcome 
the restrictive growth state (referred to as OS-EP) and further assimilate the potential to divide and re-establish the 
tumor population again. OS-EPs were subjected to further drug shock, and the above process was repeated to eventu-
ally generate resistant cells (referred to as OS-R). In this study, we performed sequencing of small RNAs (miRNAs) in the 
abovementioned cell types (OS, OS-P, OS-EP and OS-R). Thereafter, a correlation between miRNA expression and their 
corresponding mRNA targets was carried out to obtain a holistic idea of transcriptomic alterations associated with each 
phase. To the best of our knowledge, we are the first group to report sequential alterations of global ncRNAs in OS cells 
as they attain resistance to the frequently used drug cisplatin.

2  Materials and methods

2.1  Cell culture and generation of drug‑resistant cell line

The human osteosarcoma cancer cell line HOS-CRL-1543 was procured from NCCS, Pune, India, and cultured at 37 °C and 
5%  CO2 in minimal essential medium (HiMedia) supplemented with 10% fetal bovine serum (Invitrogen). The identity of 
cell lines was authenticated through STR profiling at Lifecode Technologies Private Limited, New Delhi, India (Project ID: 
M-1066). Periodic monitoring of the cell line was performed for any contamination. The detailed methodology for the 
generation of the resistant cells is described elsewhere [18]. Briefly, cells were seeded in 10 cm dishes, grown overnight, 
and then placed into fresh medium before exposure to a high dose of cisplatin (1 mg/ml) for 2 h. The drug was dissolved 
in dimethyl sulfoxide (DMSO, SDFCL) and was freshly prepared before each use. While a vast majority of cells died, a 
very small population of cells survived drug pressure (persisters—OS-P). These cells were slow/nondividing, but over 
a period of approximately 4 weeks, they re-established their growth potential and revived the population (extended 
persisters—OS-EP). Thereafter, the cycle of drug treatment followed by revival was repeated four times to generate the 
cells that showed comparatively increased insensitivity to cisplatin (drug-resistant—OS-R) when compared to untreated 
parental cells (OS).
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2.2  In vitro cytotoxicity assay

In vitro cytotoxicity was performed as described previously by Chowdhury et al. [19]. Briefly, cells were cultured in 96-well 
plates overnight. The following day, cells were treated with drugs for the desired time. Thereafter, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added to each well and incubated for 4 h. Formazan crystals were 
solubilized in DMSO, and readings were obtained at 495 nm with a differential filter of 630 nm using an ELISA microplate 
reader (Start-fax 2100). The percentage of viable cells was calculated using the formula: viability (%) = (mean absorbance 
value of drug-treated cells)/(mean absorbance value of control)  * 100. A concentration of 0.2% DMSO was found to be 
nontoxic, was used to dissolve CDDP and was used as a control.

2.3  Total RNA isolation and real‑time PCR

Total RNA was isolated from the cultured cells using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. 
Briefly, four million cells were harvested to extract the total RNA, and the quantity and quality of total RNA were measured 
using a Nanodrop (GE Healthcare; SimpliNano). Approximately 5 μg of total RNA was outsourced to Bionivid Technology 
Pvt. Ltd., Bangalore for subsequent RNA sequencing. For complementary DNA (cDNA) synthesis, we used a GeneSure 
First Strand cDNA Synthesis kit (Genetix) with random hexamers following the manufacturer’s instructions. cDNA tem-
plates were amplified for specific genes in a CFX Connect Real-time PCR System (BioRad) and detected using SYBR Green 
(BioRad). As a control, GAPDH was amplified. The relative RNA expression was calculated using the Livak method [20].

2.4  Non‑coding and coding RNA sequencing and analysis

RNA sequencing was performed at Bionivid Technology Pvt. Ltd. The RNA sent for sequencing went through quality 
control (QC) before subsequent reactions. For sequencing of small RNAs, for each sample, a small RNA library was pre-
pared to start from 1 μg total RNA using TruSeq Small RNA Sample Preparation Kits and protocols (Illumina, San Diego, 
CA, USA). Briefly, the appropriate cDNA fractions ranging from 18 to 28 nucleotides were separated, purified via 15% 
denaturing polyacrylamide gel electrophoresis, and then linked to RNA adaptors followed by RT-PCR amplification. Next, 
the PCR products were further purified on agarose gels to establish libraries. Library quality was checked using a high 
sensitivity DNA chip (Agilent Technologies, Waldbrunn, Germany). The purified cDNA libraries were used for cluster gen-
eration on Illumina’s cluster station and sequenced on an Illumina HiSeq 2000 instrument, producing single reads from 
49 to 57 base pairs. The small RNA-sequencing raw data files were deposited in NCBI’s Gene Expression Omnibus (GEO) 
and are accessible by GEO Series accession number GSE86053 (https:// www. ncbi. nlm. nih. gov/ geo/). Using QC filtered 
Fastq files, reads that were between 18 and 25 nucleotides were filtered and subjected to BLASTn against the RNA Fam-
ily database (RFAM) without miRNA sequences. Those unique tags that matched any sequences in the RFAM database 
at 100% query coverage with less than 2 bp mismatch were filtered. The unmapped unique tags were subjected to the 
miRProf tool for identification of known miRNAs and the miRCAT tool for identification of novel miRNAs using GrCh38 
human genome build. For analysis of miRNA expression, known and novel miRNAs with an eValue of ≤ 0.01 and an aver-
age depth of greater than or equal to 5× were considered. Identified known and novel miRNAs with their read counts 
were subjected to samplewise TPM (transcripts per million) normalization. All the expressed miRNAs were subjected to 
differential expression analysis using the DESeq package. A fold change of 1.5 and a p value of ≤ 0.05 were used as cut-
offs to identify differentially expressed (DE) miRNAs. Unsupervised hierarchical clustering of DE miRNAs was performed 
using Pearson’s uncentered correlation with the average linkage rule using Cluster 3.0 software and visualized using 
Java TreeView software. mRNA targets of DE miRNAs were obtained from miRTarBase. A biological analysis network 
(BAN) of DE target genes, DE miRNAs and GO/pathway harboring them was constructed using BridgeIsland Software 
from Bionivid Technology Pvt Ltd., Bangalore, India. The resultant file consisting of nodes and edges was imported to 
Cytoscape V 2.8 to visualize the regulatory network consisting of differentially expressed transcripts, targeting miRNAs 
and connecting GO/pathways.

The targets of the differentially expressed miRNAs were correlated with mRNA expression data from the same samples. 
The sequencing of larger RNAs, including mRNAs and lncRNAs, was also performed at Bionivid Technology Pvt. Ltd., 
Bangalore, and the detailed procedure followed for the same was described earlier [21]. Briefly, RNA was fragmented into 
200–300 bp fragments with fragmentation reagent (Ambion, TX, USA), purified by Agencourt RNA Clean beads (Beckman 
Coulter, MA, USA), and further converted to cDNA through polyA priming. The cDNA libraries were thereafter prepared 
for sequencing reactions with coverage of 100 nucleotides from each end. Using TopHat (v2.0.11), the sequencing reads 
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were then mapped to the human genome. To further assemble mapped reads against ENSEMBL annotation, Cufflinks 
(v2.2.1) was used, and the expression level for each transcript was estimated. For differential expression analysis, the 
expression values were initially converted to FPKM units, and the DE transcripts were identified using CuffDiff. The cut-
off for DE was set to a fold change of 1.5 and above, with a p-value of < 0.05. Clustering of DE transcripts was performed 
using DAVID, and the transcripts were categorized based on Gene Ontology (GO) functional annotations based on 
three categories: receptor-mediated signaling, intracellular signaling, and functions controlling various other cellular 
processes. The significantly DE transcripts associated with all three Gene Ontology functional categories were termed 
‘key genes’ [22]. Whether the targets of differentially expressed miRNAs, as obtained from miRTarBase, included any of 
the ‘key genes’ was further analyzed.

3  Results

3.1  Overall comparative transcriptomic profile between the four groups of cells

Drug resistance has been a major hindrance in the treatment of cancer. Therefore, understanding the molecular signature 
of cells surviving drug pressure is of utmost clinical relevance. Herein, we analyzed the ncRNA transcriptomic pattern 
in osteosarcoma cells as they attained resistance to the chemotherapeutic drug cisplatin. Comparative transcriptomic 
profiling was performed in four groups of cells, which are as follows—OS, untreated parental osteosarcoma cells which 
consisted of 25,016 mRNA transcripts, 1488 miRNA transcripts and 1312 lncRNA transcripts; OS-P, representing cells sur-
viving cisplatin shock contained 24,021 mRNA transcripts, 1290 miRNA transcripts and 1165 lncRNA transcripts; OS-EP, 
representing proliferating cells after drug insult comprised of 25,482 mRNA transcripts, 1382 miRNA transcripts and 
1378 lncRNA transcripts; OS-R, representing acquired resistant cells consisted of 25,239 mRNA transcripts, 1499 miRNA 
transcripts and 1362 lncRNA transcripts (Fig. 1a). As evident from the above, the overall transcript pattern for both miR-
NAs or lncRNAs between the groups did not show a major variation. However, strikingly, an increased number of miRNA 
transcripts was found to be upregulated (Fig. 1b) in cells under drug shock (OS-P) compared to untreated control (OS), 
whereas miRNA in other comparative groups showed a trend of downregulation (Fig. 1b). Among the dysregulated lncR-
NAs, more lncRNA transcripts were downregulated in both OS-P and OS-R cells than in the untreated control (Fig. 1c), 
whereas in the other two sets, the opposite trend was observed.

3.2  Differential transcriptomic profile between cells surviving cisplatin shock (OS‑P) and untreated parental 
cells (OS)

Thereafter, we analyzed the ncRNA expression pattern in each comparative set, starting with the persisters (OS-P) com-
pared to the parental untreated control (OS). The persisters represent a unique population of cells that are sustained and 
persist under toxic drug insult. The transcriptomic features of these cells were expected to be distinctively supportive 
of their survival potential under acute drug stress. The miRNA analysis of OS-P with OS revealed that 77 miRNAs were 
unique and only expressed in OS-P cells, and 63 transcripts showed significant differential expression (p ≤ 0.05; log 
fold ± 1.5) (Fig. 2a). Similarly, lncRNA expression analysis also showed that 43 lncRNAs were expressed only in OS-P, while 
119 transcripts were significantly differentially expressed (Fig. 2b). As evident, the number of differentially expressed 
lncRNA transcripts was comparatively much higher than that of miRNAs in cells under drug stress (OS-P). Thereafter, a 
transcript distribution of significantly up- or downregulated miRNAs and lncRNAs was performed and plotted as a vol-
cano plot (Fig. 2c, d). Interestingly, it was observed that a vast majority of lncRNAs were downregulated upon cisplatin 
shock (OS-P); however, miRNA expression did not follow a similar pattern (Fig. 2c). The total number of significantly dif-
ferentially regulated miRNAs and lncRNAs is presented in Supplementary Figure 1a. The miRNAs and lncRNAs expressed 
in persisters only, compared to untreated control are important and might represent molecular signature of the group; 
the top six miRNA and lncRNA transcripts are represented in Tables 1 and 2, respectively. It has been noticed (Table 1) 
that the majority of miRNAs that are expressed only in OS-P cells are involved in the repression of cellular proliferation, 
migration and epithelial–mesenchymal transition (EMT) in different cancer cell types. For example, hsa-miR-374c-5p, 
hsa-miR-146a-3p, hsa-miR-5100 and hsa-miR-5002-3p are known to inhibit proliferation, metastasis and invasion in 
breast cancer [23], ovarian cancer [24], pancreatic cancer [25] and gastric cancer cells [26]. Similarly, hsa-miR-1253 has 
a possible indirect role in tumor suppression through epigenetic silencing in medulloblastoma. Furthermore, lncRNAs 
such as LINC01488, LRRC75A-AS1, and GNAS-AS1 are reported to be involved in the suppression of cell proliferation and 
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metastasis in hepatocellular carcinoma [27], colorectal sarcoma [28] and lung cancer [29]. A list of the top three up- and 
downregulated miRNAs and lncRNAs is shown in Tables 3 and 4, respectively. These top dysregulated miRNAs (Table 3) 
and lncRNAs (Table 4) in OS-P cells are also possibly involved in suppression of cell proliferation, as several earlier studies 
indicate that the upregulation of hsa-miR-301a-5p [30], hsa-miR-155-3p [31], hsa-miR-532-3p [32], HAGLR [33] and down-
regulation of hsa-miR-10a-3p [34], hsa-miR-365a-3p [35], LINC01194 [36], LINC00636 [37] are associated with inhibition 
of cancer growth, proliferation and metastasis in various cancer cell types. Interestingly, miRNAs such as hsa-miR-98-5p 
and hsa-miR-532-3p (Table 3) are also associated with drug resistance during chemotherapy [38]. Importantly, none of 
the enlisted unique or differentially regulated transcripts are currently reported to be associated with drug tolerance, thus 
providing novel insights; however, the association of the majority of these ncRNAs with cancer is already well established.

3.3  Analyzing the correlation in expression between ncRNAs and mRNAs in cells surviving cisplatin shock 
(OS‑P)

As mentioned before, unique and differentially expressed ncRNAs can be relevant from the perspective of drug toler-
ance. To understand their biological function, the probable mRNA targets of the unique and significantly differentially 
expressed miRNAs were evaluated using mirTarBase. Herein, we analyzed whether the predicted miRNA targets obtained 
from mirTarBase include any of the ‘key’ mRNA transcripts; earlier, the differentially expressed mRNAs in each group 
with cellular functions extending into all three Gene Ontology functional annotations—receptor-mediated signaling, 
cell signaling and other cellular mechanisms were labeled ‘key’ mRNA transcripts. Interestingly, we observed an inverse 
correlation in the expression pattern between a set of miRNAs and key genes. The top differentially expressed miRNAs 
showing inverse correlative expression with key mRNAs are shown in Table 5. For example, the miRNAs hsa-miR-27a-3p 
(log fold: 2.677 and p-value 4.79E−04) and hsa-miR-503-5p (log fold: 8.161 and p-value 2.02E−05), which were upregu-
lated in OS-P, were found to have their targets FOXN2 (log fold − 4.113 and p-value 0.0043) and REL (log fold − 3.809 and 
p-value 0.013) downregulated, respectively, thus showing an inverse correlation in expression. Furthermore, we observed 

Fig. 1  Overall coding and noncoding transcriptomic profile in OS cells. a Distribution of different RNA transcripts for untreated parental OS 
cells (OS), persisters (OS-P), extended persisters (OS-EP) and resistant cells (OS-R). Comparative analysis of b miRNA and c lncRNA transcripts 
in the OS-P vs. OS, OS-EP vs. OS-P and OS-R vs. OS sets. The term ‘Total’ indicates the total number of transcripts expressed in the comparison 
sets, including upregulated, downregulated or neutrally regulated transcripts
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Fig. 2  Comparative transcriptomic analysis of OS-P cells with the untreated control (OS). The bar graph represents the a miRNA transcript 
and b lncRNA transcript distribution representing the treatment-specific, control-specific and differentially regulated transcripts. In each 
case, transcripts with a p-value ≤ 0.05 were considered. c, d Volcano plot representing the upregulated (green dots) and downregulated (red 
dots). c miRNA transcripts and d lncRNA transcripts are shown. The names of the top three up- and downregulated miRNA and lncRNA tran-
scripts are mentioned within the plot. Horizontal and vertical dashed lines indicate the significance threshold corresponding to an adjusted 
p-value of ≤ 0.05 and log2fold change of ± 1.5. e Cytoscape network showing key genes and their pathways regulated by significantly dys-
regulated miRNAs in the OS-P vs. OS set. The key red-labeled genes regulated by miRNAs are densely connected with pathways such as TNF 
signaling, FOXO signaling, and autophagy
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Table 1  Top six treatment-
specific miRNA transcripts in 
OS-P compared to OS cells

Fragments per kilobase million (FPKM) value of miRNA transcripts are shown. The miRNA transcripts 
already reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that 
the specified transcripts are not indicated in any cancer-related studies

miRNA FPKM Reported

hsa-miR-374c-5p 152 +
hsa-miR-146a-3p 36 +
hsa-miR-5100 19 +
hsa-miR-1253 6 +
hsa-miR-5002-3p 6 +
hsa-miR-3191-3p 5 +

Table 2  Top six treatment-
specific lncRNA transcripts in 
OS-P compared to OS cells

Fragments per kilobase million (FPKM) value is shown. The lncRNA transcripts already reported in cancer-
related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the specified transcripts 
are not indicated in any cancer-related studies

lncRNA FPKM Reported

LINC01488 5 +
LRRC75A-AS1 4 +
CH17-340M24.3 3 −
GNAS-AS1 2 −
LOC101927932 1 −
CDIPT-AS1 1 −

Table 3  Top three 
downregulated and 
upregulated miRNA 
transcripts in OS-P compared 
to OS cells

In each case, transcripts with a p-value ≤ 0.05 were only considered. The miRNA transcripts already 
reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the 
specified transcripts are not indicated in any cancer-related studies

miRNA log2fold Reported

hsa-miR-98-5p − 14.21 +
hsa-miR-10a-3p − 8.228 +
hsa-miR-365a-3p − 8.073 +
hsa-miR-301a-5p 8.161 +
hsa-miR-155-3p 7.558 +
hsa-miR-532-3p 6.845 +

Table 4  Top three 
downregulated and 
upregulated lncRNA 
transcripts in OS-P compared 
to OS cells

In each case, transcripts with a p-value ≤ 0.05 were only considered. The lncRNA transcripts already 
reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the 
specified transcripts are not indicated in any cancer-related studies

lncRNA log2fold Reported

LOC101927575 − 16.127 −
LINC01194 − 16.097 +
LINC00636 − 14.578 +
LINC00311 14.617 +
HAGLR 2.554 +
LOC100130238 2.175 −
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that the targets of hsa-miR-27a-3p included several ‘key’ genes, indicating a probable role of this miRNA in persistence 
under drug stress [39–41]. Interestingly, hsa-miR-27a-3p is reported to be associated with cancer cell quiescence, and 
in corroboration to the above, it has been observed by others and our group that tumor cells exposed to acute drug 
pressure can enter a transitory nondividing state. To gain further insights into probable pathways regulated by the key 
genes having inverse correlation with miRNA expression pattern, we analyzed the same using ClueGO, a Cytoscape 
plugin. The predominant pathways with probable functional significance in drug tolerance emerged as TNF signaling, 
autophagy, mitophagy, FOXO signaling and others (Fig. 2e). A vast majority of these pathways, such as autophagy or 
mitophagy, are already reported to be associated with insensitivity to drugs, thus providing critical insights into pathways 
that can be targeted in cells surviving cisplatin pressure [18, 42, 43]. Our analytical method allowed us to narrow down 
the numerous differentially expressed transcripts to a list of specific transcripts showing strong correlative expression 
patterns with ncRNAs, and the corresponding pathway map allowed us to visualize predominant pathways that might 
be deregulated in tolerant cells.

3.4  Differential transcriptomic profile between extended persisters (OS‑EP) and persisters (OS‑P)

OS-EP represents the group of cells that resumed proliferation after overcoming the growth bottleneck after drug shock. 
Therefore, this state from the clinical scenario represents the condition when the tumor cells attain proliferative potential 
surviving a drug insult to regrowth, thus leading to tumor relapse. We expected a significant change in the noncoding 
RNA expression profile in proliferative OS-EPs compared to growth-restricted cells surviving drug shock. Comparison 
of expression data between OS-EP and OS-P revealed that approximately 226 miRNA transcripts were expressed only 
in OS-EP and 37 miRNAs were differentially expressed compared to OS-P cells (Fig. 3a). Similarly, the lncRNA data also 
showed a total of 74 lncRNAs expressed in only OS-EP, while 134 lncRNAs were differentially expressed (Fig. 3b). The 
transcript distribution of significantly up- and downregulated miRNAs and lncRNAs was distinctively different from the 
comparison between OS-P and OS. For instance, the lncRNA transcripts showed an overall upregulation in OS-EP; this 
was in contrast to what was observed in OS-P compared to the control. A volcano plot for both miRNAs and lncRNAs 
showing the distribution of differentially regulated transcripts is represented in Fig. 3c, d, respectively. The total number 
of significantly differentially regulated miRNA and lncRNA transcripts is presented in Supplementary Figure 1b. The top 
six miRNAs and lncRNAs expressed only in OS-EP are represented in Tables 6 and 7, respectively. miRNAs such as hsa-
miR-4697-3p [44], hsa-miR-4758-3p [45], hsa-miR-203b-3p [46] and hsa-miR-3917 [47] have already been reported to 
have a probable role in drug resistance and relapse in various types of cancer. Importantly, the top six treatment-specific 
lncRNAs (Table 7), HCCATS-as1, ADGRL3-as1, BCDIN3D-as1, and RALY-as1, are unexplored and are not known for any 
activity relevant to cancer progression or drug resistance and hence provide valuable insights into molecules that can be 
relevant for future studies in this context. Furthermore, a list of the top three upregulated and downregulated miRNAs 
and lncRNAs is shown in Tables 8 and 9, respectively. The majority of dysregulated ncRNAs (hsa-miR-7-1-3p, hsa-miR-
769-3p, hsa-miR-98-5p, hsa-miR-10a-3p, hsa-miR-365a-3p, ILF3-AS1, LINC01526 and LINC0139) are known to be involved 
in cell proliferation, metastasis and drug resistance in various other types of cancers and have not yet been explored in 
osteosarcoma [34, 38, 48–53].

Table 5  List of correlated 
miRNA and mRNA transcripts 
observed in OS-P compared 
to OS

Transcripts with a p-value ≤ 0.05 were considered

miRNA log2fold mRNA log2fold

hsa-miR-98-5p − 14.21 TRAF1 14.255
hsa-miR-503-5p 8.161 REL − 3.809

TSC22D2 − 2.381
hsa-miR-340-5p 6.523 FOXO3 − 16.165
hsa-miR-139-5p 5.75 JUN − 4.262
hsa-miR-1273 h-5p 3.706 IRAK3 − 14.471
hsa-miR-30c-2-3p 3.503 ZKSCAN8 − 4.127
hsa-miR-27a-3p 2.677 SMAD2 − 16.102

NR1D2 − 15.429
FOXN2 − 4.113
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Fig. 3  Comparative transcriptomic analysis of cells under cisplatin shock (OS-P) with revived cells (OS-EP). The bar graph represents the a miRNA 
transcript and b lncRNA transcript distribution representing the treatment-specific, control-specific and differentially regulated transcripts. In each 
case, transcripts with a p-value ≤ 0.05 were considered. c, d Volcano plot representing the upregulated (green dots) and downregulated (red dots). 
c miRNA transcripts. d lncRNA transcripts are shown. The names of the top three up- and downregulated miRNA and lncRNA transcripts are men-
tioned within the plot. Horizontal and vertical dashed lines indicate significance threshold corresponding to an adjusted p-value of ≤ 0.05 and log-
2fold change of ± 1.5 e Cytoscape network showing key genes (labeled in red color) and its pathways regulated by significantly dysregulated miRNAs 
in OS-EP vs. OS-P set. The key miRNA-regulated genes are densely connected with pathways such as the mTOR signaling pathway, MAPK signaling, 
autophagy, cellular senescence and apelin signaling
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Table 6  Top six treatment-
specific miRNA transcripts in 
OS-EP compared to OS-P cells

Fragments per kilobase million (FPKM) value of miRNA transcripts are shown. The miRNA transcripts 
already reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that 
the specified transcripts are not indicated in any cancer-related studies

miRNA FPKM Reported

hsa-miR-3158-5p 126 −
hsa-miR-4697-3p 66 +
hsa-miR-4758-3p 22 +
hsa-miR-6501-5p 19 −
hsa-miR-203b-3p 17 +
hsa-miR-3917 11 +

Table 7  Top six treatment-
specific lncRNA transcripts in 
OS-EP compared to OS-P cells

Fragments per kilobase million (FPKM) value is shown. ‘−’ sign indicates that the specified transcripts are 
not indicated in any cancer-related studies

lncRNA FPKM Reported

HCCAT5 3 −
ADGRL3-AS1 3 −
BCDIN3D-AS1 2 −
IGFBP7-AS1 1 −
RALY-AS1 1 −
LINC01483 1 −

Table 8  Top three 
downregulated and 
upregulated miRNA 
transcripts in OS-EP compared 
to OS-P cells

In each case, transcripts with a p-value ≤ 0.05 were only considered. The miRNA transcripts already 
reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the 
specified transcripts are not indicated in any cancer-related studies

miRNA log2fold Reported

hsa-miR-2467-5p − 8.946 −
hsa-miR-7-1-3p − 7.78 +
hsa-miR-769-3p − 7.172 +
hsa-miR-98-5p 13.139 +
hsa-miR-10a-3p 10.365 +
hsa-miR-365a-3p 8.266 +

Table 9  Top three 
downregulated and 
upregulated lncRNA 
transcripts in OS-EP compared 
to OS-P cells

In each case, transcripts with a p-value ≤ 0.05 were only considered. The lncRNA transcripts already 
reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the 
specified transcripts are not indicated in any cancer-related studies

lncRNA log2fold Reported

LOC283177 − 14.17 +
ILF3-AS1 − 4.185 +
LINC00945 − 4.07 −
LOC103091866 17.595 −
LINC01526 16.805 +
LINC01391 15.876 +
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3.5  Analyzing the correlation in expression between ncRNAs and mRNAs in persister cells (OS‑EP) compared 
to cells surviving cisplatin shock (OS‑P)

Similar to the previous analysis, we thereafter analyzed the probable targets of the unique and differentially expressed 
miRNAs. The pattern of expression was correlated with the target ‘key gene’ expression in OS-EP. Importantly, we observed 
that the miRNA hsa-miR-374a-3p (log fold − 7.143 and p-value 0.0006) was downregulated and that its predicted target 
SMAD2 (log fold 15.783 and p-value 0.0183) was significantly upregulated in OS-EP cells, showing an inverse correlation 
in expression (Table 10). Conversely, the key gene MAPK8 (log fold 15.694 and p-value 0.0478) was found to be signifi-
cantly upregulated, while its targeting miRNA hsa-miR-1277-5p (log fold − 4.601 and p-value 0.033) was downregulated. 
A list of the top significantly differentially expressed mRNA-miRNAs showing inverse correlative expression is presented 
in Table 10. Furthermore, ClueGO was used to analyze the pathways regulated by these correlated genes. The major 
functional pathways included mitophagy, cellular senescence and FoxO signaling (Fig. 3e). Importantly, pathways such 
as TNF signaling, which were implicated in OS-P, were not evident in OS-EP, signifying the dependence of OS-EP cells on 
unique pathways.

3.6  Analyzing the correlation in expression between ncRNAs and mRNAs in resistant cells (OS‑R) compared 
to untreated control (OS)

The resistant cells (OS-R) derived from OS-EP represent the group of cells that have acquired comparative insensitivity 
to cisplatin compared to the parental cells. We assume that the ncRNA transcriptomic profile would be distinct in these 
groups of cells compared to the untreated control (OS) or the cells tolerating acute drug pressure (OS-P). A compara-
tive analysis showed that 154 miRNAs were expressed in OS-R cells only, and 87 miRNAs were differentially expressed 
(Fig. 4a). Similarly, the lncRNA data analysis showed that 38 lncRNAs were expressed only in OS-R, and 15 were differ-
entially expressed (Fig. 4b). Interestingly, the number of differentially expressed transcripts was comparatively lower in 
OS-R, suggesting that the cells post attainment of resistance depend on restricted yet specific transcripts to maintain the 
acquired status. Earlier analysis has also shown that the differential regulation of mRNA expression in OS-R cells is much 
less drastic with fewer ‘key’ genes than the cells under acute drug shock. A volcano plot representing the distribution of 
differentially regulated miRNAs and lncRNAs is represented in Fig. 4c, d, respectively. The numerical distribution of dif-
ferentially regulated miRNAs and lncRNAs is presented in Supplementary Figure 1c. A list of the top treatment-specific 
and differentially expressed miRNAs and lncRNAs is provided in Tables 11, 12, 13 and 14. Among the OS-R-specific miRNAs 
(Table 11), we noted miRNAs such as hsa-miR-8065 and hsa-miR-4797-3p that were unexplored in the context of drug 
resistance, while hsa-miR-374c-5p, miR-6810-5p and hsa-miR-135a-3p have already been reported to have functions in 
resistance to chemotherapy in ovarian [54], lung and breast cancer [55, 56]. Interestingly, hsa-miR-146a-3p is reported as a 
circulating miRNA marker for the prognosis of refractory epilepsy. Among the lncRNAs expressed in OS-R only (Table 12), 
LUCAT1 was found to modulate cancer cell viability and chemotherapy response in various cancer types, including 
lung, thyroid and CRC [57–59]. Dysregulated miRNAs such as hsa-miR-98-5p [38], hsa-let-7b-3p [60], hsa-miR-23a-5p 
[61], and hsa-miR-218-1-3p [62] are reported to be involved in cisplatin-induced chemoresistance, whereas miR-503-5p 

Table 10  List of correlated 
miRNA and mRNA transcripts 
observed in OS-EP compared 
to OS-P.

Transcripts with a p-value ≤ 0.05 were considered

miRNA log2fold mRNA log2fold

hsa-miR-10a-5p 2.935 NACC2 − 2.138
hsa-let-7c-5p 7.96 UBA52 − 2.037
hsa-miR-30d-3p − 4.452 KRAS 2.609
hsa-miR-1277-5p − 4.601 LRP6 2.747

MAPK8 15.694
TRAF5 17.597
POU2F2 14.816

hsa-miR-410-3p − 4.654 REST 14.076
hsa-miR-128-3p − 4.751 SIRT1 2.45
hsa-miR-374a-3p − 7.143 SMAD2 15.783
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Fig. 4  Comparative transcriptomic analysis of drug-resistant cells (OS-R) and untreated controls (OS). The bar graph represents the a miRNA 
transcript and b lncRNA transcript distribution representing the treatment-specific, control-specific and differentially regulated transcripts. 
In each case, transcripts with a p-value ≤ 0.05 were considered. A volcano plot representing the upregulated (green dots) and downregu-
lated (red dots) c miRNA transcripts and d lncRNA transcripts is shown. The names of the top three up- and downregulated miRNA and 
lncRNA transcripts are mentioned within the plot. Horizontal and vertical dashed lines indicate significance threshold corresponding to an 
adjusted p-value of ≤ 0.05 and log2fold change of ± 1.5 e Cytoscape network showing key genes (red font) and its pathways regulated by 
significantly dysregulated miRNAs in OS-R vs. OS set. miRNA-regulated key genes are involved in regulating the adipocytokine signaling 
pathway and B-cell receptor signaling pathway
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Table 11  Top six treatment-
specific miRNA transcripts in 
OS-R compared to OS cells

Fragments per kilobase million (FPKM) value of miRNA transcripts are shown. The miRNA transcripts 
already reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that 
the specified transcripts are not indicated in any cancer-related studies

miRNA FPKM Reported

hsa-miR-8065 1597 −
hsa-miR-374c-5p 515 +
hsa-miR-146a-3p 29 +
hsa-miR-6810-5p 16 +
hsa-miR-4797-3p 15 −
hsa-miR-135a-3p 13 +

Table 12  Top six treatment-
specific lncRNA transcripts in 
OS-R compared to OS cells

Fragments per kilobase million (FPKM) value of miRNA transcripts are shown. The lncRNA transcripts 
already reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that 
the specified transcripts are not indicated in any cancer-related studies

lncRNA FPKM Reported

LRRC75A-AS1 5 +
VLDLR-AS1 5 −
LOC284865 2 −
PIK3CD-AS2 1 +
LURAP1 L-AS1 1 −
LUCAT1 1 +

Table 13  Top three 
downregulated and 
upregulated miRNA 
transcripts in OS-R compared 
to OS cells

In each case, transcripts with a p-value ≤ 0.05 were only considered. The miRNA transcripts already 
reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the 
specified transcripts are not indicated in any cancer-related studies

miRNA log2fold Reported

hsa-miR-98-5p − 14.501 +
hsa-let-7b-3p − 9.579 +
hsa-miR-23a-5p − 8.584 +
hsa-miR-503-5p 8.721 +
hsa-miR-218-1-3p 7.918 +
hsa-miR-548o-3p 7.781 −

Table 14  Top three 
downregulated and 
upregulated lncRNA 
transcripts in OS-R compared 
to OS cells

In each case, transcripts with a p-value ≤ 0.05 were only considered. The lncRNA transcripts already 
reported in cancer-related studies are indicated with the ‘+’ sign, whereas the ‘−’ sign indicates that the 
specified transcripts are not indicated in any cancer-related studies

lncRNA log2fold Reported

LINC01307 − 3.975 −
LINC00971 − 2.576 −
KCCAT198 − 2.696 −
LINC00284 14.838 +
LOC101927020 12.567 −
LGALS8-AS1 3.375 −
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[63] and hsa-miR-548o-3p are known to be involved in cancer progression (Table 13). Importantly, we observed that 
the majority of dysregulated lncRNAs in OS-R (Table 14) are unique and have not been previously reported for drug 
resistance, thus providing a pool of markers that can be explored in the future for their putative functional role in osteo-
sarcoma and cisplatin resistance. Interestingly, LINC00284, which was highly upregulated in OS-R, was previously cor-
related with the promotion of cellular proliferation, invasion, migration, and angiogenesis and the negative regulation 
of apoptosis-related pathways in a recent study, indicating a probable role that it might play in cisplatin resistance in OS 
cells [64]. Furthermore, despite the limited number of miRNAs being upregulated, we observed that hsa-miR-30c-1-3p, 
hsa-miR-19a-3p, hsa-miR-5582-3p and hsa-miR-615-3p showed inverse correlations in expression with key genes that 
were expressed in OS-R cells. For example, hsa-miR-19a-3p (log fold − 4.429 and p-value 0.0122) showed downregulation, 
while its predicted key gene target AKT1 was only expressed in OS-R cells (p-value 0.07). The expression of AKT1 was 
validated by real-time PCR, which showed a significant upregulation in OS-R (Supplementary Figure 1d). Furthermore, 
the pathways regulated by the correlative key genes in OS-R were analyzed, including those related to adipocytokine 
signaling, neurotrophin signaling and others that are known to be relevant to cancer (Fig. 4e). To further validate our 
findings, we compared the OS-R expression data with two independent expression profile datasets on drug-resistant 
osteosarcoma cells obtained from GEO. Although the experimental design and OS cells used between the studies varied, 
quite a few genes showed a similar pattern of differential expression, with our data having a p value significance (< 0.05). 
Few examples of such genes with a correlative expression pattern included LINC00589, APTX, CDH13C and CYB561 (OS-R 
compared to GSE16089) and SET, LDHA, and DUSP6 (OS-R compared to GSE3362), which might be of key relevance in 
the context of drug resistance. Additionally, to understand how drug-tolerant persisters (OS-P) differ from subsequently 
derived resistant OS-R cells, we compared their transcriptomic profiles. A heatmap comparing the expression pattern 
of miRNAs indicates that the transcriptional profiles in these two sets are quite different (Supplementary Figure 1e). It is 
evident that a substantial number of miRNAs are uniquely expressed in each set, suggesting a differential transcriptional 
program primarily active in OS-R and OS-P.

3.7  Analyzing the correlation in expression between lncRNA, miRNA and mRNA expression in all the groups

lncRNAs can often regulate gene expression by acting as sponges for miRNAs; therefore, understanding their expres-
sion in association with miRNAs and mRNAs has become critical. To obtain a correlative understanding of the expression 
between lncRNA-miRNA and mRNA patterns, we further analyzed the differentially regulated miRNAs with potential 
binding affinity with the significantly deregulated lncRNAs in each group using DIANA-LncBase v3. Thereafter, the key 
genes targeted by these shortlisted miRNAs were analyzed. The top differentially expressed lncRNAs in OS-P compared 
to OS showing correlative expression with miRNAs and other mRNAs are shown in Table 15. The correlative ‘key’ genes 
were further taken as input to construct a pathway map that highlighted pathways such as TNF signaling, mitophagy 
and autophagy, which might be tightly regulated in persisters through a correlative expression network (Fig. 5a).

Similarly, the top differentially expressed lncRNAs showing correlative expression with miRNAs and mRNAs in OS-EP 
compared to OS-P are shown in Table 16. The key mRNAs when taken as input to construct a pathway map showed 
signaling pathways regulating stemness, transcriptional misregulation in cancer, mitophagy, cellular senescence and 
FOXO signaling (Fig. 5b). In this analysis, we also found that miRNAs implicated in stemness and cellular differentiation, 
such as hsa-let-7c-5p, showed a correlation with lncRNA and mRNA expression patterns.

Table 15  The significantly 
differentially expressed 
lncRNAs in OS-P compared 
to OS showing correlative 
expression with miRNAs and 
further mRNAs

lncRNA log2fold p-value miRNA log2fold p-value mRNA log2fold p-value

HIPK1-AS1 − 14.223 0.0296 hsa-miR-139-5p.1 5.758 0.001547 JUN − 4.262 0.00235
CKMT2-AS1 − 14.052 0.02785 hsa-miR-27a-3p.1 2.677 0.000479 NR1D2 − 15.429 0.04325
LINC00674 − 13.758 0.0433 hsa-miR-139-5p.2 5.758 0.001547 JUN − 4.262 0.00235
LINC00641 − 4.365 0.03165 hsa-miR-27a-3p.2 2.677 0.000479 SMAD2 − 16.102 0.0179
SOX21-AS1 − 3.995 0.0032 hsa-miR-27a-3p.3 2.677 0.000479 NR1D2 − 15.429 0.04325
MALAT1 − 3.835 0.00505 hsa-miR-27a-3p.4 2.677 0.000479 SMAD2 − 16.102 0.0179
LINC01554 − 3.236 0.00235 hsa-miR-27a-3p.5 2.677 0.000479 SMAD2 − 16.102 0.0179
LUCAT1 − 3.231 0.0153 hsa-miR-27a-3p.6 2.677 0.000479 SMAD2 − 16.102 0.0179
OIP5-AS1 − 2.979 0.0073 hsa-miR-139-5p.3 5.758 0.001547 JUN − 4.262 0.00235
LINC01278 − 2.274 0.0334 hsa-miR-139-5p.4 5.758 0.001547 JUN − 4.262 0.00235
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Finally, the list of lncRNA–miRNA–mRNA showing inverse correlative expression in OS-R compared to OS is presented 
in Table 17. Herein, we observed that lncRNAs LGALS8-AS1 (log fold 3.375 and p-value 0.008), hsa-miR-19a-3p (log fold 
− 4.429 and p-value 0.012) and AKT1 (log fold 0 and p-value 0.07) and LINC00284 (log fold 14.838 and p-value 0.003), 
hsa-miR-19a-3p (log fold − 4.429 and p-value 0.012) and AKT1 (log fold 0 and p-value 0.07) showed correlations. The 

Fig. 5  a Cytoscape network of the lncRNA-miRNA axis regulating key mRNA genes in OS-P vs. OS cells. b Cytoscape network of lncRNA-
miRNA regulating key mRNA genes in the OS-EP vs. OS-P set. c Cytoscape network of lncRNA-miRNA regulating key mRNA genes in OS-R vs. 
OS cells

Table 16  The significantly 
differentially expressed 
lncRNAs in OS-EP compared 
to OS-P showing correlative 
expression with miRNAs and 
mRNAs

lncRNA log2fold P value miRNA log2fold P value mRNA log2fold P value

FBXL19-AS1 − 2.116 0.0296 hsa-let-7c-5p 7.96 3.91E−05 UBA52 − 2.037 0.0331
LINC00240 − 1.98 0.04095 hsa-let-7c-5p 7.96 3.91E−05 UBA52 − 2.037 0.0331
LINC00865 1.941 0.04645 hsa-miR-142-5p 4.541 0.040141 SIVA1 − 2.406 0.01755
LINC00674 13.851 0.04455 hsa-miR-128-3p − 4.751 0.008817 SMAD2 15.783 0.01835
LINC00865 1.941 0.04645 hsa-miR-19b-3p − 6.497 0.002331 PTEN 2.736 0.0079

Table 17  The significantly 
differentially expressed 
lncRNAs in OS-R compared 
to OS showing correlative 
expression with miRNAs and 
mRNAs

lncRNA log2fold P value miRNA log2fold P value mRNA log2fold P value

LGALS8-AS1 3.375 0.00845 hsa-miR-19a-3p − 4.429 0.012264 AKT1 0 0.07305
LINC00284 14.838 0.03145 hsa-miR-19a-3p − 4.429 0.012264 AKT1 0 0.07305
LINC00589 3.105 0.0115 hsa-miR-7-5p − 1.584 0.667092 RELA 0 0.14075
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above lncRNAs might be critical to the acquisition of resistance. Cytoscape analysis of these targets showed enriched 
pathways such as adipocyte signaling and longevity regulating pathways (Fig. 5c).

4  Discussion

Noncoding RNAs (ncRNAs) are no longer regarded as bystanders; rather, they are found to have a profound influence 
in regulating tumor development and therapy resistance through a plethora of [26, 65, 66]. ncRNAs can tightly and 
dynamically regulate the processing of protein-coding genes during the process of tumor development, thus having a 
deep impact on tumor cell transcriptional and translational control. Given the importance of ncRNAs in tumor biology, 
a deeper understanding of their regulation and function might facilitate the development of future cancer therapeutics. 
In this regard, the dynamic expression pattern of noncoding RNAs, including miRNAs and lncRNAs, as tumor cells attain 
drug resistance, and the correlative expression of their putative targets has been poorly characterized. In this study, 
we performed next-generation sequencing followed by extensive in silico analysis to obtain the correlative expression 
pattern of ncRNAs and mRNAs from cells at different stages during the process of acquisition of drug resistance. The 
ncRNAs significantly deregulated at each stage were identified, their putative mRNA targets were predicted, and the set 
of transcripts showing correlative expression patterns with respect to the mRNA expression patterns were short-listed. 
Finally, a ncRNA-mRNA correlative expression network was constructed, and the pathways regulated by the correlated 
transcripts were identified. Our study, for the first time, provides valuable information on how the ncRNA expression 
profile dynamically changes with respect to the mRNA expression pattern in osteosarcoma cells as they acquire resist-
ance to the widely used drug cisplatin. Additionally, we provide a holistic overview of the ncRNA signature and putative 
pathways regulated by them representing each stage during the process of acquisition of resistance by tumor cells.

Interestingly, our results reveal that cells initially exposed to high cisplatin shock show a decreased number of upregu-
lated mRNAs or lncRNAs but, in contrast, show an increased level of upregulated miRNA transcripts, indicating probable 
miRNA-mediated regulation under acute drug stress. Further analysis showed that the majority of the dysregulated 
miRNAs in OS-P are reported to be involved in the suppression of cancer growth, proliferation and metastasis, suggest-
ing a miRNA-mediated attainment of a transitory nondividing state—a strategy to survive acute drug insult. Similarly, 
epigenetically driven sparsely diving cells, labeled ‘tolerant’ cells, have been observed by multiple research groups; 
however, the miRNA signature of these cells is poorly understood. Interestingly, miRNAs such as miR-27a-3p, known 
for its role in regulating cancer stemness and implicated in the pathogenesis of several solid tumors, were found to be 
significantly upregulated in the persisters, indicating miRNA-mediated induction of stemness as a strategy to survive and 
result in subsequent recurrence [40]. Importantly, the predicted targets of miR-27a-3p included genes such as SMAD2, 
FOXN2 and NR1D2, which showed a correlatively significant downregulation in OS-P cells. The key pathways derived 
from mRNAs showing inverse correlative expression with ncRNAs included important pathways such as TNF signaling, 
autophagy and mitophagy. Currently, there is abundant literature that implicates the role of these cellular homeostatic 
processes in the survival of tumor cells under drug stress. Thus, our analysis provides cues about molecular pathways 
that can be targeted to eradicate the reservoir of cells surviving chemotherapy stress with the potential to contribute 
to relapse and tumor resistance.

Interestingly, as persister cells regain proliferative potential, understandably, the expression profile of ncRNAs changes 
distinctively as well. A contrasting expression pattern of miRNAs and mRNAs was observed between the cells that attained 
proliferative potential after drug shock (OS-EP) compared to OS-P. Here, more miRNA transcripts were downregulated, 
while there was an increase in upregulated mRNA transcripts. Importantly, miRNA hsa-miR-1277-5p emerged as having 
many key mRNA genes representing the OS-EP signature as its target; however, there are limited studies in the literature 
evaluating the functional role of this miRNA. Thus, our study not only provides information on pathways already impli-
cated in chemoresistance but also contributes to the identification of novel molecules that can be investigated in this 
context. The other miRNAs that were found to be deregulated included the well-studied hsa-let-7c-5p, which is known 
to have a role in stemness and is considered an important biomarker in cancer. Finally, it is worth mentioning that the 
number of differentially regulated transcripts decreased drastically as cells attained resistance (OS-R); however, they 
overexpressed specific genes, such as Akt1, that showed correlative expression with ncRNAs. Herein, interestingly, we 
observed that the miRNA hsa-miR-19a-3p is downregulated in OS-R, and the existing literature suggests that it is often 
associated with cancer progression; importantly, one of its targets is AKT, which is extensively implicated in cancer and 
drug resistance. Analysis of pathways deregulated in OS-R cells highlighted the importance of adipocytokine signaling; 
however, its connection with drug resistance remains to be elucidated. Our study thus suggests that OS-R cells adapt 
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unique strategies to maintain resistance that significantly differ from cells at early stages of acquisition of resistance, 
and further research in this direction can provide novel insights into ways to tam chemoresistance in osteosarcoma.

5  Conclusion

Overall, our study provides critical insights into the dynamic expression pattern of ncRNAs in osteosarcoma cells as they 
attain resistance to cisplatin. We also identified a pool of ncRNAs that can be validated as signature molecules through 
future studies and further provided information on putative mRNA transcripts that show correlative expression with 
ncRNAs. We believe that the holistic expression data obtained from this study will definitely serve as a useful platform for 
prospective future biomarker studies that can be of clinical relevance and offer better strategies for efficient diagnosis 
and therapy of OS.
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