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Abstract
Use of drug combinations that target different pathways involved in the development and progression of prostate cancer (PCa)
has emerged as an alternative to overcome the resistance caused by drug monotherapies. The antiandrogen abiraterone acetate
and the PI3K/Akt inhibitor NVP-BEZ235 (BEZ235) may be suitable options for the prevention of drug resistance and the
inhibition of PCa progression. The aim of the present study was to evaluate whether abiraterone acetate and BEZ235 achieve
superior therapeutic effects to either drug administered as monotherapy, in the early stages of PCa in an androgen-dependent
system. Our study showed that each drug might impair tumor growth by reducing proliferation and increasing cell death when
administered as monotherapy. However, tumor growth continued to progress with each drug monotherapy and some important
side effects were related to BEZ. Conversely, when used in combination, the drugs impaired the inflammatory response,
decreased hyperplastic lesions, and blocked tumor progression from premalignant to a malignant stage. Our data showed that
the strategy to block the androgenic and PI3K/AKT/mTOR pathway is an effective therapeutic option and should be investigated
including distinct PI3K pathway inhibitors.

Introduction

Prostate cancer (PCa) is the second most common cancer
among men worldwide. The incidence of the disease has
increased in part due to advances in diagnosis and the in-
crease in life expectancy of the population [1]. It is expect-
ed that by 2030 there will be 1.7 million new cases and
499.000 new deaths due to the growth and aging of the
global population [2, 3].

PCas require androgen for growth. Therefore, androgen
deprivation therapy (ADT) is currently the first-line treatment
for PCa [4, 5]. However, it is not considered the ideal treat-

ment for eradicating PCa. Despite the initial efficacy of ADT,
most patients with advanced PCa develop castration-resistant
prostate cancers (CRPC) [6]. Although more than 50% of
patients with CRPC respond to secondary hormonal interven-
tions, the response is moderate and therapeutic agents that are
more effective are required [7]. Thus, in this setting, the com-
bination of antiandrogens with therapies that target signaling
pathways involved in tumor progression represents an effec-
tive therapy [5, 6, 8].

Abiraterone is a potent inhibitor of CYP17A1, an enzyme
that blocks androgen biosynthesis in the testis, adrenal glands,
and prostate [9, 10]. The use of abiraterone leads to reduced
levels of androgens in serum, delayed tumor growth, and,
most notably, intratumoral androgen levels that are undetect-
able and not observed with conventional ADT [11]. The drug
has been used to treat CRPC after chemotherapy and, less
frequently, for early-stage cancers [12].

Although primarily used for androgen receptor (AR)-
independent PCa, the efficacy of abiraterone has been
reported for AR-positive cancers [13]. The authors postu-
lated that the attenuation of AR signaling is not the only
rationale to explain the anticancer activity of abiraterone
since it effectively reduced proliferation rates even for
cancer cells lacking AR signaling. Because of these
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conflicting results, it is important to investigate the effects
of this therapy in the initial stages of PCa, in an
androgen-responsive setting. This could represent an ef-
fective alternative to delay or even prevent the develop-
ment of drug resistance and androgen-independent growth
in this clinical setting.

Because of the importance of the PI3K/AKT/mTOR
pathway in tumor development and progression, numerous
inhibitors have been designed for cancer treatment [14].
BEZ235 is a dual PI3K and mTORC1/2 inhibitor, and its
antitumor activity is expected to be higher than that of
mTORC1 inhibitors due to the inhibition of phosphorylat-
ed Akt upregulation through mTORC2 [15]. This agent
shows an inhibitory effect by binding to the adenosine
triphosphate binding cleft of p110 and mTORC1/2. The
drug binds to and blocks the catalytic sites of all isoforms
of PI3K and mTOR [15, 16], and has been shown to in-
hibit the tumor growth of breast, prostate, and myeloma
cell lines [15–17]. The p110α and p110β isoforms are
expressed in most normal tissues and are involved in
PCa [18, 19], and p110δ is possibly restricted to cells of
the immune system [20, 21].

Several studies have evaluated the effect of BEZ235
alone and in association with other therapeutic agents on
PCa growth [22]. Carver et al. [8] demonstrated that the
combined inhibition of AR and PI3K/Akt signaling by
enzalutamide (MDV3100) and BEZ235, respectively, in-
creased antitumor activity in a hormone-sensitive LNCaP
xenograft model. Recent clinical trials have pointed out
some important side effects related to BEZ and the clin-
ical development of the drug as a potential therapy for
PCa has been discontinued during the conclusion of this
work [23].

Inhibition of the PI3K/Akt pathway by new molecules
represents a promising approach to preventing tumor pro-
gression [8, 24, 25]. However, prolonged treatment could
result in drug resistance, which leads to positive regula-
tion of the androgen receptor pathway and reduces the
anticancer effect [8, 26, 27]. Most clinical trials have
targeted patients who have already developed androgen
resistance [28]. However, some studies have suggested
that the PI3K/Akt pathway is required for the develop-
ment of CRPC. Thus, co-targeting the PI3K and AR path-
ways in the early stages of PCa development could delay
androgen resistance [29, 30].

The crosstalk between the androgen receptor and the
PI3K/AKT/mTOR pathways allows for the development of
novel strategies to inhibit cancer growth more effectively.
The present study was performed to evaluate whether, in the
early stages of PCa, abiraterone acetate, and BEZ235 admin-
istered in combination, achieve better therapeutic effects than
when each agent is administered alone, in an androgen-
dependent setting.

Materials and Methods

Animals

The experiments were performed using 12-week old male
Fischer 344 rats, obtained from colonies maintained under
specific pathogen-free conditions in the Multidisciplinary
Center for Biological Investigation (CEMIB-UNICAMP,
Campinas-SP, Brazil). The animals were housed under con-
trolled environmental conditions (temperature: 22 ± 2 °C; rel-
ative humidity: 55 ± 20%; 12/12-h light–dark cycle; and con-
tinuous air exhaust) and were provided free access to water
and standard chow diet. The animals were handled in line with
the ethical principles for animal research established by the
Brazilian Council for Control of Animal Experimentation, and
the experimental protocol was approved by the Ethics
Committee on the Use of Animals from the Institute of
Biosciences–UNESP (Protocol no. 559-CEUA).

Chemical Induction of Carcinogenesis
and Experimental Design

The tumor induction methodology used in the study was de-
veloped and provided by the Laboratory of Urogenital
Carcinogenesis and Immunotherapy of the Institute of
Chemistry/UNICAMP. All animals were subjected to carcino-
genesis induction, which consisted of (1) pretreatment with
testosterone cypionate (100 mg/kg)—administered via subcu-
taneous injection for three consecutive days, followed by; (2)
intraprostatic administration of the carcinogen N-methyl-N-
nitrosourea (MNU)—the animals were anesthetized with 2%
xylazine hydrochloride (5 mg/kg i.m.; König, São Paulo,
Brazil) and 10% ketamine hydrochloride (60 mg/kg i.m.,
Fort Dodge, Iowa, USA). A suprapubic incision of 0.5 cm
was made in the dorsolateral prostate for inoculation of
MNU (15 mg/kg; Sigma, St. Louis, MO, USA) dissolved in
sodium citrate (1 M, pH 6.0) and co-administered with a
thermosensitive copolymer (Pluronic 127) in the capsule of
the dorsolateral prostate; (3) carcinogenesis promotion—
1 week after MNU administration the animals received sub-
cutaneous doses of testosterone cypionate (5 mg/kg—diluted
in corn oil) twice a week for 220 days.

After tumor induction, the animals were randomly di-
vided into four groups. The drugs were administered by
gavage for ten consecutive days as follows. The control
group received only the drug vehicles 1 (6% ethanol dilut-
ed in corn oil) and 2 (1:9/ 1-methyl-2-pyrrolidone (NMP):
polyethylene glycol 300 (PEG)) group A received
abiraterone acetate (14 mg/kg, Cayman Chemical —in ve-
hicle 1: 6% ethanol diluted in corn oil—[8, 16, 31] and
vehicle 2); group B received BEZ235 (45 mg/kg,
Cayman Chemical) and vehicle 1. BEZ235 was dissolved
in 1-methyl-2-pyrrolidone (NMP) and then diluted with
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polyethylene glycol 300 (PEG300) to a final concentration
of 10% v/v NMP and 90% v/v PEG300 (vehicle 2: 1:9/
NMP: PEG) [15, 32, 33]; group AB received abiraterone
acetate + BEZ235. The procedures are illustrated in Fig. 1.

Biometric Data

During the experiment, body weight was monitored.
Following the treatments, blood samples were collected to
measure testosterone and dihydrotestosterone (DHT) levels.
Testosterone levels were determined by double-antibody ra-
dioimmunoassay using the Coat-A-Count® (Diagnostics
Products Corporation, Los Angeles, USA) and DHT levels
(DHT—Diagnostics Biochem Canada Inc., Canada) were de-
termined by enzyme-linked immunosorbent assay (ELISA).
The intra-assay variation was 1.75%, and the results were
expressed in ng/ml and pg/ml. All procedures were performed
at the Neuroendocrinology Laboratory, School of Dentistry of
the University of São Paulo, USP, Ribeirão Preto, SP, Brazil.

Following the treatment period, each animal was subjected
to a complete autopsy, and the dorsolateral prostate (DL) was
removed, weighed, and subjected to histopathologic and mo-
lecular analysis.

Processing of Samples

The dorsolateral prostate was fixed by immersion in
Methacarn (methanol, chloroform, and acetic acid at a ratio
of 7:2:1) for 3 h at 4 °C. After fixation, the samples were
dehydrated in ethanol, clarified in xylene, and embedded in
paraffin (Histosec™, Merck, Darmstadt, Germany). Serial
step sections (4 μm) were made in an automatic rotary
microtome (Leica) picking up a section and discarding

the next 10, until the entire prostate lobe had been sec-
tioned. For the molecular assays, prostate samples were
homogenized in RIPA buffer plus protease and phospha-
tase inhibitors cocktail (Sigma-Aldrich, St Louis, USA) in
Tureaux type homogenizer (Ultra Stirrer—Ultra80) for
3 cycles of 10 s. The homogenates were centrifuged at
14000 rpm for 20 min at 4 °C, and the supernatants were
collected. The protein quantification was performed using
the Bradford method, absorbance measured in an ELISA
reader (595 nm), and the samples were frozen for western
blotting assay.

Morphologic Analysis

Histopathologic Classification and Determination of Lesion
Multiplicity

Histologic sections were stained with hematoxylin-eosin (HE)
for histopathologic classification of prostate neoplasms as de-
scribed previously [34–36]. The entire dorsolateral prostate
from each animal was examined to quantify the multiplicity
(number of prostatic lesions per analyzed field, n = 25 histo-
logic areas/group) and incidence (number of affected animals,
n = 5 animals/group) of each lesion. Double-blind quantifica-
tions were performed to determine the number of inflamma-
tory disorders as well as benign, premalignant, and malignant
lesions. An experienced veterinarian pathologist confirmed
the analyses.

Determination of the Proliferative and Apoptotic Index

For detection of proliferating cells, the prepared sections
were dewaxed, rehydrated through graded alcohols, and

Fig. 1 Experimental design representing the carcinogenesis induction, drugs, and procedures performed
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the antigen retrieved in Tris-EDTA buffer pH 9.0, at
97 °C for 20 min. The endogenous peroxidases were
blocked by covering the slides with H2O2 (3% in meth-
anol) for 15 min. To block the nonspecific protein-protein
interactions, the sections were incubated with 3% non-fat
milk plus 1% goat serum in PBS for 30 min and incu-
bated overnight at 4 °C with the primary antibody anti-
Ki67 (1:100, ab16667-Abcam, Cambridge, MA, USA)
diluted in 1% BSA. The slides were subsequently incu-
bated for 90 min at 37 °C with HRP-conjugated second-
ary goat-anti-rabbit antibody (1:200, ab-97,051-Abcam,
Cambridge, MA, USA) in 1% BSA. Apoptosis was mea-
sured in the sections according to the instructions of In
Situ Cell Death Detection kit, POD (Roche), which is
based on the TUNEL assay. The revelation of both reac-
tions was performed with diaminobenzidine solution
(DAB, Sigma, St. Louis, MO) and hematoxylin was used
for counterstaining.

To determine the proliferative and apoptotic index, 30
random prostatic areas of each group were used and were
examined using the ×40 objective lens. In each field, the
percentage of positive epithelial cells was determined rel-
ative to total cells, and the results were analyzed for sta-
tistical significance.

Quantification of Mast Cells on Dorsolateral Prostate

Histologic sections were subjected to cytochemical methods
to identify mast cells. The sections were stained with 1% to-
luidine blue (aqueous solution). A total of 45 random fields
per group were used to determine the mean number of mast
cells per 1 mm2 area. The values obtained were analyzed for
statistical significance between groups.

Western Blot Analysis

Aliquots (70 μg of protein) were separated on SDS-PAGE.
Following the electrophoresis, the proteins were transferred
to nitrocellulose membranes. The nonspecific binding of pro-
teins was blocked by incubating the membrane in 3% BSA in
TBST buffer for 90 min at room temperature. The membranes
were incubated with the respective primary antibody in 1%
BSA diluted in TBST overnight at 4 °C: p-AKT (T308)
(#9275 s); p-AKT (S473) (#4060 s); Pan-AKT (#4691 s);
FoxO1 (#2880); p-FoxO1 (#9461); PI3K (#5569 s); BAD
(#9292); p-BAD (#9295); XIAP (#2042); p-mTOR
(#2971 s); mTOR (#2972 s) (Cell Signaling Technology,
Inc. USA); phospho-AR (ab71948); Bcl-2 (ab7973); TNF-α
(ab1793); IL-6 (ab6672); IL-10 (ab9969) (Abcam® Inc.,
USA); AR (sc-816); β-actin (sc-47,778) (Santa Cruz®
Biotechnology, Inc., USA).

The membranes were then incubated with a specific sec-
ondary antibody conjugated with peroxidase, which was

diluted 1:5000–30,000 in 1% BSA for 1 h (IgG goat-anti-
rabbit, ab97051 or IgG goat-anti-mouse, ab97023, Abcam®
Inc., USA). The immunoreactive components were revealed
by GE Amersham ECL chemiluminescent substrate (GE
Healthcare). Analyses were done in three different biological
samples per group (three animals/group). To calculate the
mean and SEM, the optic density of band was used as the unit
of measure with software Image J (Version 1.33u—National
Institutes of Health, USA), and normalized by endogenous
control β-actin.

Statistical Analysis

The results were checked for differences between groups
using Prism 5.0 software (GraphPad). The statistical dif-
ference among the parameters was considered significant
when p ≤ 0.05. The tests were chosen in agreement with
the sampling distribution of each parameter. Parametric
data were analyzed by ANOVA followed by the Tukey-
Kramer test. The nonparametric analysis was performed,
by Mann-Whitney’s test or Kruskal-Wallis test followed
by Dunns test.

Results

Effect of Drugs on Body Weight and Hormone Levels

More than 7% loss in body weight was observed after
administering BEZ235 (Fig. 2). At the beginning of the
experiment, body weights were similar between groups.
One week after carcinogenic induction, there was an ex-
pected non-significant decrease in body weight due to
exposure to MNU. Weight loss is a side effect that could
be relate to the BEZ administration. The drugs did not
affect testis, adrenal, kidney, and dorsolateral prostate
weight (data not shown). Serum levels of testosterone de-
creased only in the AB group, while DHT levels de-
creased in all treatment groups, especially the AB group
(Fig. 3). These results show that abiraterone effectively
decreased steroidogenesis.

Abiraterone Acetate and BEZ235 Inhibit the Growth
of Prostate Lesions

We examined the occurrence of hyperplastic lesions (atyp-
ical hyperplasia and reactive hyperplasia), inflammatory
disorders (intraluminal and periductal infiltrates), prema-
lignant lesions (prostatic intraepithelial neoplasia—PIN),
and malignant lesions (microinvasive carcinoma and
adenocarcinoma).

Our results showed a high incidence of histopathologic
lesions on the dorsolateral prostate. Inflammatory disorders
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were frequent in this lobe, suggesting a greater propensity for
the development of inflammation. Reactive hyperplasia was
the most common lesion, and the reduction in a multiplicity of
treated groups was similar (Fig. 4a). Inflammatory infiltrates
were common in the luminal and stromal compartments.
However, a reduction in the multiplicity of these lesions was
observed when the drugs were administered either alone or in
combination (Fig. 4b, c).

In general, the control group had the highest number and
incidence of lesions, mainly premalignant and malignant le-
sions. The groups treated with each drug alone (A and B
groups) had more atypical hyperplasia foci than did the con-
trol and the AB group (Fig. 4d), but premalignant and malig-
nant lesions decreased (Fig. 4e, f). More importantly,
abiraterone and BEZ235 together decreased the number of
hyperplastic, premalignant, and malignant lesions. Thus,
while in the control group there was a predominance of pre-
malignant and malignant lesions, the drugs could block the
growth and progression of the lesions.

Since proliferation and apoptosis control growth or tumor
regression, the proliferative and apoptotic index were
assessed. Proliferation decreased markedly following the
treatments (Fig. 5). Apoptosis increased in the glandular

epithelium following treatment with abiraterone with or with-
out BEZ235 (Fig. 5). Interestingly, the drug combination pro-
moted the highest apoptotic indexes, with a significant in-
crease compared to that in group A.

Abiraterone Acetate and BEZ235 Attenuate
Inflammatory Responses in the Dorsolateral Prostate

Our study showed frequent inflammatory infiltrates in prostate
tissues. Thus, we measured the presence of mast cells and the
expression of pro-inflammatory (TNF-α and IL-6) and anti-
inflammatory cytokines (IL-10) in the tissues. Mast cell count
reduced in the treated groups (Fig. 6). Consistent with the
histopathologic data, protein expression analyses showed re-
duced inflammatory response. TNF-α expression decreased
in groups A and AB, while IL-6 expression decreased after
treatments, mainly with BEZ235 (Fig. 8). Conversely, only
the combination of abiraterone and BEZ235 reduced IL-10
expression (Fig. 8).

Effects of Abiraterone Acetate and BEZ235 on AKT
and AR Signaling

Since abiraterone acetate and BEZ235 act on androgen and
the PI3K/Akt pathways, respectively, the effects on androgen
receptor and mTOR and PI3K-mediated signaling were
assessed by measuring the expression level of the total and
activated forms of their effectors downstream.

Each drug when used as monotherapy or in combina-
tion decreased PI3K expression and the activated forms of
the androgen receptor (Fig. 7). Treatment with the drugs
alone reduced expression of Akt, but after treating with
BEZ235, the reduction was more significant (Fig. 7). In
addition, BEZ235 decreased the activated forms of Akt.
However, abiraterone could also decrease p-AKT
(Ser473) expression. The reduction in activated proteins
could be the result of a decrease in total Akt expression in

Fig. 3 Serum levels of testosterone (a) and DHT (b). The values represent maximum and minimum and (+) represents the mean. Statistical analysis was
performed using the Kruskal-Wallis and Dunn’s tests. Values represent mean ± SEM (n = 6), *p ≤ 0.05; **p ≤ 0.01

Fig. 2 Body weight loss after the treatments. Statistical analysis was
performed using the Tukey-Kramer test. Values represent mean ± SEM
(n = 7), ***p ≤ 0.0001
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the monotherapy groups. Although the expression level of
Akt did not change in the AB group, the activated state
(T308) decreased its expression, indicating that BEZ235
contributed to this inactivation. Similarly, treatment with
BEZ235 alone or in combination with abiraterone resulted
in reduced expression of pmTOR, but the expression level
of mTOR did not change.

Our examination showed increased apoptotic index follow-
ing the treatments. Thus, the analysis of the expression of
proteins involved in this process, and stimulated by Akt, as
shown by the expression of BAD, XIAP, Bcl-2, and FoxO1
(Fig. 8) may clarify the mechanisms for tumor reduction.
BAD decreased in the B and AB groups, while pBad, XIAP,
Bcl-2, and FoxO1 expression levels decreased in all treated
groups. In addition, the expression level of FoxO1 decreased
in the A and AB groups.

Discussion

Therapies involving the combination of drugs that act on dif-
ferent pathways to regulate PCa growth have been studied as
alternatives to overcome the resistance that monotherapies can
cause. In the present study, we evaluated the effect of
abiraterone acetate and BEZ235, when used alone or in com-
bination, on carcinogenesis in the dorsolateral lobe of rat pros-
tates. When used alone, the drugs reduced proliferation and
elevated cell death, impairing tumor growth. However, their
effects significantly improved when used in combination in
the initial stages of AR-dependent PCa.

Studies investigating the resistance to abiraterone have re-
ported increased expression of the Cyp17a1 gene and andro-
gen receptors as possible mechanisms [37]. Our data showed
that during the treatment period, the drug resistance stage was

Fig. 4 Multiplicity and incidence
of prostate lesions: Reactive
hyperplasia (a), intraluminal (b),
and periductal infiltrates (c),
atypical hyperplasia (d),
premalignant lesions (e), and
malignant lesions (f). The graphs
represent the multiplicity of
lesions, while the values
expressed as a percentage
represent lesion incidence (%).
Statistical analysis was performed
using the Kruskal-Wallis and
Dunn’s tests. Values represent
mean ± SEM (n = 5), *p ≤ 0.05;
**p ≤ 0.01; ***p ≤ 0.0001
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not achieved since drug monotherapy impaired tumor growth.
Androgen deprivation only results in tumor regression in

androgen-dependent settings [38]. Since a reduction in tumor
growth was shown following androgen inhibition by

Fig. 5 Morphological characterization of prostate lesions (a) and
proliferative (b) and apoptotic indexes (c) in the epithelial compartment.
In the control group, malignant lesions such as adenocarcinoma were
more frequent. Reactive hyperplasia was characterized by atypical
epithelium stratification and inflammatory infiltrates (*). Atypical

hyperplasia was characterized by atypical epithelium stratification and
was more frequent in treated groups. Statistical analysis was performed
using the Kruskal-Wallis and Dunn’s tests. Values represent mean ± SEM
(n = 5), *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.0001

Fig. 6 Quantification of mast cells on dorsolateral prostate sections. The
sections were stained with 1% toluidine blue (aqueous solution).
Statistical analysis was performed using the Mann-Whitney test. Values

represent mean ± SEM (n = 5), ***p ≤ 0.0001. Figures show the
reduction of mast cells in stromal compartment after the treatments
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abiraterone, we can confirm that our model was androgen-
dependent. Androgen-dependent tumors commonly express
high levels of AR [39, 40]. Thus, the results suggest that the
AR expression reduction, in the treated groups, contributed to
a decrease in tumor growth. Interestingly, we observed the AR
expression reduction after exposure to BEZ235. Our results
are consistent with those of Wang et al. [14] where a decrease
in AR expression and activity was reported in breast cancer
tumors after treatment with BEZ235. The authors suggested
that AR-dependent tumors are more responsive to treatment

with BEZ235. However, the rationale for these observations is
still poorly understood.

Furthermore, studies show that the forkhead transcription
factor 1 FOXO1 inhibits androgen and androgen receptor-
mediated gene expression and, consequently, suppresses cell
proliferation [41]. FoxO transcription factors are involved in
several physiological processes, regulated by Akt proteins
[42], including cell proliferation and death as well as cell cycle
regulation and cancer growth [43]. Akt inhibits FOXO1,
which in turn abolishes FOXO1-mediated inhibition of AR,

Fig. 8 Effects of abiraterone and BEZ235 on androgen receptor and other
signaling pathways. Protein expression change was analyzed by Western
blot, and βactin was shown as loading control. The data represent the

relative expression of integrated optical density (IOD) of proteins. Values
represent mean ± SEM (n = 3 biological samples). Statistical analysis was
performed using the Mann-Whitney test. *p ≤ 0.05; **p ≤ 0.01

Fig. 7 Effects of abiraterone and BEZ235 on Akt signaling pathway.
Protein expression change was analyzed by western blot, and βactin
was shown as loading control. The data represent the relative

expression of integrated optical density (IOD) of proteins. Values
represent mean ± SEM (n = 3 biological samples). Statistical analysis
was performed using the Mann-Whitney test. *p ≤ 0.05; **p ≤ 0.01
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thereby driving carcinogenesis progression. Conversely, inac-
tivation of Akt enables FOXO1 activities [44]. Our study
showed an increase in the active form of FOXO1 after
BEZ235 exposure, which is consistent with the inactivation
of AR and, consequently, with anti-proliferative effects. These
findings are consistent with the results of Wang et al. [14].
Although BEZ235 also interferes with the androgenic path-
way, the mechanisms are still unknown.

The promotion of cell survival in neoplasms favors malig-
nancy and represents the mainstay of tumor progression in
PCa. The Akt pathway is mainly involved in the regulation
of cell growth and survival in tumorigenesis and is particularly
relevant in PCa [45]. To exert its biological effects, Akt must
be activated, which is achieved via phosphorylation at PDK1
(Thr308) and mTOR (Ser473) [46]. Consequently, blocking
these sites is likely to inhibit Akt activity [8]. Thus, BEZ235
seems to be a good candidate for PCa treatment, since it in-
hibits PI3K and mTOR simultaneously. The dual inhibition
was found in the present study and is consistent with previous
studies [16, 47]. Thus, we can suggest that the decrease in Akt,
mTOR, and PI3K in the prostate of BEZ235-treated rats was
one of the factors responsible for the decrease in cell prolifer-
ation observed in those groups.

Unfortunately, inhibition of the AKT pathway and con-
sequent impact on tumor growth was accompanied by
side effects, such as weight loss and diarrhea following
the use of BEZ. Phase I studies of BEZ235 in metastatic
castration-resistant PCa showed adverse effects such as
mucositis, vomiting, diarrhea, nausea, and weight loss
[23, 48]. Due to questionable safety and tolerability pro-
file of BEZ235, the clinical development of the drug as a
potential therapy for PCa was discontinued during this
study. However, the effectiveness of PI3K pathway block-
ade in the treatment of PCa can be confirmed by our
results and should continue to be investigated.

Akt negatively regulates apoptotic pathways at the pre-
mitochondrial level through phosphorylation and modulation
of proteins such as BAD, XIAP, and FoxOs [49, 50]. XIAP is
part of a family of anti-apoptotic proteins (IAPs), which act by
blocking the activity of caspases (3, 7, and 9). XIAP is an Akt
substrate, and the interaction results in the phosphorylation of
XIAP and consequently blocks auto-ubiquitination, which in-
hibits apoptosis via caspases. Overexpression of XIAP is re-
lated to the growth and progression of tumors, while its reduc-
tion favors activation of the caspase cascade, increasing cell
death [49, 51]. Phosphorylation of FOXO by Akt leads to its
inhibition and, consequently, prevents intrinsic apoptotic path-
way activation, thus promoting cell survival [40]. BAD is a
pro-apoptotic member of the Bcl-2 gene family and plays a
role in the intrinsic pathway of apoptosis activation [52, 53].
When dephosphorylated, BAD promotes apoptosis and in the
phosphorylated form, stimulates tumor proliferation and
growth. Thus, a reduction of BAD expression would be

expected in tumor cells. However, studies have shown elevat-
ed expression in PCa compared to that in normal epithelium
[54]. In this setting, tumor cells would control the stimulation
versus inhibition of apoptosis by modulating the phosphory-
lation of BAD. Thus, the phosphorylated form is predominant
in tumors [55].

Our study suggests that increased apoptosis is associated
with reduced expression of the anti-apoptotic proteins XIAP,
BAD, Bcl-2, and FOXO, which blocks tumor growth. Due to
the inhibitory effect of BEZ235 on the Akt pathway, the inhi-
bition of anti-apoptotic proteins would only be expected in
that group. Interestingly, we observed reduced expression of
the anti-apoptotic molecules following abiraterone treatment.
A previous study has also reported that abiraterone may mod-
ulate pro-apoptotic signals from p21, caspase-3, survivin, and
transforming growth factor β (TGFβ) [13]. Since abiraterone
affects the androgenic pathway, the crosstalk between Akt,
TGFβ, and androgen receptor pathways may result in the
observed pro-apoptotic stimuli. Based on our results, we can
suggest that abiraterone could attenuate anti-apoptotic signals,
resulting in increased apoptosis, as confirmed by the histo-
pathologic and protein expression data. Moreover, our study
revealed that combining the drugs resulted in a more signifi-
cant stimulatory effect of apoptosis, which represents a better
therapeutic effect on tumor growth.

Employment of new drugs and therapeutic strategies may
cause additional side effects. Our data showed weight loss
around 7% in animals treated with BEZ235, while other stud-
ies have reported weight loss greater than 15% [56]. Studies
have shown that the loss of body weight, after oral adminis-
tration of BEZ235, occurs in a dose-dependent manner in
several model systems [14, 57, 58]. Wang and colleagues
[14] reported that BEZ235-treated mice consumed less feed
compared to the control group. Similarly, another study
showed that BEZ235 is associated with reduced food con-
sumption and severely impairs glucose metabolism in rodents.
The drug inhibits PI3K isoforms alpha (p110α) and beta
(p110β), which are necessary for metabolic processes [59].
When BEZ235 was used in combination with abiraterone,
its effect on body weight did not change.

BEZ235 was found to be poorly tolerated in men with
progressive metastatic castration-resistant PCa in phase I stud-
ies [23, 48]. The authors reported that the most common ad-
verse events were oral mucositis (66.7%), diarrhea (66.7%),
nausea (50.0%), anorexia (50.0%), weight loss (50.0%), and
musculoskeletal pain (50.0%) [23]. These side effects contrib-
uted to the unacceptable toxicity and resulted in discontinua-
tion of the drug for PCa treatment purposes.

Tumor microenvironments are often surrounded by inflam-
matory cells such as macrophages, lymphocytes, neutrophils,
and mast cells. The role of mast cells is controversial; while
some studies suggest a preventive role regarding tumor
growth [60–63], others suggest that mast cells favor the
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progression of PCa [64]. Nonomura et al. [65] performed a
study with 104 patients and showed a positive correlation
between the frequency of mast cells around the tumor and
the Gleason score. Consistent with the literature, our data
showed a reduction in mast cell counts when tumor growth
decreased.

Inflammatory disorders are common histopathologic
events associated with tumors [66, 67]. There is increasing
evidence that the emergence of inflammation and PIN pre-
cedes the development of PCa, suggesting a significant role
for inflammation in the early stages of carcinogenesis [67, 68].
Mechanisms potentially involved in this process include the
production of cytokines and other factors by inflammatory
cells that promote epithelial proliferation, stimulate angiogen-
esis, and malignancy [67, 69]. In this setting, some pro-
inflammatory (TNF-α, IL-6) and anti-inflammatory cytokines
(IL-10) play an important role in prostate carcinogenesis
through signaling pathways such as JAK-STAT, PI3k-AKT,
and MAPk-ERK [70–72]. Elevated levels of TNF-α corre-
late with increased proliferation, mortality, and malignan-
cy [73], while high levels of IL-6 are associated with me-
tastases and progression to the hormone refractory stage
[74]. IL-10 plays a pleiotropic role, which may suppress or
stimulate tumorigenesis, but most studies suggest an anti-
inflammatory role [75]. In this context, the reduction in IL-
10 expression only occurred with drug treatments, which
would be expected to reduce inflammation. Consistent
with previous reports, our study showed that inflammatory
disorders were related to the development of prostatic le-
sions. Thus, we can hypothesize that after administering
the drugs, the number of inflammatory infiltrates and ex-
pression of pro-inflammatory cytokines decreased, con-
tributing to the inhibition of tumor growth.

In endocrine-related cancers in general, targeting both hor-
mone receptor and the PI3K/AKT/mTOR pathways has
shown promise [14]. In the present study, we showed that both
drugs effectively inhibited those pathways, which resulted in
anti-proliferative and pro-apoptotic effects. However, tumor
growth, although slow, persisted after administering the drugs
as monotherapy. Atypical hyperplasia was very frequent in the
groups treated with the drugs alone, which also showed pre-
malignant and malignant lesions. When the drugs were ad-
ministered in combination, hyperplastic lesions decreased
and, more importantly, tumor progression from a premalig-
nant to the malignant stage was inhibited. In a setting of an-
drogenic inhibition by abiraterone, it is reasonable to assume
that the lesions may grow due to AKT activation. In addition,
BEZ235 therapy inhibits the AKT pathway by blocking one
of the sources of alternative AR activation [76] as well as cell
proliferation and survival [46]. However, in this group, the
androgenic synthesis was not inhibited, allowing the lesions
to grow, even though the expression of the androgen receptor
was impaired. The data presented here suggest that the

reduction of cell proliferation and survival and the stimulation
of apoptosis were more effective when the drugs were
combined.

The strategy to block the androgenic and the PI3K/AKT/
mTOR pathways represents a good alternative to treat PCa,
mainly due to the biological effects reported in the present
study. Thus, different drugs, that have a more favorable ther-
apeutic index, should be investigated. Agents targeting specif-
ic PI3K isoforms are currently under investigation in early
phase clinical trials [23], and may be better tolerated and
achieve greater therapeutic efficacy [77]. It remains to be de-
termined what combination of AR and PI3K/AKT inhibition
will be both tolerable and clinically active [23].

In conclusion, despite the side effects, the biological re-
sponse of simultaneous inhibition of the androgenic and
PI3K pathways was favorable; the drugs negatively affected
tumor growth, and drug combination achieves better therapeu-
tic effect than drug monotherapy. Based on the present results,
it is possible to hypothesize that combination therapy could be
used also in cases where prostate tumors have not become
resistant. However, further studies, based on distinct PI3K
inhibitors, are necessary to determine a safe and clinically
tolerable schedule and to evaluate whether long-term combi-
nation therapies could achieve the same beneficial effects re-
ported in the present study for PCa.
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