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Abstract The vast majority of breast cancers are posi-
tive for estrogen receptor (ER) and depend on estrogens
for growth. These tumors are treated with a variety of
ER-targeted endocrine therapies, although eventual resis-
tance remains a major clinical problem. Other steroid
hormone receptors such as progesterone receptor (PR)
and androgen receptor (AR) are emerging as additional
prospective targets in breast cancer. The fundamental
mechanism of action of these steroid receptors in gene
regulation has been defined mainly by several breast
cancer cell lines that were established in the late
1970s. More recently, breast cancer patient-derived xe-
nografts (PDX) have been developed by multiple groups
at institutions in several countries. These new models
capture the large degree of heterogeneity between pa-
tients and within tumors and promise to advance our
understanding of steroid hormone receptor positive
breast cancer and endocrine resistance. Unfortunately,
steroid hormone receptor positive breast cancers are
much more difficult than their receptor negative coun-
terparts to establish into sustainable PDX. Herein we
discuss the derivation of steroid hormone receptor pos-
itive breast cancer PDX, several pitfalls in their genesis,
and their utility in preclinical and translational steroid
hormone receptor research.

Introduction

Breast cancer remains the most commonly diagnosed cancer in
women and the second leading cause of cancer relatedmortality
in the USA [1]. Breast cancer has traditionally been divided into
distinct histopathological subtypes based on expression of es-
trogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). Breast cancers de-
void of all three markers are classified as triple negative (TN).
More recently, breast cancer has been categorized into molec-
ular subtypes based on gene expression profiling. The original
and most widely used molecular panel utilizes 50 discriminator
genes, termed PAM50 [2, 3]. This divides breast tumors into
five groups: two ER positive groups termed Luminal A and
Luminal B, and three ER− groups termed HER2+ER−, basal-
like, and claudin-low [3]. The two luminal ER+ subtypes con-
stitute 70–75% of all cases. Luminal tumor growth is driven by
the mitogenic actions of estrogens and, accordingly, estrogen-
targeted endocrine therapies are the mainstay of neoadjuvant
and adjuvant treatments. The selective ER modulator (SERM)
tamoxifen has been used to treat breast cancer since the 1970s
[4]. Other widely used endocrine therapies include aromatase
inhibitors (AIs) (i.e., letrozole, anastrozole) that block the en-
dogenous production of 17β-estradiol or selective ER de-
graders (SERDs) (i.e., fulvestrant (ICI)) that destabilize ER
[5]. Some combination and duration of these endocrine agents
can stabilize or eradicate luminal breast cancer in many cases.
However, development of endocrine resistance, which can oc-
cur acutely or over many years, still manifests in ∼40 % of
patients [6, 7]. Therefore, models that recapitulate the stages
of luminal tumor progression, with the capacity to address ge-
netic diversity and tumor heterogeneity, are direly needed to
improve outcome.
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The plethora of in vivo research in human breast cancer has
relied on implantation and growth of established cell lines into
solid tumors [8]. These tumors are, however, limited in their
ability to recapitulate the innate heterogeneity observed in
most primary breast cancers and thus models that represent
patient tumors more closely have long been sought. To this
end, direct grafting of patient breast tumor material into
immune-compromised mice has been attempted continuously
not long after such models became available [9, 10]. Breast
cancer presents a particular challenge for development of such
patient-derived xenografts (PDX), as each of the described
subtypes has a different prospective origin and natural course
of the disease. The relatively recent emergence of more se-
verely immune-compromised mouse strains as well as im-
proved transplant techniques has increased the feasibility
and efficiency of utilizing direct patient breast tumor engraft-
ment. As such, the number of groups developing breast cancer
PDX banks has increased in the last several years. A major
interest in their development is to utilize PDX as preclinical
models for testing experimental therapeutics. However, PDX
are also useful for the study of tumor heterogeneity, metasta-
sis, and signaling pathway dependencies pre- and post- drug
resistance. Luminal breast cancer PDX in particular will be
valuable in dissecting the role of steroid hormone receptors in
the context of solid tumors.

Steroid Hormone Receptors in Breast Cancer

Steroid hormone receptors belong to the nuclear receptor fam-
ily of ligand activated transcription factors. There are six de-
fined members which contain a conserved double zinc finger
DNA binding domain and are activated by lipophilic ligands
that are derived from cholesterol through the process of ste-
roidogenesis [11, 12]. ERs are encoded by two separate genes,
ER-alpha (ESR1/NR3A1) and ER-beta (ESR2/NR3A2), that
bind to distinct palindromic DNA sequences termed estrogen
response elements (EREs). The remaining members are each
encoded by a single gene and bind ligand, including proges-
terone receptor (PR, encoded by PGR/NR3C3), androgen re-
ceptor (AR, encoded by AR/NR3C4), glucocorticoid receptor
(GR, encoded byGCR/NR3C1), and mineralocorticoid recep-
tor (MR, encoded by MCR/NR3C2). The latter four steroid
receptors (PR, AR, GR, and MR) share a similar palindromic
consensus DNA binding sequence. While estrogens are the
main mitogens in breast cancer, progesterone and androgens
can have autonomous context-dependent actions on tumor
growth [13, 14] and, through their receptors PR and AR, can
directly modulate the actions of ER [15, 16]. Early clinical
studies found high dose synthetic progestins and sometimes
androgens were partially efficacious in treating late stage
breast cancer; progestins in some studies were equivocal to
tamoxifen, which thereafter became standard of care [17–23].

There is currently renewed interest in targeting both PR and
AR in breast cancer. However, the divergent roles of these
receptors in driving breast cancer growth complicate their
use and necessitate further study for patient selection [13,
14]. There is also recent interest in the role of GR in breast
cancer, particularly the ER− subtypes [24–28]. PDX models
that express each of these receptors in different combinations
will be critical to evaluate new steroid receptor-targeted drugs
and make selections for appropriate candidates for treatments.
Unfortunately, most steroid hormone receptor positive breast
cancers develop into xenografts much less efficiently than
their receptor negative counterparts, which usually proliferate
faster and do not require hormonal stimulation.

Maintenance of appropriate steroid hormone receptor ex-
pression between patient tumors and PDX is a critical step in
capturing relevant models for research and preclinical drug
testing. While ER-alpha is expressed in 70–75 % of breast
cancers at initial diagnosis, there is widespread heterogeneity
in the level of ER expression and fidelity of ER-alpha-
mediated signaling among tumors. Currently, tumors with
1 % or greater ER immunoreactive cells are recommended
as candidates for endocrine therapies [29]. Furthermore, com-
plete loss of ER-alpha upon endocrine resistance is rare; tu-
mors usually remain clinically ER-alpha+ (≥1 %) but often
bypass ER-alpha signaling and utilize receptor kinase-driven
pathways such as EGFR/HER2 or PI3K/AKT/mTOR [7]. ER-
beta is expressed in a significant proportion of breast cancers
(76 %); however, its role in breast cancer remains elusive and
ER-alpha remains the major prognostic indicator and target
[30–32]. PR is expressed in over half of ER+ tumors and
has been used as a functional measure of ER [33], while AR
is expressed in 70–80 % of all breast cancers [34–36]. GR has
been measured less frequently in breast tumors; estimates in-
dicate between 30 and 70% of invasive breast cancers express
GR (reviewed in [37]). MR to our knowledge has not been
comprehensively measured in breast cancer, although mRNA
levels were detected in TN MDA-MB-231 breast cancer cells
[38]. In this review, we focus on ER-alpha (termed ER), PR,
and AR expression in breast PDX models.

Recent Development of Steroid Hormone Receptor
Positive Breast Cancer PDX Collections

To date, at least 10 laboratories have described establishment
and maintenance of steroid hormone receptor positive PDX
(Table 1). Here we focus on several reports that have emerged
since 2007. In the first, Marangoni et al. utilized intact female
nude mice supplemented with 17β-estradiol via the drinking
water [39]. In the original report, 200 primary tumors were
implanted into the interscapular region which yielded 18
patient-derived lines [39]. However, only one of these was
ER+ (<1 % engraftment rate compared to 36 % for TN breast
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cancer). The same group recently updated their success rate;
utilizing the same methods, they have now implanted 314
ER+ tumors and developed 8 ER+ lines (a 2.5 % engraftment
rate) [40]. Bergamaschi et al. implanted 26 ER+ primary tu-
mors into NOD.Cg-Prkdcscid (severe combined immunodefi-
cient—SCID) mice on the dorsal flank with 17β-estradiol
pellets [41]. This yielded a single ER+PR+ PDX, and one
ER−PR− PDX (which originated from an ER−PR+ tumor),
a 7.7 % overall engraftment rate, and an engraftment rate of
3.8 % for ER+ PDX. The ER+ PDX resembled the original
patient tumor over multiple passages by histopathologic and
gene expression comparisons. In 2011, DeRose et al. de-
scribed derivation of five ER+PR+ breast cancer PDX lines
[42]. These originated from implantation of 49 specimens
from 42 patients into female nonobese diabetic NOD.CB17-
Prkdcscid (NOD/SCID) mice with cleared mammary fat pads
and commercial slow release estrogen pellets (an overall en-
graftment rate of 27 % for both ER+ and ER− PDX). Three of
the lines originate from serial pleural effusions of the same
patient and one was also HER2+. They also described that co-
injection of mesenchymal stem cells increased growth and
supported tumor vascularization [42]. Estrogen dependency
was maintained in the five ER+ PDX lines.

Our group, Kabos et al., utilized female NOD.Cg-Prkdcscid-

Il2rgtm1Wjl/SzJ (NSG) ovary-intact mice with silastic estrogen
pellet supplementation and implanted 18 ER+ specimens into
the intact mammary fat pads [43]. We described establishment
of five ER+ PDX lines (3 ER+PR+, 2 ER+PR−); two of these
emanated from liquidmetastases (one pleural effusion and one
ascites), and one was HER2 amplified. All of the PDX
retained estrogen dependency to some degree. To date, we
have implanted 74 ER+ specimens and generated 12 trans-
plantable ER+ PDX lines, representing a 16 % engraftment
rate. In 2013, Vaillant et al. report the implanting of 108 ER+
patient tumors into the inguinal mammary fat pad of NSG
mice, resulting in the development of 13 ER+ PDX lines with
variable PR expression, representing a 12 % take rate [44].
These authors report that PDX tumors of subtype Luminal B,
when treated with tamoxifen plus small molecule Bcl antago-
nists, display therapeutic response above that observed with
tamoxifen alone. Zhang et al. utilized a combination of SCID/
Beige and NSG mice, with estrogen pellets supplied in most
cases [45]. They established a total of 32 lines from 25 pa-
tients, 3 of which are ER+; one of these PDX is ER+PR+, one
is ER+PR−, and one is ER+PR−HER2+ (representing a take
rate of 9.4 %). Notably, they observed that clearing the mam-
mary fat pads and humanizing with human fibroblasts did not
improve take rate regardless of patient tumor subtype (from
21.4 % overall take rate across all subtypes, down to 3.4 %
take rate with humanized glands). In 2013, Li et al. reported a
collection emphasizing ER+ PDX, developed in female NSG
mice [46]. They implanted a total of 54 ER+ specimens, the
majority of these from advanced stage disease (pleural

effusions and skin metastases) and developed 7 ER+ lines (a
13 % take rate). Notably, humanized fat pads significantly
decreased the take rate of ER+ tumors (down to 3 %). They
also noted that engrafted tumors have a high rate of p53 mu-
tations (69 %). In 2015, Eirew et al. utilized NSG and NOD/
Rag1−/−Il2rg−/− (NRG) mice to generate a collection of 15
breast cancer PDX [47]. They uniquely cultured breast cancer
cells as organoids prior to implantation into mammary fat
pads. For select ER+ specimens, animals received subcutane-
ous injections of 17β-estradiol in oil every 2 weeks. Their
engraftment rate was 26 % (5/19) for ER+ tumors compared
to 81 % for TN and 44 % for HER2+ER− tumors. Using
single cell and deep genome sequencing, they determined that
clonal selection occurs to some degree in all samples and
continues through serial passaging. In 2016, Bruna et al.,
through collaboration with several institutions, reported the
largest collection of ER+ PDX to date, in which 52 ER+ breast
cancer PDX were developed in NRG and NSG mice from
primary and metastatic patient tumors. Exogenous estrogens
were not supplied during tumor development. Histological
features, RNA expression, and copy number alterations were
found to be stable through several passages. Breast cancer
driver mutations were accurately represented in the PDX, al-
though the rates of specific mutations were slightly lower than
that seen in patients (i.e., PIK3CA in 27 % of ER+ PDX
compared to 38–43 % of patients from METABRIC/TCGA
databases).

A handful of reports utilizing PDX, in which PDX is not
the primary research focus or in which PDX derivation is not
described in detail, are not discussed herein. In addition, sev-
eral other groups are in the process of developing breast can-
cer PDX banks that have not yet been reported which could
increase the total number of generated ER+ lines. However,
the number of established breast cancer PDX still weighs dis-
proportionately towards the TN subtype and thus improve-
ments are needed for capturing the wide genetic and histolog-
ical variety of ER+ breast cancers, as discussed below for the
mouse intraductal (MIND) method.

Methodological Considerations

Engraftment Rate of ER+ Breast Tumors

The biggest challenge to developing steroid hormone receptor
positive PDX is a lower engraftment rate compared to receptor
negative tumors. Estimated by several reports, this is on aver-
age less than 15 % for primary ER+ tumor samples, with
potentially higher success for late stage metastases (Table 1),
excluding the novel MIND method, which may yield higher
success rates with difficult-to-engraft samples. This low en-
graftment rate is in comparison to TN breast cancers, in which
primary tumors graft at 30–80 % [40, 45–47]. There are few
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HER2+ER− PDX models, prospectively due to their lower
patient prevalence (∼15 % of all cases). Grade 3 tumors have
higher engraftment rates than grade 1 or 2 tumors [45], pro-
spectively due to a higher proliferative index. Therefore,
existing ER+ breast cancer PDX favor the faster growing
Luminal B subtype breast tumors. Luminal B tumors are more
likely to become endocrine resistant, have a higher incidence
of metastases, and have worse progression-free and overall
survival than Luminal A tumors [49–51]. Luminal B tumors
in general tend to have lower ER expression and increased
intratumoral ER− cells which may also contribute to their
better take rate. Where intrinsic molecular subtyping has been
used, all ER+ PDX except one profile as Luminal B [41–43,
45, 46]. The one Luminal A PDX described by Petrillo et al.
is, however, ER− [52]. Interestingly, primary tumor specimens
that profile as Luminal A prior to implantation switch to
Luminal B upon establishing a transplantable PDX [46].
This is likely due to selection pressure that favors relatively
rapid proliferation and propagation (up to 6 months). Other
histological breast tumor types such as lobular that tend to be
highly ER+ are difficult to develop. Four mixed lobular/ductal
breast cancer PDX have been described between two collec-
tions [42, 48]. Improved models for developing ER+ PDX,
discussed below, may increase the efficiency of grafting such
tumors.

The Estrogen Milieu for Establishing ER+ PDX

In most cases, establishment of ER+ breast cancer PDX re-
quires exogenous estrogen supplementation. Multiple
methods exist for in vivo delivery of estrogen. One method
involves frequent (daily to weekly) injection of hormones dis-
solved in peanut (or similar) oil vehicle; this method, while
efficacious, is labor intensive and imparts more stress on the
animals. A second method is delivery via the drinking water
[53]. While noninvasive, this method requires frequent prep-
aration of fresh 17β-estradiol stocks and biweekly water
changes, with some debate over bioavailability, though circu-
lating levels induce uterine hypertrophy similarly to that ob-
served with pellet supplementation [53]. The most common
method of estrogen delivery is through slow release pellets.
These are available commercially in several doses and release
times from Innovative Research of America (Sarasota, FL)
and can be inser ted subcutaneously via t rochar.
Alternatively, some laboratories prepare their pellets in-
house using commercially available hormone stocks; the most
commonmethod involves packaging hormones within silastic
medical tubing [54]. With this method, the dose of hormones
can be manipulated, is suitable for use with steroid hormones
(17β-estradiol, progesterone, dihydrotestosterone), and lasts
for 3–4 months. Circulating levels of steroid hormones can
be monitored relative to dose using ELISAs or RIAs; 17β-
estradiol is in the high physiological range, estimated at

<100 pg/mL for silastic pellets (1 mg) [55]. By survey, most
groups use intact animals for establishment of PDX with
chronic estrogen supplementation. For experiments beyond
initial passaging, animals may be ovariectomized to provide
the cleanest hormone negative background where necessary.

One of the first routine experiments conducted upon suc-
cessful engraftment of an ER+ tumor specimen is evaluation
of its dependency on estrogen for growth. In our hands, tu-
mors are partitioned into animals upon passage 1 or 2 that are
supplemented with placebo or slow release silastic estrogen
pellets to document the degree of estrogen dependency. In our
experience, some highly ER+ tumors will not form tumors in
ovary-intact mice without exogenous estrogen; there is little to
no residual material at necropsy 3–4 months after implanta-
tion. Other PDX show partial growth in the absence of exog-
enous estrogen; these are usually late stage tumors or primary
tumors with lower ER expression. In addition, we often mon-
itor relative tumor growth in the presence of estrogen plus
either progesterone or the androgen dihydrotestosterone. The
tumors we have tested do not grow significantly larger than
placebo with either progestins or androgens alone.

Maintaining Steroid Receptor Expression and Function
in PDX

Another major hurdle in development of steroid receptor pos-
itive PDX is loss of receptors upon establishment and/or prop-
agation. Ideally, receptor expression is initially monitored
through routine parallel immunostaining comparing the PDX
to the original tumor specimen. However, this is not always
feasible due to limiting material and/or availability, or staining
challenges inherent with fluid samples. From our own experi-
ence and from other reports, patient ER levels are initially
captured in the majority of established ER+ PDX. Careful
evaluation of ER staining at each passage is then necessary,
and if lost, that PDX should be reevaluated for usefulness as a
model. ER undergoes ligand-dependent down-regulation and
this should be considered when evaluating ER expression in
breast cancer PDX [56–59]. The constant low dose estrogen
necessary to propagate ER+ tumors will also yield chronic
cycling of the transcriptionally active ERs. Removal of estro-
gen for several weeks (estrogen withdrawal, EWD) can lead to
an increase in ER levels (Fig. 1a). Similarly, tamoxifen treat-
ment can stabilize ER protein and lead to an observed upreg-
ulation of ER in PDX. In our experience, PDX that appear to
have low or absent ER levels will show an increase in detect-
able ER upon tamoxifen treatment, signifying a low but active
level of ER (Fig. 1b). This is important as it mimics clinical
tumors with lower ER that may be less dependent on estro-
gens and are clinically difficult to treat. Conversely, SERDs
such as ICI will decrease ER levels in breast cancer (Fig. 1b).
Therefore, it is always important to consider the hormonal
context under which ER is measured in breast cancer PDX.

8 HORM CANC (2017) 8:4–15



PR at present is the only other steroid receptor routinely
measured in breast cancer. PR is present in over half of ER+
tumors [33]. It has been recently described that the PR locus is
subject to copy number loss, which may account for its overall
lower abundance relative to ER in breast cancers [15]. In ad-
dition, PR expression is particularly difficult to retain in PDX.
PR expression in breast cancer is usually estrogen dependent.
Thus, the chronic estrogen required to establish and propagate
ER+ PDX should assist in maintaining PR expression where
possible; likewise, EWD can lead to loss of PR expression

(Fig. 1a). In our collection, 6/12 ER+ tumor lines retain PR
expression (one undetermined), reflective of its clinical prev-
alence. However, in two of these, expression levels are <10%,
making it difficult to study PR action. ER+PR− PDX breast
cancers have poorer prognosis overall than their ER+PR+
counterparts [60], and thus these models will be useful for
studying this subset of the disease. We have noted that patient
tumors that are characterized as TN occasionally generate
PDX that express PR in <10 % of cells, in the absence of
ER or supplemented estrogens (Fig. 1c).

AR is present in 70–80% of all breast tumors, with varying
expression across the different subtypes. AR is found in ap-
proximately 80 % of ER+ tumors, over half of HER2+ER−
tumors, and 10 % of TN breast tumors [34–36, 61, 62]. At
present, AR is not routinely measured in clinical samples.
Therefore, retention of AR expression in PDX needs to be
compared to the primary patient specimen by parallel immu-
nohistochemistry (IHC) where feasible. In our collection, AR
is expressed in >1 % of cells in 7/11 ER+ PDX (one undeter-
mined). Expression levels are highly variable similar to ER
and PR; some lines contain very lowAR (<5%), making them
less than ideal for most studies. Our one HER2+ER− PDX
line is AR+ and, where measured, 2/6 TN PDX lines are AR+
(Fig. 1d). Each of these types of PDX models will be valuable
as AR is being investigated as a putative target in ER+ and ER
− tumor subtypes [63–65]. Unlike ER and PR which reside
predominantly in the nucleus in both the absence and presence
of ligand, AR is usually cytoplasmic and is shuttled to the
nucleus with addition of an androgenic ligand. This is recapit-
ulated in breast cancer PDX.

In contrast to most breast cancer cell lines, steroid receptor
positive PDX generally retain the inherent intratumoral het-
erogeneity associated with patient tumors. For ER in particu-
lar, this includes a range of intensities and levels of receptors,
ranging from <5 to near 100 % positive cells. This natural
mosaic of ER expression underscores the challenge of treating
ER+ tumors. It also may allow for the study of mixed popu-
lations, for example, ER+ and ER− cells within the same

�Fig. 1 Context-dependent expression levels of ER, PR, and AR in breast
cancer PDX. Formalin-fixed paraffin-embedded sections of select PDX
breast tumors were processed for immunohistochemistry as previously
described [43]. Tumors were stained with antibodies to ERα (Thermo-
Fisher, clone SP1, 1:100), PR (DAKO, clone 1294, 1:500), or AR
(DAKO, clone AR441, 1:500). a ER and PR expression fluctuate with
estrogen levels. Sections of PDX UCD12 were stained for ER and PR
from estrogen-treated tumors (E, silastic pellet) or from tumors that were
withdrawn from estrogen for 3 weeks (EWD). b ER expression fluctuates
with endocrine treatments. Sections of UCD4were stained by IHC for ER
under conditions of estrogen plus either vehicle (E) or tamoxifen (Tam,
administered as 1 mg Tam dissolved in peanut oil IP 3× per week for
3 weeks), or under conditions of estrogen plus vehicle or ICI (5 mg ICI in
peanut oil IP 1× per week for 5 weeks). c PR expression in two different
TN breast cancer PDX (UCD18 and UCD111). d AR expression in
HER2+ER− tumor UCD62 and TN tumor UCD138. Scale bars 300 μm
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tumor microenvironment. However, heterogeneity can im-
pede the use of molecular technology to study steroid receptor
action. Gene regulation, for example, can be washed out by
the prevalence of receptor negative cells. Furthermore, tech-
niques such as chromatin immunoprecipitation followed by
sequencing (ChIP-seq) and rapid immunoprecipitation
followed by mass spectrometry of endogenous proteins
(RIME) [66] for steroid receptors are not currently feasible
on many PDX tumors, which require high concentrations of
receptors for sufficient immunoprecipitations. Primary patient
specimens are often too limited in size for these techniques
such that expansion as PDX is attractive for such studies in the
event that high receptor levels are maintained.

Newer Techniques That Improve Engraftment Rates
of ER+ Tumors

Several adaptations to implantation methods have been tested
to improve take rate, including choice of mouse strain, use of
cleared mammary fat pads plus/minus humanization of the
mammary gland, and co-injection of mesenchymal cells.
Nude mice (NU/J) have the highest remaining murine immu-
nity (retain B cells) and thus display the lowest engraftment
efficiency for ER+ tumors (2.5 %) [40], and therefore most
groups have moved to strains with more severely immune-
compromised systems such as SCID/Bg (CB17.Cg-
PrkdcscidLystbg-J/Crl), NOD/SCID, and NSG. Once PDX
are established in these mice, it is feasible to backtransplant
them to other strains. For example, TN PDX established in
NSG mice can be backtransplanted efficiently to nude mice
[67]. We have also backtransplanted ER+ PDX from NSG to
B6-RAG1 (B6.129S7-Rag1tm1Mom/J) mice successfully with
no observable loss of receptor expression or tumor phenotype.
Humanizing the mammary gland does not improve and may
in fact decrease take rates [45, 46], while co-injection of hu-
man mesenchymal stem cells can accelerate tumor vasculari-
zation and growth [42, 68].

An implantation technique termed MIND (mouse
intraductal) was developed by Behbod et al. for in vivo study
of ductal carcinoma in situ (DCIS) [69]. In this method, cells
are injected directly into the milk ducts and form structures
within the mammary fat pad. This technique was adapted by
Sflomos et al. for breast cancer cell lines and primary tumor
specimens using ovary-intact (low estrogen) SCID/Bg or
NSG mice [70, 71]. MCF7 cells implanted into the fat pads
using traditional techniques displayed a higher expression of
basal and epithelial-mesenchymal transition (EMT) genes in-
cluding SLUG compared to the MIND method of implanta-
tion. Furthermore theMIND-implanted tumor cells had higher
ER expression levels, suggesting that the MIND method
maintains a more luminal-like phenotype in tumors.

To establish MIND PDX, primary patient tumors were dis-
sociated into single cell suspensions and 5000–10,000 cells

injected into the ducts. Engrafted cells retained the original ER
and PR expression levels, and resulted in the generation of
seven ER+PR+ and three ER+PR− PDX lines (Table 1).
MIND engraftment rates with ER+ primary patient samples
were higher (17–100 % take rate, depending on patient sam-
ple) than is generally observed for intrascapular or mammary
fat pad implantations of ER+ patient samples (2.5–27%, from
multiple collections summarized in Table 1) [71]. Importantly,
lower grade tumors (1 and 2), Luminal A tumors, and lobular
tumors, subtypes that historically have proven difficult to en-
graft, all established growths with the MIND method, and
PDX tumors maintained both histopathological similarity
and proliferative indices as primary tumors. Growth kinetics
of luminal-subtype tumors are frequently altered while estab-
lishing PDX due to selection pressure, as a clonal population
of fast-growing cells may not reflect the growth kinetics of the
original tumor; hence, the predominance of Luminal B PDX.
Thus, the MIND approach could allow for a more robust rep-
resentation of the spectrum of ER+ tumors. One disadvantage
is that the quantity of material may be limiting for larger scale
experiments (i.e., dispersal into multiple animals for preclini-
cal drug testing or proteomics-based experiments).

Caveats and Limitations of ER+ Breast Cancer PDX

There are several caveats inherent to all PDX that also apply to
steroid hormone receptor positive breast cancer PDX. These
include acquisition of proliferating murine stroma, develop-
ment of transferable murine malignancies, viral contamina-
tion, and potential genetic drift over passaging. Murine stroma
that propagates with whole fragments of tumors can become
activated and spontaneously immortalized such that it prolif-
erates faster than steroid hormone receptor positive breast
cancer epithelial cells. In such cases, the murine cells take over
the tumor within one to two passages. Loss of hormone recep-
tor expression, loss of human cytokeratin expression, and gain
of a squamous spindly appearance all indicate a problem. If
this occurs, it may be possible to reconstitute the line from
earlier passages, but research on the current specimen should
be discontinued.

Use of immunocompromised mice brings additional con-
siderations. NOD/SCID animals in particular are susceptible
to lymphoma [72]. This can passage with the PDX leading to
rapid growth of solid masses of murine cells and necessary
euthanasia of the animals prior to PDX regrowth. In contrast,
NSG mice are less susceptible to lymphoma. In our experi-
ence, while we have had occasional development of lympho-
ma using NOD/SCID mice for long incubation periods
(∼6 months), we have not observed this phenomenon in
NSG mice. Viral contamination is another recurring issue that
may arise while propagating tumors in mice [73]. The most
problematic viral contamination is lactate dehydrogenase ele-
vating virus (LDEV). This is a common murine viral
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contaminant that can be found in commercially available base-
ment membrane extract (BME) preparations that are frequent-
ly used when implanting tumor cell suspensions or solid tu-
mor pieces [73]. The virus can take several passages before
physical signs appear, at which time animals develop partial or
full paralysis. The virus is transferred via direct tissue/fluids
and infects murine macrophages [74]; plasma, liver, and
spleen tissue from infected mice display the highest LDEV
titer [75].

Two methods have been described to eliminate LDEV. The
first includes FACS to eliminate all murine cells from a single
cell preparation, followed by reimplantation of human tumor
cells into new animals [76]. However, this requires serial
sorting, and unless the sort is near 100 % efficient, the virus
will still transfer. A second, older method, albeit one still rec-
ommended by Charles River, involves passage through nude
rats which eliminate the murine macrophages. The sample can
then be evaluated for loss of LDEV via qPCR and reimplanted
into mice. The tumor would likewise need to be monitored for
appreciable morphological changes. While this approach may
be feasible for TN tumors, in our experience the continuous
estrogen supplementation required to maintain ER+ tumor
samples can lead to the appearance of spontaneous rat tumors
that interfere with the slower growing human ER+ PDX.Most
present sources of BME are LDEV-free which has mostly
eliminated this problem (i.e., Cultrex®, Trevigen,
Gaithersburg, MD).

The stability of the breast cancer PDX phenotype over
passage is an important consideration and potential caveat that
has not been entirely resolved in the field. Eirew et al. de-
scribed that the major selection of patient-derived breast can-
cer cells fit for propagation as a PDX occurs in many cases
during initial establishment, although some drift occurs
through every subsequent passage [47]. Where measured,
some PDX collections appear to retain copy number varia-
tions and SNPs compared to the primary patient sample over
multiple passages, with occasional gain in activating SNPs
[41, 42, 45]. Gene expression measured via Affymetrix anal-
ysis and proteome analysis via RPPA were found to be rela-
tively stable measured every fifth passage [45]. Bruna et al.
extensively monitored genomic and molecular fidelity using
single nucleotide variations (SNV), copy number alterations,
genemethylation, and gene expression profiling, and conclud-
ed that PDX tumors maintain high correlation with patient
tumors across serial passages [48]. Deep sequencing identified
single nucleotide variations accumulate out to passage 8 in
ER+ PDX and were predominantly in non-cancer associated
genes [46], a conclusion recently confirmed by Bruna et al.
[48]. In the MINDmodel, PDX tumors did not accumulate de
novo mutations over passage and thus may be more genetical-
ly stable [71].

While no consensus passage number exists at which PDX
are reliable to utilize, commercially contracted PDX studies

usually restrict the use of their models to within a few passages
removed from the original patient sample. However, this is not
always practical for steroid receptor positive breast cancer
PDX which often grow slower and can take a few passages
to establish and expand prior to performing experiments.
Therefore, for preclinical studies on developmental therapeu-
tics, the lowest possible passage should be used. Careful
replenishing of frozen stocks and reimplantation of lower pas-
sages can prolong experimental use with the caveat that lower
passage stocks will eventually be depleted.With diligent mon-
itoring via IHC and other methods capable of detecting gene
expression changes, ER+ PDX can be reasonably used for
four to five passages for many types of studies. To minimize
the usage of limited stock, Bruna et al. recently reported an
ex vivo culture method wherein cell lines derived from PDX
breast cancer tumors could be used for high throughput
screening of single agents and combination therapy [48],
which allows for pre-validation of therapeutic agents to min-
imize inefficient use of limited PDX stock. It is unknown at
this time if the precise method of breast cancer PDX establish-
ment and maintenance influences therapeutic response.

Steroid Hormone Receptor Positive PDX: New
Avenues for Investigation

Gene Expression Profiling of Steroid Hormone Receptor
Positive PDX

Steroid hormone receptor positive PDX offer new opportuni-
ties for defining hormone-dependent gene regulation. ER and
PR regulated genes in breast cancer have been mainly defined
by the immortalized cell lines MCF7 and T47D, respectively
[77–81]. In addition, several clinical trials utilizing endocrine
therapies have generated datasets reporting estrogen-
dependent genes that are deposited in publically available da-
tabases [82–84]. Our group evaluated gene expression in PDX
plus/minus estrogen, tamoxifen, and EWD [43]. In comparing
three ER+ PDX to MCF7 cells, there were many similar
estrogen-regulated genes such as GREB1, IGF1R, and PGR.
Not surprisingly, each ER+ PDX contains tumor-unique es-
trogen-regulated genes. For example, in PDX UCD4 (PE4 in
the original manuscript), estrogen highly up-regulated a group
of genes located on the X chromosome termed cancer testis
antigens (CT45), occasionally observed in multiple tumor
types that are candidates for immunotherapies [85]. In our
experience, progestin regulated genes are more variable
among PDX. A preliminary comparison of overlap between
PR regulated genes in PDX compared to those described in
T47D cells noted only a few consistently PR regulated genes
(i.e., TAT and CXCL13) (unpublished data). This coincides
with the emerging functional heterogeneity that PR appears
to convey in ER+ breast cancers. Assessment of PR regulated
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genes may pinpoint those tumors in which PR acts as an ER
agonist vs. antagonist.

Endocrine Resistance and ER Mutations

There are limited models to study endocrine resistance in
ER+ breast cancers. The most commonly used models
are tamoxifen-resistant MCF7 breast cancer cell lines,
which have proved valuable in investigating mechanisms
of tamoxifen insensitivity [86, 87]. To generate similar
endocrine-resistant PDX, samples must be implanted
from pre-existing resistant tumors, or resistance manifest-
ed utilizing a chronic in vivo treatment protocol similar
to that utilized for MCF7 cells in vitro. This strategy was
described for a primary breast tumor implanted in nude
mice over 3 years of tamoxifen treatment [88]. The
Washington University collection contains ER+ PDX
lines that were developed from late stage cancers that
were endocrine resistant [46]. Interestingly, four of their
ER+ PDX lines contain ER variants: an ESR1/YAP1 fu-
sion protein resulting from a translocation event
(WHIM18); amplification of the ESR1 promoter and cod-
ing region (WHIM16); an ESR1-E380Q point mutation
in the ligand binding domain (WHIM24); and an ESR1-
Y537S point mutation in the ligand binding domain
(WHIM20) [46]. In our collection, UCD4, developed
from a pleural effusion, harbors the ESR1-D538G muta-
tion, and UCD65 displays ESR1 amplification. ER muta-
tions are emerging as more prevalent than originally
thought, likely due to improved sequencing and detection
technologies [89, 90]. Naturally occurring ER mutant
PDX models will be useful for testing novel ER mutant
targeting drugs under development, particularly newer
generation SERDs. In addition, companion cell lines
could be generated from such tumors, albeit with no
mutation negative control. These types of models will
compliment CRISPR/Cas9-generated ER mutants in
breast cancer cell lines. Mutations in PR and AR have
not yet been described in breast cancer, likely since mu-
tations are primarily driven by pressuring the ER signal-
ing axis.

One inherent limitation of breast cancer PDX is the
lack of an intact immune system. Immune cells and asso-
ciated inflammation affect multiple components of tumor
biology. Humanized models are being developed in which
irradiated mice are reconstituted with human cells, includ-
ing T cells, myeloid cells, and hematopoietic progenitor/
stem cells, resulting in mice regaining partial immunity
[91–93]. As the technology becomes more refined and
available, PDX may be established and/or transplanted
into animals with human-like immune systems. This
may facilitate processes such as metastasis, which occur
but are inefficient in immune-compromised hosts.

Conclusions

The recent upsurge in the development of breast cancer PDX
has naturally led to generation of ER+ PDX; at least 116
transplantable lines exist worldwide. Many of the ER+ PDX
co-express PR and AR, and several are also HER2+/ampli-
fied. While the process of ER+ PDX derivation is still rela-
tively inefficient (<20 %), as technologies improve, these col-
lections may allow for a more robust representation of ER+
breast cancers. In particular, utilization of the MIND approach
may capture tumor types not amenable to solid specimen
transplant into mammary fat pads. Breast cancer PDX retain
the inherent heterogeneity in ER, PR, and AR expression,
making them attractive for preclinical studies aimed at testing
drug efficacy in a spectrum of the disease. Furthermore, pri-
mary tumor-derived PDX that were untreated or undertreated
offer an advantage for testing new endocrine agents. In addi-
tion to anti-estrogen-targeted drugs, these may help delineate
tumors that would respond to therapies with natural steroid
hormones such as progesterone and androgens vs. those that
could be stimulated by such treatments. In conclusion, steroid
hormone receptor positive breast cancer PDX allow an un-
precedented opportunity to study endocrine resistance and
steroid receptor action in solid tumor models that more closely
represent human breast cancer biology.
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