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Abstract
There is a desperate need in the field for mouse mammary tumors and cell lines that faithfully mimic estrogen receptor (ER)
expression and activity found in human breast cancers. We found that several mouse mammary cancer cell lines express ER but
fail to demonstrate classical estrogen-driven proliferation or transcriptional activity. We investigated whether these cell lines may
be used to model tamoxifen resistance by using small molecule inhibitors to signaling pathways known to contribute to
resistance. We found that the combination of NFκB inhibition and ER antagonists significantly reduced cell proliferation
in vitro, as well as growth of syngeneic tumors. Surprisingly, we found that ER was localized to the cytoplasm, regardless of
any type of treatment. Based on this, we probed extra-nuclear functions of ER and found that co-inhibition of ER and NFκB led
to an increase in oxidative stress and apoptosis. Together, these findings suggest that cytoplasmic ER and NFκB may play
redundant roles in protecting mammary cancer cells from oxidative stress and cell death. Although this study has not identified a
mouse model with classical ER activity, cytoplasmic ER has been described in a small subset of human breast tumors, suggesting
that these findings may be relevant for some breast cancer patients.
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Introduction

Breast cancer is the second most diagnosed cancer in females
behind skin cancer and is expected to be responsible for more
than 41,000 deaths in 2019. The majority of breast cancers,
around 75%, express estrogen receptor alpha (ERα) and are
diagnosed as estrogen receptor positive (ER+) [1]. The growth
and survival of these tumors are stimulated by estrogen bind-
ing to ERα. Thus, treatments that disrupt or inhibit estrogen
signaling, such as tamoxifen or aromatase inhibitors, are rou-
tinely used to treat women with ER+ breast tumors. Despite
the success of these therapies, between 30 and 50% of ER+
breast cancers are expected to recur, frequently as more

aggressive, metastatic, and therapy-resistant disease [2].
Consequently, the majority of breast cancer deaths each year
result from ER+ breast cancer. Clearly, new therapeutic targets
and strategies are needed to combat recurrent ER+ disease.

Current approaches used to study hormone-dependent
breast cancer are highly reliant on ER+ breast cancer cell lines
grown in culture or as xenograft tumors in immunocompro-
mised mice. Cell lines, such asMCF-7 and T47D, are themost
widely used models to study ER+ breast cancer and have
advanced our mechanistic understanding of estrogen and ta-
moxifen action tremendously. Cell line-derived xenografts are
the most commonly used in vivo model to study breast cancer,
due to their simplicity, low cost, and ease of cell line manip-
ulation to study a protein/pathway of interest. However, these
models fail to capture the complex tumor microenvironment
and typical disease progression seen in human tumors. Amore
sophisticated adaptation of the xenograft model has been
developed—mouse intraductal (MIND) models. Here, cells
are injected into the ducts of immunocompromised mice rath-
er than the fat pad, in order to mimic the normal epithelial
environment. Brisken and colleagues showed that MCF-7
cells injected intraductally more closely resembled ER+ lumi-
nal disease characteristics than tumors injected into the fat pad
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and that tumors grew under physiological hormone levels
without E2 supplementation [3].

Another approach to more closely model patient disease is
patient-derived xenografts (PDX), where human tumor cells
or pieces of tissue are engrafted into immunocompromised
mice. This approach has the advantages of closely mimicking
human breast cancer, inclusion of a stromal component, and
retention of therapy response and histopathological features
[4]. However, one major disadvantage is that the majority of
PDX models are derived from more aggressive ER− pheno-
types [5] so are often not useful for studying ER+ disease. One
approach that can combine the advantages of cell lines and
PDXs are patient-derived organoids (PDO). These have the
versatility and amenability of cell lines, such as ability to be
genetically manipulated and cultured indefinitely, with the
clinical relevance PDX models, and show great promise for
both research tools and modeling patient disease. Generation
of ER+ PDOs has been more successful than with PDX. A
2017 study by Sachs et al. generated a biobank of organoids
from patient breast tumors [6]. These organoids represented
all molecular subtypes of breast cancer without bias and
broadly matched the original tumor, suggesting minimal loss
of oncogenic driver expression. ER+ organoids represented a
large proportion of the organoids generated, showing much
greater success rate than establishing ER+ PDX models.
Importantly, when a response to tamoxifen was observed in
patients, their organoids also responded. These models may
prove extremely useful for dictating therapy and predicting
response and may become as useful in the future as cell lines
in a basic research setting.

Although cell lines, PDXs, and PDOs have their advan-
tages, these models still cannot fully replicate human disease.
They do not allow natural tumor initiation or progression in
the correct in situ microenvironment nor are they heteroge-
neous like most human tumors. Importantly, they do not mod-
el a normal immune environment. To overcome these short-
falls, transgenic models have been developed. A number of
genetically engineered mouse models (GEMM) have been
shown to give rise to ER+ disease. These include ESR1 (es-
trogen receptor) [7], cyclin D1 [8, 9],Wnt1 (Wnt family mem-
ber 1) [10], p53 (tumor protein p53) [11], Stat1 (signal trans-
ducer and activator of transcription 1) [12], TGFα
(transforming growth factor alpha) [13], AIB1 (amplified in
breast cancer 1) [14, 15], Espl1 (extra spindle pole bodies like
1) [16], PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha) [17], and PyMT (polyomamid-
dle T oncoprotein) [18, 19]. Crucial to modeling ER+ disease
in GEMMs is to demonstrate reliance on E2 for growth and
response to endocrine agents. However, only a few of these
models demonstrate the expected hormonal responses. In
Wnt1 transgenic mice that generated ER+ disease, tumors
were refractory to both ovariectomy and tamoxifen treatment
[10]. Similarity, tumors from ERα and cyclin D1 expressing

transgenic mice developed despite tamoxifen treatment, sug-
gesting inherent resistance [8]. Therefore, many of these
models cannot lay claim to modeling ER+ breast cancer fully.
Lack of response may be due to fast progression of these
models to more aggressive phenotypes. For example in the
PyMT model, ER+ tumors quickly lose expression and gain
HER2 and cyclin D1 expression as tumors become more ag-
gressive and metastatic [18]. Similarly, ER+ tumors in AIB1
transgenic mice have been shown to initially respond to ta-
moxifen treatment, but lose this response within days [20].
These studies indicate that early mouse mammary tumors
may rely on estrogen activity; however, this is often lost, along
with response to endocrine agents. Also, these studies high-
light the need for further understanding and better models that
do fully recapitulate human disease.

The lack of responsive ER+ models led us to fully charac-
terize ER function in some of the available mouse cell lines of
mammary cancer, with the goal of using these cells in a syn-
geneic immunocompetent model of ER+ disease. Our find-
ings suggest that although many of these mouse cell lines do
express ER, classical ER function and response to hormones
and endocrine agents is lacking, most likely because ER is
localized in the cytoplasm rather than nucleus. However, cy-
toplasmic ER appears to be functional and plays a role in
promoting survival. This survival function requires NFκB ac-
tivity since the combination of tamoxifen or other selective
estrogen receptor modulators (SERMs) with NFκB inhibitors
led to oxidative stress and apoptosis. Taken together, our find-
ings suggest that mouse models of ER+ breast cancer fail to
model human disease largely due to the lack of classical nu-
clear ER activity, but may be useful in understanding extra-
nuclear functions of ER.

Materials and Methods

Reagents 17β-estradiol (E2), 4-hydroxy-tamoxifen (4OHT),
Fulvestrant (ICI 182,780, referred to throughout as ICI), di-
methyl fumarate (DMF), Raloxifene (RAL), and propidium
iodide (PI) were purchased from Sigma. IKK7 was purchased
from Selleck Chemicals. The antibodies for ERα (#8644) and
TBP (#8515) were purchased from Cell Signaling. The anti-
body for GAPDH (10494-1-AP) was purchased from
Proteintech. The anti-rabbit Alexa Fluor 488 antibody
(ab150073) was purchased from Abcam. Goat anti-rabbit
HRP-conjugated secondary antibody (#31460) was purchased
from Invitrogen.

Cell Culture Mouse mammary cancer cell lines used in this
study are detailed in Table 1. J110 cells were maintained in
DMEM/F12 media and Py2T, E0771, 4T1, and Met1 were
maintained in DMEM (1×) containing 4.5 g/L D-glucose, L-
glutamine, and 25 mM HEPES. All media contained phenol
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red and 5%FBS and was therefore considered “estrogenized”,
as well as 1% penicillin-streptomycin antibiotics. Before treat-
ment with E2, cells were cultured in phenol red free media
supplemented with 5% charcoal-dextran stripped FBS (steroid
depleted media) and 1% penicillin-streptomycin antibiotics
for 3 days.

RNA Extraction and RT-qPCR Total RNA was isolated using
TRIzol reagent (Invitrogen) according to the manufacturer’s in-
structions. A total of 0.5μg of RNAwas used to generate cDNA
at a total volume of 10 μl, using M-MLV Reverse Transcriptase
reagents with the addition of 50 pmol random hexamer, and
1 mM deoxy-NTP per reaction (all Invitrogen). cDNAwas di-
luted to a total volume of 100 μl with sterile ddH2O. qPCR was
performed using 2 μl of diluted cDNA, 1× SYBR Green PCR
Master Mix (Applied Biosystems), and 125 nM forward and
reverse primer (sequences available on request). Reactions were
carried out on an ABI StepOne Real-time PCR system (Applied
Biosystems) under the following conditions: 10 min at 95 C
followed by 40 cycles of 95 C for 15 s then 60 C for 1 min.
The fold change in expression of each genewas calculated using
theΔΔ Ct method, with GAPDH as an internal control.

Protein Extraction and Western Blot Whole cell lysates were
prepared using the M-PER reagent, and cytoplasmic and nu-
clear lysates were prepared using the NE-PER kit (Thermo
Scientific), according to the manufacturer’s protocol.
Proteins were separated by SDS-PAGE (Bio-Rad
Laboratories), transferred to nitrocellulose membranes
(Thermo Scientific), blocked for 1 h in 5% nonfat dry milk
(Lab Scientific) in 1× TBS-T, and incubated overnight with
primary antibody. The following day, the membranes were
rinsed with 1× TBS-T and incubated with horseradish
peroxidase-conjugated secondary antibody for 1 h. Pierce
Supersignal West Pico plus chemiluminescent substrate
(Thermo Scientific) was applied to the membranes and the
signal was visualized on a Molecular Imager ChemidocXRS
(Bio-Rad Laboratories). Images were processed using
Quantity One software (Bio-Rad Laboratories).

Cell Proliferation Cell confluency was determined using the
Celigo Imaging Cytometer (Nexcelom Bioscience). DNA
content was determined using Hoechst 33342 dye (Life
Technologies). Fluorescence was read using Synergy HT mi-
croplate reader (BioTek). Cell numbers were extrapolated
from standard curves.

Syngeneic Tumor Study Mouse experiments were carried out
at the animal facility at the University of Illinois at Chicago in
accordance with the institutional guidelines and procedures,
with approval from the Institutional Animal Care and Use
Committee. FVB/N mice at 4 weeks of age were purchased
from Taconic. A total of 1000 J110 cells were orthotopically
injected into both left and right thoracic mammary fat pads and
allowed to form tumors of 0.2 cm2 in area. Animals were then
randomized into four groups and treated daily (5 days/week) as
follows: vehicle control, tamoxifen (100 μg in corn oil, by
intraperitoneal injection), DMF (30 mg/kg in 0.8% methyl
cellulose, by oral gavage), or the combination of tamoxifen
and DMF. Tumor size was measured using an electronic cali-
per and volume (V = (length × width2 × π)/2) calculated.

Immunofluorescence Cells were seeded onto glass coverslips
and allowed to attach. Cells were fixed with 4% paraformal-
dehyde for 10 min followed by permeabilization with 0.2%
triton X-100, blocking with casein, and then incubation with
the primary ERα antibody for 1 h. After washing with TBS,
cells were incubated with the secondary Alexa Fluor 488 an-
tibody and further washed with TBS. Coverslips were
mounted onto glass slides with ProLong™ Gold Antifade
Mountant with DAPI reagent (Life Technologies). Images
were acquired on a Leica DMi8 microscope at 63× magnifi-
cation. J110, Py2T, and Met1 images were acquired using the
same microscope settings. MCF-7 cells, which served as a
positive control, were imaged with reduced exposure in the
FITC channel due to high expression of ERα.

H202 Assay H202 was measured using ROS-Glo™ H2O2

Assay (Promega) in accordance with the manufacturer’s

Table 1 Mouse mammary cancer cell lines

Cell line Tumor origin Description Original Source Published ERα Status

J110 GEMM Derived from FVB-MMTV-AIB1 mouse tumor Myles Brown; Dana-Farber Cancer Institute,
Cambridge, USA [21]

+ [15]

Py2T GEMM Derived from FVB-MMTV-PyMT mouse tumor Gerhard Christofori; Institute of Biochemistry
and Genetics, Basel, Switzerland [19]

+ [19]

E0771 Spontaneous Derived from a C57BL/6J mouse tumor Sugiura K; Sloan-Kettering Institute, New
York., USA [22]

+ (cyto) [23],
+ [24], − [25]

4T1 Spontaneous Derived from BALB/cfC3H mouse tumor Miller FR; Brown University, Providence,
Rhode Island, USA [26]

− [25, 27]

Met-1 (fvb2) GEMM Derived from FVB/N-Tg(MMTV-PymT) mouse Guy CT, McMaster University, Ontario,
Canada [28]

− [25, 29]
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instructions. Luminescence was read on a Synergy HT micro-
plate reader (BioTek). Cells were then counterstained with
Hoechst 33342 dye for 30 min, and the fluorescence reading
taken, which was used to normalize H2O2 values for cell
number.

ATP Assay ATP was extracted from treated cells using the
method described by Yang et al. [30], with some modifica-
tions. Briefly, cell pellets were re-suspended in 500 μl of boil-
ing ddH20 and heated at 100 C for 10min, vortexing frequent-
ly. Samples were centrifuged at 1500×g and supernatant re-
moved and put on ice. The concentration of ATP was quanti-
fied using the ATP determination kit (Invitrogen), as per the
manufacturer’s protocol and the concentration of ATP in each
sample was determined using a standard curve.

Cell Death Assays Cell viability was measured using 1 μg/ml
PI to stain dead/dying cells along with Hoechst 33342 dye to
stain all cells for 30 min. Total and dead cells were detected
using the Celigo Imaging Cytometer (Nexcelom Bioscience),
and percentage of total cells stained with PI calculated. To
assess apoptosis, levels of activated caspase 3/7 were mea-
sured. Briefly, cells were washed with PBS and then incubated
for 30 min at 37 C with Hoechst 33342 dye and CellEvent
Caspase-3/7 Green Detection Reagent (Invitrogen). The num-
ber of cells with positive green fluorescent signal was mea-
sured in the green fluorescence channel and the total number
of cells was counted in blue fluorescence channel, both using
Celigo’s colony count application. The percentage of apoptotic
cells was calculated as the number of cells with positive green
fluorescent signal over the total number of cells per well.

Statistical Analysis Data are presented as mean ± SD or SEM
of two or more biological replicates, representative of two or
more experimental replicates. Statistical analysis was per-
formed using GraphPad 8 software using linear regression
analysis or one-way/two-way ANOVA (followed by
Dunnett’s/Tukey posttest), as appropriate.

Results

ERα Is Expressed but Lacks Classical Activity in a Panel
of Mouse Mammary Cancer Cell Lines

A panel of cell lines generated from mouse mammary tumors
(see Table 1 for details), many of which have been reported to
be ERα positive in the literature, were assessed for the pres-
ence of ERα. We found that J110, Py2T, E0771, and 4T1 cells
expressed ERαmRNA and protein, albeit at a lower level than
in mouse uterus and MCF-7 cells (Fig. 1). The majority of
uterine ER protein was around 55–60 KDa in size, possibly
representing a truncated/modified form of the protein,

whereas the mammary cell lines expressed 66 kDa ERα,
which was similar in size to that seen in MCF-7 cells. In
contrast, Met1 cells, which are widely considered to be ERα
negative [25, 29], showedminimal ERαmRNA and undetect-
able ERα protein. It is important to note that ERβmRNAwas
not detected in any of the mouse cell lines (data not shown).

We next examined ERα activity based on hormone-
dependent proliferation and target gene expression in two of
these cell lines: J110 and Py2T. In steroid-depleted culture
media, we found that neither cell line proliferated in response
to E2 (Fig. 2a). Furthermore, in estrogenized media, SERMs
(4OHT and RAL) and a selective estrogen receptor degrader
(SERD; ICI) had only a minimal effect on cell growth (Fig.
2b), indicating that cells may proliferate independently of ER
ligand. To further characterize ER activity, we assessed a num-
ber of classical ER target genes based on the literature [31,
32]. We found that none of these genes were significantly
regulated in response to E2 and/or 4OHT (Fig. 2c). This was
true for up to 8 h of treatment, where still no response was
observed (data not shown). The lack of ER transcriptional
activity or ligand-dependent proliferation indicates that nei-
ther cell line exhibits classical ER function.

The Combination of ER and NFΚB Inhibitors Suppress
J110 and Py2T Cell and Tumor Growth

As J110 and Py2T express ER but had little response to ER
ligands, we postulated that these cells could represent models
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Fig. 1 Estrogen receptor α is expressed in mouse mammary cancer cell
lines. a ERα mRNA levels were assessed by qPCR in mouse cell lines
J110, Py2T, E0771, 4T1, and Met1, and normalized to GAPDH. Fold
change relative to ERα in mouse uterine tissue (positive control) is
indicated. MCF-7 cells served as a positive human control. bWhole cell
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ERα protein expression by Western blot. Five times less uterine and
MCF-7 protein was loaded compared to mouse cell lines. GAPDH was
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of endocrine therapy-resistant breast cancer. In patients with
ER+ breast cancer, endocrine therapy resistance develops, in
part, due to activation of other signaling pathways such as
MAPK, AKT, EGFR/HER2 [33–35]. Therefore, inhibitors
to several of these pathways were tested. Few of the inhibitors
suppressed cell growth alone. However, in combination with
4OHT, several were found to significantly suppress cell
growth (Supplemental Fig. 1).

Of particular note, two NFκB inhibitors IKK7 and DMF, in
combination with 4OHT, suppressed growth cells to the
greatest extent. IKK7 is an inhibitor of IKKα/β, a key com-
plex in the NFκB signaling pathway [36, 37]. DMF covalently
modifies the NFκB transcription factor p65 and blocks its
nuclear translocation and DNA binding ability, thus suppress-
ing NFκB transcriptional activity [38]. As shown in Fig. 3, the
combination of NFκB inhibitors with either SERMs or a
SERD resulted in a significant suppression of cell growth,
compared to either compound alone, except DMF and ICI,
which showed a similar trend but did not reach significance.
In contrast, the ER-negative Met1 cell line showed no further
suppression of growth with combination treatment compared
to the NFκB inhibitor alone (Supplemental Fig. 2).

To explore whether combination therapy targeting ER and
NFκB would inhibit tumor growth in vivo, J110 cells were
injected into the mammary fat pad of immunocompetent
FVB/Ntac mice and syngeneic tumors were allowed to form.
After initiation of the primary tumor, tamoxifen, DMF, or both
were administered to mice and tumor volume observed over

time. By the end of the study, only the combination treatment
resulted in a significant reduction in tumor size and weight
compared to tumors in untreated mice (Fig. 4). Together, these
data indicate that co-inhibition of NFκB and ER pathways
results in a tumor suppressive response in mouse cell lines
and tumors that are unresponsive to endocrine agents alone.

Cytoplasmic ER and NFκB Protect Cells fromOxidative
Stress and Apoptosis

Our results thus far suggest that activation of NFκB may be a
contributing factor in suppressing classical ER activity, which
has been previously described in the literature [39–41]. There
is some evidence that inhibition of NFκB in endocrine-
resistant cells restores ER activity, resulting in cells that are
responsive to endocrine agents [42, 43] . Therefore, we tested
whether combination therapy with ER and NFκB inhibitory
agents affected ER’s transcriptional function. However, nei-
ther IKK7 nor DMF alone or in combination with 4OHT had
any effect on the expression of the ER target gene AREG,
whereas the combination caused a minimal increase in
PTGES expression (Fig. 5a). This increase was unexpected
given that we have previously shown that ER and NFκB stim-
ulate PTGES expression [44]. We also examined whether
NFκB inhibitors affected ER expression or localization.
Surprisingly, ER was exclusively cytoplasmic, regardless of
treatment (Fig. 5b). ER localization was also confirmed by
immunofluorescence where ER exhibited a distinct punctate
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staining pattern in the cytoplasm (Fig. 5c, Supplemental
Fig. 3). This was in contrast to MCF-7 cells, which display
typical nuclear ER localization, andMet1 cells, which lack ER
altogether (Supplemental Fig. 3). Together, these data suggest
that restoration of ER’s transcriptional activity does not occur
upon NFκB inhibition, as it is not localized to the nucleus.
Moreover, the cytoplasmic location of ER in these cells may
suggest alternative extra-nuclear mechanisms contributing to
growth suppression observed with ER and NFκB inhibition.

Previous work from the Levin group demonstrated that
extra-nuclear ER was associated with protection from

oxidative stress, and subsequent apoptosis, by reprogramming
their cell metabolism [45]. Other studies have confirmed a
protective role for extra-nuclear ER, specifically in ischemic
heart injury [46], by attenuating oxidative stress. Likewise,
NFκB is a well-established inhibitor of oxidative stress [47,
48]. We therefore investigated oxidative damage as a mecha-
nism for the growth suppressive effects we observed in ER+
mouse cell lines following ER and NFκB inhibition. Indeed,
we found an increase in H202 production upon ER and NFκB
co-inhibition, indicative of oxidative stress, compared to the
NFκB inhibitors alone (Fig. 6a). This finding was further
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supported by the upregulation of oxidative stress-associated
genes, HMOX1, NRF2, and GPX1, with combination treat-
ment (Fig. 6b). Moreover, when cells undergo oxidative
stress, the levels of ATP in the cell are significantly attenuated
[49] and apoptosis can occur [50]. We observed both signifi-
cantly reduced ATP and increased cell death/apoptosis in J110
cells co-treated with ER and NFκB inhibitors compared to
IKK7 or DMF alone (Fig. 6c–e). As mitochondrial ER has
been associated with oxidative stress by others [51–53], we
investigated whether cytoplasmic ER is localized to the mito-
chondria. However, ER and mitochondrial staining patterns
were distinctly different, suggesting no colocalization
(Supplemental Fig. 4). These data suggest that cytoplasmic
but not mitochondrial ER, in addition to NFκB, protect mouse
mammary cancer cells against oxidative stress.

Discussion

We observed ER expression in multiple mouse mammary
cancer cell lines, derived from either GEMM or spontaneous
tumor models, and yet these cells were unresponsive to E2 and

only minimally responsive to SERMs or SERDs.
Interestingly, ER was found to be predominantly localized to
the cytoplasm. Despite an apparent lack of classical nuclear
activity, ER still appeared to be functionally important as co-
inhibition of ER andNFκB resulted in an increase in apoptosis
and oxidative damage. Thus, this study provides new insights
into why many ER+mouse mammary cancer models lack E2-
dependence and response to tamoxifen that is typically ob-
served in human ER+ breast tumors and cell lines.

One hypothesis suggested by our findings is that the cyto-
plasmic localization of ER may be a consequence of disease
progression. Tumors that form in AIB1mice are reported to be
ER+ and tumor formation is reliant on ER, as ovariectomy
prevented the development of invasive mammary tumors.
However, once developed, they subsequently lose their re-
sponse to estrogen [21]. In ovariectomized mice, injection of
cells derived from AIB1 tumors resulted in a similar growth
rate compared to untreated mice. However, it was interesting
that the ovariectomized mice had fewer metastasis, suggesting
that despite their lack of response, E2 may provide protection
from tumor progression [21]. Another study, also using cells
derived from the AIB1 transgenic model, showed that tumors
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initially responded to tamoxifen in vivo but stopped
responding over time, and no difference in size between con-
trol and tamoxifen-treated tumors was observed at the end of
the study [20]. Similarly, ER+ tumors arising from the PyMT
models express ER early on but this is lost as tumors progress.
These tumors appear to be estrogen-independent since ovari-
ectomized mice or tamoxifen-treated mice still developed
mammary tumors [54]. Cell lines derived from this model
express ER but also express the basal keratin KRT14, suggest-
ing that progression and transformation to a more aggressive
phenotype may have begun [55]. Loss of ligand response has
also been observed the mouse mammary cancer cell line
E0771, originally from a spontaneous mammary tumor in a
female C57BL/6 mouse [23]. Not only were the cells mini-
mally responsive to tamoxifen in vivo and unresponsive
in vitro, they also displayed diffuse cytoplasmic ER staining
patterns. Clearly, loss of ER activity in ER+ mouse models is
common and progression to this state is rapid. Thus, it is
possible that cytoplasmic ER and lack of response in J110
and Py2T cells may result from disease progression to an
ER-independent state.

Several studies have described interacting partners of ER
that can drive its cytoplasmic location and subsequent extra-
nuclear role. For example, the proto-oncogene tyrosine-protein

kinase Src is the most widely studied ER interacting protein
that is responsible for sequestering ER in the cytoplasm, and its
inhibition has been shown to increase nuclear shuttling of ER
[56–58]. The protein PELP1 (proline, glutamate and leucine-
rich protein 1) can act as a scaffolding protein between ER and
Src and aids sequestration of ER in the cytoplasm [57, 59].
Similarly, MEMO (mediator of ERBB2-driven cell motility)
can also enhance interaction between Src and ER, resulting in
cytoplasmic retention, by inhibiting nuclear transport of this
complex [60]. In addition, MTA1 (metastasis-associated 1)
has the ability to sequester ER to the cytoplasm due to its ER
binding motif [61]. Finally, methylation of ER by PRMT1
(protein arginine N-methyltransferase 1) at R260 can promote
cytoplasmic location of ER [62]. Whether any of these mech-
anisms may explain why ER is sequestered in the cytoplasm of
mouse cell lines remains to be investigated.

Although nuclear ER has been well studied to promote cell
survival through suppression of apoptotic genes or upregula-
tion of anti-apoptotic genes, e.g., BCL-2 [63], several studies
suggest that cytoplasmic ER is also linked to survival through
various signaling pathways, such as PI3K/AKT [59], ERK1/2
[64], and MAPK [57, 65], as well as oxidative stress. For
example, in ischemic neuronal injury, ER was found to protect
against oxidative damage by attenuating NADPH oxidase
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activation and superoxide production [66]. Another study
found that extra-nuclear ER was able to mediate protection
from cardiac ischemia-reperfusion in mice, due to an increase
in myocardial protein S-nitrosylation, which protects from
oxidative stress [67]. Extra-nuclear ER has been shown to
protect from apoptosis in pancreatic β-cells. In these cells,
ER is predominantly cytoplasmic, and after acute H202 expo-
sure to mimic oxidative injury, stimulation of ER by E2
protected cells from apoptosis [68]. These studies provide
compelling evidence of a role for extra-nuclear ER in cellular
protection against oxidative stress and may be applicable to
the mouse mammary cancer models used in these studies.

It is interesting to ask if cytoplasmic ER promotes survival,
then why do not SERMs or SERDs have discernable effects
on J110 and Py2Tcell survival? The finding that co-inhibition
of ER and NFκB resulted in a significant increase in oxidative
damage, apoptosis, and cell death is suggestive of a synthetic
lethality paradigm. Synthetic lethality is a type of genetic in-
teraction where suppression of two genes results in cell death
whereas suppression of either one alone leaves cells viable
[69, 70]. This concept can also be applied to suppression of
proteins or pathways. It is hypothesized that synthetically le-
thal interactions occur because redundant mechanisms are in
place to maintain homeostasis when cells are subjected to
various deficiencies, such as environmental, genetic, or muta-
tional [71]. In the case of J110 and Py2T cells, when ER and
NFκB, two pro-survival pathways, are inhibited by chemical
compounds, we observe oxidative damage leading to in-
creased cell death, suggesting a compensatory or buffering
relationship between ER and NFκB. This relationship could
be the result of “between-pathway” or “within-pathway” in-
teractions [72], either of which could be possible as ER and
NFκB crosstalk has been addressed heavily in the literature
[41]. Although this work has predominantly described tran-
scriptional crosstalk, cytoplasmic crosstalk can also occur. For
example, activation of PI3K, which is mediated by extra-
nuclear ER, results in sequestration of NFκB in the cytoplasm
[73]. Therefore, the survival mechanisms in J110 and Py2T
cells may involve a complex convergence and compensatory
function between cytoplasmic ER and NFκB.

Of utmost importance is whether the cytoplasmic function
of ER and redundancy with the NFκB pathway is relevant to
human disease. Although activation of NFκB is observed clin-
ically during tumor progression and has been linked to endo-
crine resistance [39, 40, 43, 74, 75], cytoplasmic ER is less
well described. One study byWelsh et al. assessed ER expres-
sion in nearly 3200 patient cases and found the average inci-
dence of cytoplasmic ER was around 1.5% [76]. However,
this study examined ER expression in primary tumors. We
hypothesize the context in which cytoplasmic ER may be
more applicable is in advanced disease, e.g., having
progressed on or after therapy. These samples may be less well
represented in studies of cytoplasmic ER due to difficulty in

obtaining samples after therapeutic failure or progression to
aggressive disease. Taken together, our studies suggest that
analysis of ER localization as a consequence of disease pro-
gression may represent a promising new direction to develop
novel therapeutic strategies.
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