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Abstract
Androgens are thought to cause prostate cancer, but the underlying mechanisms are unclear. Data from animal studies suggest
that for androgens to cause prostate cancer, they must be aromatized to estrogen and act in concert with estrogen metabolites. We
tested the hypothesis that androgen-receptor and estrogen receptor-mediated effects of androgen and estrogen are necessary, as
well as genotoxicity of estrogen metabolites. NBL rats were treated with androgenic and estrogenic compounds for 16–75 weeks
through slow-release silastic implants or pellets. Testosterone alone induced cancer in the prostate of 37% of rats. 5α-
Dihydrotestosterone, which cannot be converted to estradiol or testosterone, did not cause a significant prostate cancer incidence
(4%). Addition of estradiol to 5α-dihydrotestosterone treatment did not markedly enhance prostate cancer incidence (14%),
unlike adding estradiol to testosterone treatment which induced a 100% tumor incidence. Testosterone plus estradiol treatment
induced a DNA adduct detectable by 32P-postlabeling, oxidative DNA damage (8-hydroxyguanosine), and lipid peroxidation at
the site within the prostate where this treatment causes cancers, preceding later cancer formation. The non-estrogenic 4-hydroxy
metabolite of estradiol, when combined with testosterone, induced prostatic dysplasia within 16 weeks and, after long-term
treatment, a very low incidence of prostate cancer (21%). When an estrogen that cannot be hydroxylated (2-fluoroestradiol) was
added to this combined treatment with testosterone and 4-hydroxyestradiol, dysplasia frequency after 16 weeks was doubled.
These results strongly support the hypothesis, but additional definitive studies are needed which may identify new targets to
interfere with these mechanisms that are clinically feasible in humans.
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Introduction

Prostate cancer is the most frequently diagnosed cancer and
the second most frequent cause of death due to cancer in US
males. Although the causes of prostate cancer are not clear,
hormones, particularly androgens and estrogens, are thought
to be critically involved in human prostatic carcinogenesis [1].
The basis for this assumption is that the prostate gland is an
androgen-dependent tissue and that prostate cancer is an
androgen-dependent malignancy [1]. The underlying mecha-
nism has been postulated to be androgenic stimulation of cell
proliferation resulting in an increased risk of oncogenic genet-
ic alterations [2]. However, there are no human data of the
effects of androgen treatment on prostatic cell proliferation,
but treatment of men with 5α-dihydrotestosterone (DHT) did
not alter androgen-regulated gene expression in one study [3].
Chronic testosterone (T) treatment of rats via subcutaneous
silastic tubing implants or cholesterol pellets results in devel-
opment of prostate adenocarcinomas in at least five different
strains at incidences ranging from 7 to 19% [4, 5].

While prostate cancer risk increases steeply with age [6],
circulating androgen levels decrease with aging. Estrogen
levels remain unchanged or increase slightly resulting in an
increase in the ratio of 17β-estradiol (E2) to Twith age, which
has been suggested to point to a role of estrogen in prostate
carcinogenesis [7]. Intraprostatic levels of DHT decrease with
aging in epithelial cells, but not in stromal cells, while levels
of E2 and estrone increase with age in the stromal compart-
ment but not in the epithelium [8]. These observations suggest
that prostate cancer risk may be associated with elevated con-
centrations of circulating and/or intraprostatic estrogens, but
there is no direct evidence for such an association [9–11].

T can be converted to E2 by the enzyme aromatase, which
is expressed in fat tissue and in the human and rodent prostate
[12]. However, there is no evidence of an association between
prostate cancer risk and single nucleotide polymorphisms in
the aromatase (CYP19A1) gene that are associated with al-
tered serum levels of total and free E2 [13]. Nonetheless,
animal experiments suggest that estrogen may be involved
in the aforementioned induction of prostate cancer by T in
rats. We have shown that T treatment combined with E2 in-
duces a prostate cancer incidence of 100% in NBL rats [14,
15]. These results have led us to hypothesize that estrogen and
aromatization of T to E2 play a critical role in prostate carci-
nogenesis, at least in the rat. Of note, estrogen treatment alone
results in shutdown of LH production and endogenous andro-
gen production, resulting in prostatic atrophy. Therefore, ex-
periments to determine whether E2 can cause prostate cancer
require joint administration of androgen to restore physiolog-
ical levels of testosterone.

E2 and estrone (E1) can be enzymatically metabolized to 2-
and 4-hydroxyestradiol and 2- and 4-hydroxyestrone by
CYP1A1 and CYP1B1. These so-called catecholestrogens

can be converted to highly reactive estrogen semiquinones
and estrogen quinones by the process of redox cycling [16,
17]. These reactive intermediates can adduct to DNA and
redox cycling additionally causes generation of reactive oxy-
gen species (ROS). ROS can induce lipid peroxidation,
resulting in the formation of lipid hydroperoxides, and both
can damage DNA and potentially lead to mutations [16, 17].
The 4-hydroxyestradiol (4OH-E2)-quinone-DNA adducts
rapidly result in apurinic sites in the DNA which, when
repaired by error-prone DNA repair mechanisms, can lead to
mutations [18]. Detection of quinone-DNA adducts has been
difficult, because they depurinate with a very short half-life,
leading to apurinic sites that are difficult to detect. However,
with highly sensitive analytical methods (LC-MS/MS), such
adducts have been observed after estrogen treatment of DNA,
cells, and tissues [19–21]. In the rodent [22] and human pros-
tate [E. cavalieri & E. Rogan, personal communication], and
in studies of urinary levels of estrogen metabolites and ad-
ducts in men with or without prostate cancer [23, 24], evi-
dence has been found of enzymatic conversion of E2 and E1
by CYP1A1 and CYP1B1 to the catecholestrogens and sub-
sequently the quinones.

We hypothesized that for T to be carcinogenic to the rat
prostate, it must be aromatized to E2 which acts as a chemical
carcinogen through the above described metabolism to
catecholestrogen and subsequent redox cycling leading to
DNA damage [25].We have demonstrated that these reactions
can take place in the rat prostate [22] and we identified a major
DNA adduct by 32P-postlabeling selectively in the periurethral
area of their prostates, the site of later cancer development
[26], following treatment for 16 weeks with T plus E2 of
NBL rats. A low level of this adduct was also found at this
location in control rats, perhaps indicating sensitivity of this
tissue to DNA damage. In the present paper, studies are de-
scribed that provide further evidence that T is carcinogenic for
the prostate and that aromatization of T to E2 and estrogen
genotoxicity are involved in hormonal prostate carcinogenesis
in the NBL rat model.

Methods

Animals and Animal Care

Male NBL/Cr rats 4–5-week-old were obtained from Charles
River (Kingston, NY). The animals were housed in solid bot-
tom cages, 2–3 to a cage under conventional conditions (22 ±
2 °C, 40–70% relative humidity, 12 h light/12 h dark); they
had free access to tap water and an open formula, natural
ingredient diet, NIH 07 (Zeigler Bros., Gardners, PA). Body
weights were recorded weekly. The experiments were
reviewed and approved by the NYU School of Medicine
Institutional Animal Care and Use Committee.
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Hormone Treatments

At 8–9 weeks of age, the animals received the following hor-
mone treatment: two silastic implants (Dow Corning
(Midland, MI), type 602 305, I.D. 1.6 mm; O.D. 3.2 mm,
sealed with General Electric (Waterford, NY), RTV-108 sili-
cone rubber adhesive sealant), each containing a tightly
packed filling of T or DHT (Steraloids, Wilton, NH) over a
length of 2 cm. E2 was administered via one such implant
containing a tightly packed 1-cm-long filling of the steroid
(Steraloids). The implants were placed subcutaneously on
the back of the rats. T and E2 implants were replaced at 6-
month intervals; at the end of each interval, the implants still
contained a substantial amount of the steroids. This treatment
was previously shown to stably increase circulating E2 levels
148% from 3.3 ± 0.7 to 49 ± 4.0 pg/ml similar to peak estra-
diol levels in female rats, while keeping T concentrations at
normal levels [27]. Control rats received empty implants or
control pellets. Ninety-day (~ 13 week) slow release pellets
containing 4OH-E2 or 2F-E2 (obtained from Steraloids) were
made for this project by Innovative Research of America
(Sarasota, FL) and replaced every 13 weeks.

Autopsy and Tissue Sampling Procedures

Animals were euthanized by a pentobarbital overdose and
exsanguination after 13 or 16 weeks or, in long-term experi-
ments when they became moribund or at the end of the exper-
iments at 75 weeks after initiation of treatment. Immediately
following death, the entire accessory sex gland complexes
together with the urinary bladder were removed in to and
either fixed in 4% neutral buffered aqueous formaldehyde
solution or rapidly snap frozen in liquid nitrogen following
micro-dissection to separate the dorsolateral, ventral, and an-
terior prostate, periurethral area, and seminal vesicles the se-
cretion of which was emptied before freezing. These tissues
were stored at − 80 °C until they were analyzed following
pulverization using a Microdismembrator-II (Braun,
Melsungen, Germany) in liquid nitrogen cooled stainless steel
ball containing capsules.

Histology and Immunohistochemistry Methods

The accessory sex glands were dissected after fixation as de-
scribed previously [28] to separate the ventral lobes, anterior
prostate (= coagulating gland) plus seminal vesicle complex,
and dorsolateral prostate complex, including the periurethral
area plus prostatic urethra. These tissues were processed to
and embedded in a paraffin wax, the dorsolateral prostate
complex cut in two halves. Five-micrometer-thick sections
were prepared and stained with hematoxylin and eosin
(H&E). Accessory sex glands were step sectioned at approx-
imately 250-μm intervals, producing six sections per tissue for

the dorsolateral prostate complex and coagulating gland plus
seminal vesicles and one section for the ventral prostate.

For staining of 8-OHdG, a mouse monoclonal antibody
was obtained from the Japan Institute for the Control of
Aging (Fukuroi City, Shizuoka, Japan). Sections were
autoclaved with 0.62M ZnSO4 at 100 °C for 15 min and then
treated with 2 M HCl at 37 °C for 30 min. Sections were pre-
incubated with 10% normal horse serum for 30 min at 37 °C
and then treated with an avidin/biotin block (Vector
Laboratories, Burlingame, CA) before overnight incubation
at 4 °C with the primary antibody against 8-OHdG (diluted
1/40). After incubation with a secondary peroxidase conjugat-
ed anti-mouse antibody (DakoCytomation, Glostrup,
Denmark), immunoreactivity was visualized with DAB
(DakoCytomation). Human seminal vesicle was used as a
positive control tissue [29].

Measurement of 4-OHE2-Induced DNA Adducts

4-OHE2-induced DNA adducts were measured essentially as
described by Li et al. [20] with some modifications. Briefly,
tissues were ground to a powder in liquid nitrogen and
suspended in 50 mM ammonium acetate, pH 4.4, containing
1 mg/ml ascorbic acid, with a final concentration of 30%
methanol. They were passed through a Certify II solid phase
extraction column and elutedwith 70%methanol in the buffer.
The eluant was evaporated to dryness and resuspended in
0.2 ml methanol. LC/MS analyses were carried out with a
Waters Aquity Ultra Pressure Liquid Chromatography
(UPLC) system connected with a high-performance Quattro
Micro triple quadrupole mass spectrometer designed for LC-
MS/MS operation. Analytical separations on the UPLC sys-
tem were conducted using Aquity UPLC BEH C18 1.7u col-
umn (1 × 100 mm) at a flow rate of 0.15 ml/min. The analyt-
ical gradient started with 80% A (0.1% formic acid in H2O)
and 20% B (0.1% formic acid in CH3CN). Eighty percent A
changed to 79% over 4 min,followed by a 6 min linear gradi-
ent to 45% A, resulting in total separation time of 10 min. The
elutions from the UPLC column were introduced to the mass
spectrometer.

The electrospray ionization (ESI) method was used in both
positive ion (PI) and negative ion (NI) mode with a capillary
voltage of 3.0 kV, an extractor cone voltage of 3 V, and a
detector voltage of 650 V. Desolvation gas flow was main-
tained at 600 l/h. Cone gas flow was set at 60 l/h. Desolvation
temperature and source temperature were set to 200 and
100 °C, respectively. Tandem mass spectrometry (MS/MS)
was performed in a multiple-reaction monitoring (MRM)
mode to produce structural information about a compound
by fragmenting specific parent ions inside the mass spectrom-
eter and identifying the resulting fragment ions. Pure stan-
dards were used to optimize the LC/MS conditions prior to
analysis. Due to small amounts of tissue, prostate tissues
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within each group of this study were pooled together.
Analyses were performed in duplicate and data are presented
as the mean of two replicates. The limits of detection for DNA
adducts varied between 1.82 × 105 and 4.94 × 105 pmol/g
tissue.

Measurement of 8-Hydroxyguanosine (8-OHdG)

8-OHdG was measured by HPLC according to Hofer and
Moller [30]. DNA was extracted and digested using a modi-
fied alkaline phosphatase-nuclease P1 method, adding DNase
I, phosphodiesterases I and II, and an iron chelator, as de-
scribed in detail elsewhere [31]. Quantitation of nucleosides
and 8-OHdG was done using a 4.6 × 250 mmMicrosorb C18
column (Varian, Palo Alto, CA) and reverse-phase ESA
HPLC with electrochemical detection of 8-OHdG by a
Coulochem II electrochemical detector (ESA Biosciences,
Chelmsford, MA) and of nucleosides by spectrophometry ac-
cording to Hofer and Moller [30]. Data presented are
expressed as 8-OHdG/105 dG,

Measurement of Lipid Hydroperoxides

Lipid hydroperoxides weremeasured after isopropanol extrac-
tion of pulverized tissue (1:3, w/v) with a colorimetric assay
[32] using a kit (LPO-CC) from Kamiya Biomedical (Seattle,
WA) with cumene hydroperoxide as standard, as described by
Wang and Liehr [33].

Measurement of DNA Adducts by 32P-Postlabeling

DNA adducts were detected and quantified by 32P-
postlabeling as described previously in detail [26]. Briefly,
DNAwas isolated by phenol/chloroform extraction and enzy-
matic digestion according to Gupta [34]. DNA was assayed
for adducts using the nuclease Pi-enhanced 32P-postlabeling
procedure of Reddy and Randerath [35]. To quantify adduct
levels, adduct spots were excised from chromatograms and
subjected to Cerenkov counting and values were expressed
as relative adduct labeling (RAL) according to Reddy and
Randerath [36].

Statistical Analysis

Mortality data were analyzed using the Kruskall-Wallis test
and Dunn’s multiple comparison test. For body weight data,
analysis of variance followed by Dunnett’s multiple compar-
ison test or a 2 sample t test was used. Tumor and lesion
incidences were analyzed using the Fisher exact probability
test. Data on tissue adduct and lipid peroxide levels were
analyzed using a 2 sample t test or ANOVA followed by
Student-Newman-Keuls or Tukey multiple comparison test.

P values of ≤ 0.05 (one- or two-sided, as applicable) were
considered significant.

Results

Testosterone Induced Prostate Cancer and Estradiol
Enhanced the Incidence, but DHT with or
Without Estradiol Did Not (Tables 1 and 2)

First, we tested the idea that T needs to be aromatized to E2 to
be carcinogenic by treating NBL rats with the 5α-reduced T
metabolite DHT, which cannot be aromatized or converted
back to T. We used a DHT dose that increased ventral prostate
weight following 16 weeks of treatment to a similar degree as
treatment with the dose of T we used previously and in this
study (Table 1). The incidence of prostate carcinomas induced
by chronic T treatment was 37% (11 of 30 rats), but DHT
induced prostate cancer in only one of 27 treated rats (4%)
(Table 2). Based on our previous observation that T plus E2
induced prostate cancers in 100% of treated NBL rats [14], we
expected that addition of E2 to the chronic DHT treatment
would produce a high prostate cancer incidence but only 14%
of animals developed these tumors (Table 2). However, DHT
plus E2 did induce a 100% incidence of dysplastic lesions in the
dorsal and particularly lateral prostate after 16 weeks (Table 1)
and after long-term treatment (data not shown), as we have
previously observed for T plus E2 treatment [14, 27].

E2 is known to induce pituitary adenomas in rats and we
have previously found a 100% incidence of such tumors after T
plus E2 treatment, markedly reducing survival [14]. E2 when
combined with DHT, however, produced pituitary tumors in
only 30% of rats (Table 2), even though pituitary weights were
increased after 16 weeks of treatment (Table 1). Furthermore,
compared to controls, the effects of DHT and the DHT plus E2
combination on weights of seminal vesicle/anterior prostate
complex were fundamentally different from those of T and T
plus E2 treatment for 16 weeks, slightly reducing rather than
increasing seminal vesicle/anterior prostate weights and reduc-
ing testicular weights far more (Table 1).

The dysplastic lesions found after 16 weeks of E2 plus Tor
E2 plus DHT treatment were morphologically identical to
those described in detail previously [27], as were the mostly
microscopic-size adenocarcinomas originating in the
periurethral ducts found following these treatments [14]. The
adenocarcinomas found in the dorsolateral prostate (eleven)
and anterior prostate (one) of rats treated with only T or DHT
were grossly visible and histologically well to moderately dif-
ferentiated, similar to those we described following treatment
with a chemical carcinogen and T [28]. The precise origin of
most of these large carcinomas was not clear as they involved
both glands in the periphery of the prostate and prostatic ducts
leading towards the prostatic urethra; in several cases, these
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tumors were so large that they caused urethral obstruction.
One of the carcinomas concentrically involved the periurethral
ducts spreading out to the periphery of the prostate, suggesting
that larger tumors after hormone treatment may also have
originated from these ducts. However, one of the carcinomas
in T-treated rats was smaller and clearly confined to the pe-
riphery of the dorsal and lateral prostate and no small cancers
were found in the periurethral ducts of rats treated with only T
or DHT. Metastases were found in the spleen, stomach, pan-
creas, liver, and/or lungs of three of the ten rats (30%) with
prostate carcinomas after treatment with only T.

Short-Term Treatment with Estradiol Combined
with Long-Term Testosterone Administration Caused
a High Incidence of Prostate Cancer (Table 2)

To determine whether a short course of E2 treatment would
induce prostate cancer but not induce pituitary tumors and im-
pact survival in rats chronically treated with T, we gave NBL
rats treatment with E2 plus T for 16 or 8 weeks at which time
the E2 implant was removed, but the T implants were left in
place for the duration of the study, until the animals became

moribund or died (Table 2). Animals lived 22–31 weeks longer
than when the E2 implant was not removed, did not develop
pituitary tumors, and they had carcinomas that originated in the
periurethral ducts of the dorsolateral prostate (Table 2). In both
treatment groups, some animals also developed carcinomas of
the seminal vesicles and anterior prostate (Table 2) which we
have never observed after continuous E2 treatment together
with T. In the 16-week E2 group, the incidence of carcinomas
of prostatic origin (75%) was driven by the presence of
periurethral or dorsolateral prostate tumors. One animal from
the 8-week E2 group developed a small adenocarcinoma in the
periphery of the dorsolateral prostate and one rat from the 16-
week E2 group had a periurethral adenocarcinoma that was
grossly visible and extended into the dorsolateral prostate pe-
riphery. This tumor had metastasized to other abdominal or-
gans. All of the seminal vesicle and six of the eleven anterior
prostate tumors were grossly visible and many of the large
tumors had metastasized, mostly to other abdominal organs.
There was one undifferentiated sarcoma of the seminal vesicle
in the 16-week E2 group (not listed in Table 2).

An additional group of rats received T plus E2 treatment
for 16 weeks at which time both the T and the E2 implants

Table 2 Induction of lesions in accessory sex glands by chronic treatment of NBL rats with T or DHTwith and without E2 of lesions in accessory sex
glands

Adenocarcinoma in:

Treatment N Median
survival
(weeks)

Periurethral ducts
of Dorsolateral or
Anterior Prostate

Peripheral glands of: All Accessory Sex
Glands tissues

Pituitary
adenoma

Dorsolateral
Prostate

Anterior
Prostate

Seminal
vesicles

Study aa

Controla 8 72 0 0 0 0 0 0

E2 + Ta 12 44* 12 (100%)*** 0 0 0 12 (100%)*** 12 (100%)***

Study b

Control 30 61 0 0 0 0 0 3 (10%)

T 30 67 0 10 (33%)** 1 (3%) 0 11 (37%)** 1 (3%)

DHT 27 69 0 1 (4%) 0 0 1 (4%) 0

E2 +DHT 28 57 4 (14%)* 0 0 0 4 (14%)* 8 (30%)b

Study c

E2 + T-16 weeks 24 71 1 (4%) 0 0 0 1 (4%) 0

E2 + T − 16 weeks +
chronic T

24 66 17 (71%)*** 0 2 (4%)d 7 (29%)*,e 18 (75%)** 0

E2 + T-8 weeks +
chronic T

24 75 7 (28%)c 1 (4%) 9 (38%)*,f 2 (8%)g 15 (63%)** 0

*p < 0.05, **p < 0.001, ***p < 0.0001 for difference with control values (study a and study b) or E2 + T-16 weeks (study c) (Fisher exact test; one-sided)
a Data taken from reference [14]
b p ≤ 0.002 for difference with DHT only group and for difference with T group (Fisher exact test; two-sided)
c p < 0.01 for difference with E2 + T − 16 weeks + chronic T group
d Both animals also had periurethral prostate tumors
e Six of these seven rats also had periurethral prostate tumors
f p < 0.05 for difference with E2 + T − 16 weeks + chronic T group; four of these nine rats also had periurethral prostate tumors
g These two rats only had seminal vesicle tumors but no prostate tumors
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were removed and the animals followed until moribund. The
animals also lived longer than those in which T plus E2 treat-
ment was continued, but only one animal developed a
periurethral prostate carcinoma (Table 2).

Long-Term Treatment with the Catechol Estrogen
4-Hydroxyestradiol in Combination with Testosterone
Induced Prostate Cancer and Dysplasia at Low
Incidence, but Required Additional Estrogenic Stimuli
to Produce a High Dysplasia Incidence (Table 3)

To circumvent aromatization of T and the antiandrogenic
effects of E2, we exposed NBL rats to 4OH-E2, the cate-
chol metabolite of E2, alone or together with T using silas-
tic tubing implants containing T and custom-made slow
release pellets for 4OH-E2 administration. Because we used
slow-release pellets with 13-week release duration, we first
compared 13 weeks of E2 plus T with 16 weeks of this
hormone treatment and found an identical 100% dysplasia
incidence and comparable degrees of inflammation in the
lateral prostate (data not shown). The dose of 4OH-E2 used
in these studies, 5 μg/day given by slow release pellets,
was based on the result of a preliminary 21-day experiment
in which we found that this dose resulted in the formation
of depurinating DNA adducts detectable by mass spectrom-
etry (Fig. 1). We identified the following depurinating ad-
ducts in lateral, dorsal, and anterior prostate tissue: 4OH-

E2–1-N7-guanine, 4OH-E1-1-N7-guanine, 4OH-E2-1-N3-
adenine, and 4OH-E1-1-N3-adenine. In the pooled prostate
tissues of 4OH-E2-treated rats, we detected a total amount
of these adducts of 2.10 pmol/g tissue, whereas in control
prostates, we found a total of 0.45 pmol/g tissue, indicating
that the 4OH-E2 dose we used did induce depurinating
estrogen-DNA adducts.

T plus 4OH-E2 induced inflammation but no dysplasia
after 13 weeks, while this treatment for 52 weeks induced
carcinomas in 4 (28%) NBL rats, three in the prostate
(21%) and one in the seminal vesicle. The latter treatment
also induced a 43% incidence of dorsolateral prostate dys-
plasia, in addition to inflammation. One or two lesions
classified as carcinoma in situ [28] were found in all 52-
week treatment groups (Table 3). By contrast, we previous-
ly showed [14] that treatment with T plus E2 induced a
100% incidence of adenocarcinomas in the periurethral
prostate and inflammation and dysplasia in the dorsolateral
prostate of NBL rats (see Table 2). Treatment with only
4OH-E2 also induced dorsolateral prostate inflammation
and dysplasia and a couple of carcinomas in situ and one
prostate adenocarcinoma.

We then examined whether adding an estrogenic stimulus
to the T plus 4OH-E2 treatment would potentiate their effects
on the prostate. We used 2-fluoro-estradiol (2F-E2) which has
been used successfully in the past to separate genotoxicity
from estrogenicity in the male hamster kidney model to

Table 3 Incidence of carcinomas, dysplasia, and inflammation in the NBL rat prostate (no pituitary tumors developed in any rat) following treatment
with T, 4OH-E2, and/or 2F-E2 for 13 or 52 weeks

Treatment N Periurethral prostatic ducts Dorsolateral prostate Adenocarcinoma in:

Adenocarcinoma Carcinoma
in situ

Inflammation Dysplasia Carcinoma
in situ

Anterior
prostate

Seminal
vesicles

All
glandsa

13 weeks study 1

Control 10 0 0 3 (30%) 0 0 0 0 0

4OH-E2 10 0 0 2 (20%) 0 0 0 0 0

4OH-E2 + T 9 0 0 7 (77%)*,b 0 0 0 0 0

13 weeks study 2

Control 6 0 0 2 (33%) 0 0 0 0 0

2F-E2 5 0 0 3 (60%) 0 0 0 0 0

2F-E2 + T 10 0 0 10 (100%)** 3 (30%) 0 0 0 0

2FE2 + 4OH-E2 + T 10 0 0 9 (90%)* 6 (60%)*,c 0 0 0 0

52 weeks study

Control 14 0 1 (7%) 2 (14%) 3 (21%) 1 (7%) 0 0 0

4OH-E2 13 1 (8%) 2 (15%) 8 (62%)** 3 (23%) 0 0 0 1 (8%)

4OH-E2 + T 14 1 (7%) 1 (7%) 7 (54%)* 6 (43%) 1 (7%) 2 (14%) 1 (7%) 4 (28%)*

*p ≤ 0.05, **p < 0.02, ***p < 0.001, for difference with control values in each group (Fisher exact test; one-sided)
a All accessory sex glands combined: periurethral, dorsolateral, and anterior prostate and seminal vesicles
b p < 0.05 for difference with 4OH-E2 group (Fisher exact test; one-sided)
c p < 0.05 for difference with 4OH-E2 group (Fisher exact test; one-sided)

HORM CANC (2019) 10:77–88 83



demonstrate that estrogen genotoxicity is required for estro-
gens to induce tumors in that classical model [37]. First, we
identified a 2F-E2 dose (5 μg/day) that produced estrogenic
activity in NBL rats when delivered by slow release pellets;
this dose increased pituitary weights from 3.30 ± 0.24 to 4.45
± 0.21 mg/100 g body weight (p = 0.005; 2 sided t test).
Following 13 weeks of treatment, 2F-E2 alone increased the
percentage of rats with dorsolateral prostate inflammation;
and combined 2F-E2 plus T caused inflammation in 100%
of rats and dorsolateral prostate dysplasia in 30%. The com-
bination of 2F-E2 plus T plus 4OH-E2 produced inflamma-
tion in 90% of rats and dysplasia in 60%, short of the 100%
incidence of both lesions observed previously after T plus E2
treatment [14]. However, although pituitary weights were in-
creased by 2F-E2 alone (see above), addition to T or T plus
4OH-E2 reduced the weight to control levels (3.20 ± 0.93 and
3.67 ± 0.51 mg/100 g body weight, respectively) suggesting
that this reduced estrogenicity of 2F-E2.

Induction by Testosterone, Estradiol,
and Testosterone Plus Estradiol of DNA Adducts
Detectable by 32P-Postlabeling,
8-Hydroxyguanosine, and Lipid Hydroperoxides
(Table 4)

We previously identified by 32P-postlabeling the formation of
a major DNA adduct selectively in the periurethral area of the
NBL rat after treatment with E2 plus T for 16 weeks [14]. This
finding demonstrated the induction of DNA damage by this
hormone treatment at the precise site of later cancer develop-
ment and preceding tumor development in time. Because we
found that T alone caused a 37% incidence of prostate carci-
nomas, we measured the formation of this adduct in prostate
tissues following treatment with just T and compared this with
exposure to only E2 and E2 plus T. By 16-week treatment
with E2 plus T, we confirmed the induction of a major DNA
adduct spot (P1) that was chromatographically identical to the
adduct that we had previously identified selectively in the
periurethral prostate [26] (Supplemental Fig. 1A).

Interestingly, T alone also induced this adduct at about half
the amount and low levels of the adduct spot were found after
E2 treatment and in control rats (Table 4). The adduct spot was
not detectable in the dorsolateral prostate (Supplemental
Fig. 1A) or the ventral prostate (data not shown).

As a measure of oxidative DNA damage, we determined
the formation of 8-OHdG in the NBL rat prostate by HPLC
and immunostaining. Following 16-week treatment with E2
plus T, we detected elevated levels of 8-OHdG by HPLC in
the periurethral region of the prostate, which was the only
prostatic area that had detectable levels in control animals
(Table 4). The treatment also induced low levels of this oxi-
dized DNA base in the dorsolateral prostate where the com-
bined hormone treatment induced inflammation and dyspla-
sia, but no cancer. 8-OHdG was undetectable by HPLC in the
ventral prostate. Immunostaining essentially confirmed these
findings (Supplemental Fig. 1B). Interestingly, the seminal
vesicles stained strongly for 8-OHdG in control animals, as
they do in humans [29], but E2 plus T treatment reduced
staining intensity (data not shown); we have never observed
lesions in the seminal vesicles of E2 plus T-treated rats.

The formation of lipid hydroperoxides, indicators of lipid
peroxidation that can be induced by ROS, followed the same
general pattern as the generation of 8-OHdG (Table 4). The
highest levels were found in the periurethral and dorsolateral
prostate of E2 plus T-treated rats, and lowest levels in the
ventral lobe of control rats, while intermediate levels were
found in the target regions of control animals, suggesting that
these tissues are particularly sensitive to or poorly protected
from oxidative DNA damage. The difference from control
values was almost significant for the periurethral region and
became significant when the data for the periurethral and dor-
solateral prostate were combined.

Discussion

We obtained novel evidence that estrogen is involved in pros-
tate cancer induction by Tand strongly suggestive evidence of

Lateral Prostate Dorsal Prostate Anterior Prostate

Fig. 1 4-OHE2-induced DNA adducts. Levels of DNA adducts in dorsal
(DP), lateral (LP), and anterior prostate (AP) of NBL rats following treat-
ment with 5 μg/day 4-OHE2 or placebo for 21 days. LC-MS/MS analysis

of pooled prostate tissue. Data are expressed as mean of two pooled tissue
samples from five animals each
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a critical contribution of a combination of androgen- and
estrogen-receptor mediation as well as DNA damage, proba-
bly caused by estrogen metabolites; the latter notion is support-
ed by our previous findings that generation of catecholestrogen
and redox cycling can occur in the prostate of rats treated with
estrogen [22]. The results indicate (a) that T plus E2 treatment
causes DNA damage and lipid peroxidation in the rat prostate at
the site of origin of carcinomas that develop later with contin-
ued hormone treatment; and (b) that E2 is essential for the high
prostate cancer response to treatment with T plus E2, suggest-
ing that aromatization of T to E2 may be critical for the tumor
response to T alone. Unfortunately, we were not able conduct a
study with T treatment plus an aromatase inhibitor. The results
of combination treatments with 4OH-E2 and T, with or without
addition of the estrogen 2F-E2 which cannot be converted to
reactive species, provide evidence supporting the notion that
catecholestrogen formation and redox cycling of 4-
hydroxylated E2 are important factors and that estrogen recep-
tor activation (by 2F-E2) is also necessary to generate prostatic
dysplasia and cancer. However, the 2F-E2 dose we used was
probably too low (inducing only a modest pituitary enlarge-
ment) to have a sufficiently strong estrogenic effect and result
in a high tumor response; additional experiments with higher
doses of this estrogenic compound are needed to definitively
test the hypothesis that a combination of androgen and estrogen

receptor mediation and estrogen metabolite-induced DNA
damage are the mechanism by which T, with or without addi-
tional E2, causes prostate cancer in the NBL rat.

Aromatase knockout mice [38] and aromatase overexpress-
ing mice [39, 40] suffer from androgen metabolism abnormal-
ities that limit their potentially interesting use to address this
hypothesis [41]. Aromatase knockout mice lack estrogen pro-
duction, have elevated circulating T levels, and their prostates
are enlarged, but they do not develop cancer [38]. In
aromatase-overexpressing mice estrogen production is elevat-
ed, while T levels are considerably reduced and no neoplastic
or preneoplastic prostate lesions develop [39, 40]. These ob-
servations are consistent with the idea that both hormones are
necessary for prostate carcinogenesis.

Both estrogen receptors (ER)-α and -β are expressed in the
rat and human prostate and they may mediate some or all of
the prostatic effects of estrogens [42, 43]. When Thompson
et al. [44] treated NBL rats with T plus E2 in combination with
the pure antiestrogen ICI182,780, development of prostatic
dysplasia (a putative preneoplastic lesion comparable to hu-
man prostatic intraepithelial neoplasia or PIN) was inhibited.
It has long been known that E2 induces pituitary tumors that
produce prolactin in rats. Lane et al. [45] demonstrated that
bromocryptin treatment, which reduces prolactin secretion,
reduces the induction of prostatic dysplasia by T plus E2 in

Table 4 Sixteen week treatment
of NBL rats with T, E2, and T plus
E2 induced: (A) a DNA adducta

detectable by 32P-postlabeling
(P1 in Supplementary Figure 1A),
(B) 8-OHdGb, and (C) lipid
hydroperoxidesc in the
dorsolateral prostate d

Treatment N Periurethral
area

Peripheral dorsolateral
prostate tissue

Periurethral area and
peripheral tissue
combined

Ventral prostate

A - DNA adduct detectable by 32 P-postlabelinga

Control 4 2.7 ± 0.53 n.d. n/a n.d.

E2 4 2.9 ± 0.84 n.d. n/a n.d.

T 4 5.6 ± 0.50 e n.d. n/a n.d.

T plus E2 4 10.2 ± 2.47 f n.d. n/a n.d.

B - 8-OHdGb

Control 3 0.32 ± 0.28 n.d. 0.32 n.d.

T plus E2 4 2.11 ± 1.37 0.14 + 0.14 2.25 n.d.

C - Lipid hydroperoxidesc

Control 3 1.41 ± 0.52 1.97 ± 1.58 1.69 ± 0.75 (n = 6) 0.20, 0.59 (n=2)

T plus E2 4 4.52 ± 1.28 g 3.82 ± 1.34 4.17 ± 0.87 h (n = 8) 1.55 ± 0.44

a Data expressed as Relative Adduct Levels (RAL) x 109

bData are expressed as 8-OHdG/105 dG
cData are expressed as nmol hydroperoxides per gram wet tissue
dData are presented as mean ± SEM
e p < 0.01 for difference with control and E2 groups (ANOVA followed by Student-Newman-Keuls post-hoc test)
f p < 0.01 for difference with control and E2 groups and p < 0.05 for difference with the T only group (ANOVA
followed by Student-Newman-Keuls post-hoc test)
g p = 0.053 for difference with control value (1-sided t-test)
h p = 0.031 for difference with control value (1-sided t-test)

n/a = not applicable; n.d. = not detectable
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NBL rats, suggesting that prolactin plays a role in the devel-
opment of this lesion. Importantly, the dysplasia in NBL rats
treated with E2 plus T occurs in a different region of the
prostate (dorsolateral prostate) than the carcinomas we find
following this treatment, which originate from the periurethral
prostatic ducts [14], and this dysplasia rarely progresses to
cancer [unpublished observations]. Thus, the findings of
Thompson et al. [44] and Lane et al. [45] may not have a
bearing on cancer development in the prostate of T plus E2-
treated rats. This notion is supported by our observation that
chronic treatment with T alone or T combined with E2 for the
first 8–16 weeks induces prostate cancer in 37, 63, and 75% of
rats, respectively, without inducing pituitary tumors. Overall,
these data suggest that estrogen receptors and prolactin do not
play a role in T plus E2 induction of prostate cancer in NBL
rats, but conclusive experiments are still lacking.

We also obtained evidence to indicate that T alone induces
cancer in the prostate of the NBL rat at a 35–40% incidence,
which is considerably higher than reported previously by us
and others for this and other rat strains [4, 5]. The mechanistic
basis for the high susceptibility of NBL rats to prostate cancer
induction by T is not known. These tumors were locally inva-
sive adenocarcinomas that were capable of metastasizing. The
T dose we used elevated circulating T non-significantly by
17%, well within the physiological range of T levels in NBL
rats [5]. These findings indicate that T is a carcinogen for the rat
prostate and suggest that this androgen could be the cause of
human prostate cancer at relevant circulating concentrations
[5]. The evidence for this from human epidemiological studies
is weak; there are only two reports of a positive association
between free serum T levels and risk of prostate cancer [46,
47], which would be consistent with our findings in rats.
Interestingly, a recent report indicated that men with very low
circulating free T levels have a low risk of prostate cancer [48].

Indirect evidence that androgens are involved in human
prostate carcinogenesis is derived from clinical studies with
the 5α-reductase inhibitors finasteride and dutasteride which
both reduced risk of developing prostate cancer by 23–24%
over a 4–7-year intervention period [49, 50]. However, the
duration of the intervention was short in view of the known
slow growth of prostate cancer, and the study subjects were
middle-aged men who have a high frequency of small cancers
in their prostates [51]. Thus, these studies are unlikely to pro-
vide much insight into whether androgens are involved in the
process of prostate carcinogenesis as such or only influence
growth and progression of pre-existing cancer.

The observation that DHT, which cannot be aromatized to
E2 or converted back to T, is a very weak prostate carcinogen
at best in the NBL rat suggests that E2 generated from T by
aromatase (CYP19) is critically involved in the carcinogenic
activity of T for the rat prostate. However, adding E2 to DHT
treatment did not substantially increase its prostate cancer-
inducing efficacy, unlike our previous findings with the

combination of E2 with T [14, 15]. DHT also reduced the
pituitary tumor-inducing effect of E2 considerably, from a
100 to a 30% incidence, and had effects on accessory sex
gland weights that were quite different from those of T, re-
gardless of whether the androgens were combined with E2.
Conceivably, DHT treatment alters androgen and estrogen
metabolism or action in ways that reduces their prostate
cancer-inducing activity. Alternatively, 3β-androstanediol,
the downstream metabolite of DHT, is known to bind and
activate ER-β and inhibits human prostate cancer cell prolif-
eration [52]. Of note, we observed by immunohistochemistry
that the regions of the NBL rat prostate that are most suscep-
tible to the carcinogenic effects of T + E2 have low ER-α
expression and very high ER-β expression [unpublished
observations].

In conclusion, our findings provide strong support for the
hypothesis that for T to be carcinogenic to the rat prostate, it
must be aromatized to E2 which acts as a chemical carcinogen
through the above described metabolism to catecholestrogen
and subsequent redox cycling leading to DNA damage. We
also obtained evidence to suggest that estrogen receptor me-
diation is important for this carcinogenic effect, in addition to
androgenic mechanisms. More research is warranted to pro-
vide further proof of the latter notion. These findings may
identify druggable targets that are clinically feasible for pros-
tate cancer chemoprevention.
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