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Abstract Androgens play an important role in prostate cancer
(PCa) development and progression. Accordingly, androgen
deprivation therapy remains the front-line treatment for locally
recurrent or advanced PCa, but patients eventually relapse
with the lethal form of the disease termed castration resistant
PCa (CRPC). Importantly, castration does not eliminate an-
drogens from the prostate tumor microenvironment which is
characterized by elevated tissue androgens that are well within
the range capable of activating the androgen receptor (AR). In
this mini-review, we discuss emerging data that suggest a role
for the enzymes mediating pre-receptor control of dihydrotes-
tosterone (DHT) metabolism, including AKR1C2, HSD17B6,
HSD17B10, and the UGT family members UGT2B15 and
UGT2B17, in controlling intratumoral androgen levels, and
thereby influencing PCa progression. We review the expres-
sion of steroidogenic enzymes involved in this pathway in
primary PCa and CRPC, the activity and regulation of these
enzymes in PCa experimental models, and the impact of ge-
netic variation in genes mediating pre-receptor DHT metabo-
lism on PCa risk. Finally, we discuss recent data that suggests
several of these enzymes may also play an unrecognized role
in CRPC progression separate from their role in androgen
inactivation.

Abbreviations
PCa Prostate cancer
ADT Androgen deprivation therapy
CRPC Castration resistant prostate cancer
AR Androgen receptor
DHT Dihydrotestosterone
ER Estrogen receptor
IGF1 Insulin-like growth factor 1
IL6 Interleukin 6
TGFβ1 Transforming growth factor beta 1
EGF Epidermal growth factor
FGF Fibroblast growth factor
CNV Copy number variant
SNP Single nucleotide polymorphism

Introduction

Androgens regulate normal prostate growth and function by
interacting with the androgen receptor (AR), and play a central
role in prostate cancer (PCa) progression [1]. As such, PCa
biology may be influenced by mechanisms that modulate the
intracellular production or accumulation of androgens. As ear-
ly as sixty years ago, steroid hormones were recognized to
exist in either active or inactive forms which could be enzy-
matically interconverted in a tissue-specific manner. This con-
cept in steroid-hormone physiology was called pre-receptor
control and implied that inactive metabolites could serve as
precursors for metabolic conversion to active ligands, thereby
complementing the pool of ligands available for receptor bind-
ing in a tissue-specific manner [2, 3].

Here, we review the emerging evidence that suggests pre-
receptor metabolic control of dihydrotestosterone (DHT)
levels, specifically, those enzymes that mediate the catabolism
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of DHT or reverse this process, may be a critical determinant
of androgen levels in castration resistant PCa (CRPC) tumors.
We review the enzymes involved in pre-receptor control of
DHT metabolism, their altered expression in the progression
of primary PCa to CRPC, and the evidence for their relevance
in treatment resistance and disease progression from clinical
studies and experiments in PCa cell lines as well as patient-
derived xenografts. We discuss their impact on androgen
levels in vitro and the effect of drugs and other factors that
modulate their activity, including genetic variation in these
enzymes and link to PCa risk. We conclude by discussing
recent data that suggest UGT enzymes and members of the
ARK1C family may also have a role in CRPC progression
separate from their role in androgen inactivation [4].

Pre-Receptor Control of DHT Metabolism
in Prostate

In prostate tissue, intracellular levels of DHT are regulated by
phase I (reducing) and phase II (conjugating) enzymes that
mediate DHT catabolism and thereby regulate access of
DHT to the AR [5] (Fig. 1). AKR1C2 is the primary enzyme
responsible for the reversible reduction of DHT to 5α-
androstane-3,17-diol (3α-androstanediol or 3α-diol, a low af-
finity AR ligand), which is subsequently glucuronidated to
3α-diol glucuronide (3α-diol G), and released into circulation.
While AKR1C2 is capable of bidirectional activity (i.e., cata-
lyzing conversion of 3α-diol back to DHT), intracellularly it
functions primarily to reduce DHT [3, 6]. The reductase ac-
tivity of AKR1C2, together with the reverse oxidative activity
of 3α-HSDs, including HSD17B6, HSD17B10, and RDH5, is
a critical molecular switch that regulates tissue androgen
levels [3, 6–8].

Transcripts of both HSD17B6 (also called RL-HSD) and
HSD17B10 are highly expressed in the prostate; howev-
er, several studies suggest HSD17B6 is more active in
converting 3α-diol to DHT in prostate cells [9, 10].
Basal epithelial cell expression of HSD17B6 is present
at the protein level, while transcript profiling of cultured
epithelial and stromal cells detects stromal expression as
well [9, 11]. AKR1C1 catalyzes the irreversible conver-
sion of DHT to 5α-androstane-3 β,17 β-diol (3β-diol),
a possible endogenous ligand for the estrogen receptor
β (ER β, in prostate) [3]. Interestingly, besides its ox-
idative activity, HSD17B6 can also convert physiologi-
cal concentration of DHT to 3β-diol [11] and acts as an
epimerase to convert 3α-diol to 3β-diol, although at
much higher substrate concentrations [12].

The phase II conjugating enzymes UGT2B17 and
UGT2B15 are highly expressed in the prostate and irre-
versibly terminate the androgen signal by glucuronidation
of 3α-diol (as well as testosterone (T), DHT, and other

metabolites) [13–16]. (UGT2B28 is present in the prostate
but does not directly glucuronidate DHT [17]; UGT2B7 is
able to glucuronidate DHT, but its activity is only 1–10 %
of UGT2B15 or 17, and it is not expressed in the prostate
[18, 19]). Therefore, the relative activity of the reductive
3α-HSDs AKR1C2 and AKR1C1 in converting DHT to
3α-diol or 3β-diol, respectively, vs activity of the oxida-
tive 3α-HSDs HSD17B6 and HSD17B10 in converting
3α-diol back to DHT, and activity of the conjugating en-
zymes UGT2B15 and UGT2B17 in glucuronidating DHT,
collectively govern the levels of active androgen in the
prostate.

Altered Expression of Enzymes Involved
in Pre-Receptor DHT Metabolism in PCa
Progression to CRPC

Altered Expression of Genes Mediating DHT Production
and Catabolism in Primary PCa

Differential changes in the expression of reductive and
oxidative enzyme pairs favoring the conversion of inac-
tive diones to active androgens (e.g., androstenedione
(AED) to testosterone (T) or androstanedione to DHT)
have been observed between normal prostate and prima-
ry PCa. These include increased tumor expression of the
reductive enzymes HSD17B3 (31-fold) [20] and
AKR1C3 (2–5-fold) [21–24], and decreased expression
of the oxidative enzyme catalyzing the reverse reaction,
HSD17B2 (7-fold) [20, 25], suggesting a shift in tumor-
al androgen metabolism to the formation of T and DHT
from their inactive dione precursors (Fig. 2a, b).
SRD5A is responsible for conversion of T and AED
to DHT and androstanedione, respectively. A consistent
observation in primary PCa is a decrease in the expres-
sion of tumoral SRD5A2 (2–4-fold) [26–29], the princi-
ple isoform of this enzyme expressed in benign prostate
tissue [30] and a relative shift in primary and recurrent
prostate tumors to increased expression of SRD5A1 (2-
fold) [27, 31] (although some studies have shown
Gleason grade-related increases in both SRD5A1 and
SRD5A2 [32]).

Primary PCa also demonstrates a selective loss of both
AKR1C2 (16-fold) and AKR1C1 (2–4-fold) vs paired benign
tissues [8, 26, 33, 34]; as a consequence of this defect in
DHT catabolism, DHT levels were significantly higher
in primary PCa tumors [26]. In contrast, increased ex-
pression of HSD17B10 (3-fold), one of the oxidative
enzyme capable of mediating the back conversion of
3α-diol to DHT, was observed in malignant epithelial
cells compared to normal, which would also support
an increased capacity to generate DHT in tumor tissue
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[35]. This drive to maintain DHT levels is consistent
with the twofold increase in prostate expression of
HSD17B6 (another oxidative enzyme capable of mediating
the back conversion of 3α-diol to DHT) observed in a study of
men treated with androgen deprivation therapy (ADT), which
was associated with a higher HSD17B6 score in those who
showed biochemical progression [36]. However, epithelial ex-
pression of HSD17B6 (which can also mediate the conversion
of DHT to 3β-diol) is low in untreated primary PCa, which is
hypothesized to reflect loss of the 3β-diol/ERβ mediated
growth inhibition pathway during malignant transformation
[11].

These findings suggest that by favoring DHT produc-
tion, the decreased expression of reductive enzymes that
mediate catabolism of DHT together with the increased
expression of oxidative enzymes that mediate conver-
sion of 3α-diol back to DHT represent an important
control point for growth regulation that is lost in prima-
ry PCa (Fig. 2b). Notably, however, UGT2B17 levels
are increased (2-fold) in PCa vs benign tissue [37],
and some reports have suggested an association of low

androgens with aggressive disease [38]. As such, nu-
ances to role of tissue androgen levels in mediating
PCa risk remain to be elucidated.

Altered Expression of Genes Mediating DHT Production
and Catabolism in CRPC

CRPC is characterized by altered expression of numerous
genes involved in steroid synthesis and metabolism, including
enzymes directly impacting pre-receptor DHT metabolism
such as SRD5A, AKR1C2, and UGT2B15 and 17 (Fig. 2c).
While increased expression of genes involved in de novo ste-
roid synthesis in CRPC, such as STAR, CYP17A, and
HSD3β2, has been variably reported [24, 27, 29, 39], alter-
ations in genes mediating the conversion of adrenal androgens
to downstream steroids such as the increased expression of
AKR1C3 (5–8-fold) and SRD5A1 (2–3-fold) have been more
consistently observed (accompanied by a decrease in
SRD5A2 (2–9-fold), similar to the shift in these isoforms ob-
served in primary PCa) [24, 27, 29, 39, 40].
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Fig. 1 Pre-receptor control of DHT metabolism in prostate (dashed
square). Both reducing and conjugating DHT catabolizing enzymes
together with DHT oxidases regulate intracellular levels of DHT and
hereby, its access to the androgen receptor (AR). AKR1C2 catalyzes
the reversible reduction of DHT to 3α-diol. HSD17B6 (RL-HSD),
HSD17B10, and RDH5 oxidize 3α-diol back to DHT. The activities of

both reductive 3α-HSDs and oxidative 3α-HSDs determine the
intracellular levels of DHT. HSD17B6 also converts physiological
concentration of DHT to 3β-diol. AKR1C1 catalyzes the irreversible
conversion of DHT to 3β-diol. UGT2B28, UGT2B17, and UGT2B15
are all involved of glucuronidation of androgen metabolites; UGT2B15
and UGT2B17 can also directly glucuronidate DHT (not shown)
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Paradoxically, several CRPC studies also show an
increased expression of genes involved in DHT catabo-
lism including AKR1C1 (3-fold) and AKR1C2 (2–3-
fold) [24, 27] as well as UGT2B15 (3–10-fold) and 17
(34-fold) [27, 29, 40], which would be consistent with a
study of CRPC metastases showing an inverted ratio of
T to DHT compared to primary PCa (T 0.74 ng/g: DHT
0.25 ng/g in CRCP samples vs T 0.23 ng/g: DHT
2.75 ng/g in primary PCa) [29]. Alternatively, while
decreased levels of HSD17B6 have been reported in
CRPC tissues compared to untreated primary PCa [10],
another study found increased expression of AKR1C2
(6-fold) in association with increased expression of
HSD17B10 (3-fold) [24]. The latter observation could
suggest that in some cases, steroid flux is directed from
androstanedione to androsterone (via AKR1C2), then to
3α-diol (via AKR1C3) and finally back to DHT (via
HSD17B10), a testosterone bypass pathway revealed to
be active in CRPC by Sharifi et al. [41] (Fig. 2c, blue
arrows).

Pre-Receptor Control of DHT Metabolism
in Experimental PCa Models

In Vitro Studies of Pre-Receptor Enzymes and DHT
Metabolism in PCa Cell Lines

Mechanisms of DHT production and metabolism in PCa have
been the subject of extensive investigation in vitro and, to a
more limited extent, in vivo. The ability of tumor cells to
synthesize DHT from cholesterol de novo has been demon-
strated in many (though not all) PCa cell line models, accom-
panied by expression of transcripts encoding the key steroido-
genic genes required for androgen synthesis, including STAR,
CYP11A, CYP17A, HSD3B2, and AKR1C3, as well as genes
involved in DHT catabolism such as AKR1C2 and SRD5A1
[42–46].

The influence of enzymes involved in pre-receptor control
of DHT metabolism in PCa cells has also been demonstrated.
Overexpression of AKR1C1 or AKR1C2 in LAPC-4 cells
inhibited DHT-stimulated, but not R1881-induced
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Fig. 2 Altered pre-receptor metabolism of DHT in prostate cancer
progression. a Schematic of androgen synthesis and pre-receptor
control of DHT metabolism in normal prostate tissue. b Differential
changes in steroidogenic enzymes in primary prostate cancer vs normal
prostate tissue: increased tumor expression of reductive enzymes
HSD17B3 and AKR1C3 and decreased expression of the oxidative
enzyme HSD17B2, favoring production of active androgens from
inactive diones; a decrease in tumoral SRD5A2 and increase in
SRD5A1; and decreased expression of both AKR1C2 and AKR1C1
with increased expression of HSD17B10, favoring production of DHT.
Expression of HSD17B6 is low in untreated primary PCa, but increased
in men treated with androgen deprivation (upward arrow with*). c

Altered expression of genes mediating DHT production and catabolism
in CRPC: variably increased expression of STAR, CYP17A, and
HSD3β2, involved in de novo steroid synthesis; consistently increased
expression of AKR1C3 and SRD5A1, mediating conversion of adrenal
androgens to downstream steroids; paradoxical increase in expression of
genes involved in DHT catabolism including AKR1C1, AKR1C2, and
UGT2B15 and 17; and increased expression of HSD17B10 in
conjunction with increased AKR1C2, suggesting activity via a
testosterone bypass pathway (thick arrows) with steroid flux directed to
DHT via androstanedione, androsterone, and 3α-diol. (Upward arrows
denote increased gene expression, and downward arrows denote
decreased gene expression)

HORM CANC (2016) 7:104–113 107



proliferation (consistent with the ability of these enzymes to
act on DHT, but not on the non-metabolizable synthetic an-
drogen R1881), resulting in a decrease in secreted DHT in
media [26]. In PC-3 cells overexpression of AKR1C2 signif-
icantly decreased DHT-dependent AR reporter activity, which
was abrogated by increasing DHT levels [8, 26]. DHT treat-
ment was shown to induce AKR1C2 transcript in both DU145
and LNCaP cells, suggesting that a decrease in androgen
levels might be countered by a decrease in AKR1C2-
mediated catabolism of DHT to preserve DHT levels [8, 33].

Long-term culture of LNCaP cells in androgen-depleted
conditions led to a reversal in the ratio of AKR1C2 to
HSD17B6, with long-term passages showing lower levels of
AKR1C2 and markedly increased levels of HSD17B6 [36].
Although androgen levels were not measured, knockdown of
HSD17B6 in the long-term-passaged cells led to a decrease in
PSA expression in response to treatment with 3α-diol, consis-
tent with the ability of HSD17B6 to convert this precursor to
DHT. Similarly, in a series of PCa cell lines treated with 3α-
diol cell, conversion of 3α-diol to DHT led to AR
transactivation and stimulation of growth, and was correlated
with transcript and protein levels of HSD17B6 [9, 10]. These
findings are similar to the increased expression of HSD17B6
observed in primary prostate tissues after ADT [36] and con-
sistent with the hypothesis that alterations in AKR1C2 and
HSD17B6 in response to androgen suppression are acting to
maintain tissue DHT levels.

UGT2B15 and UGT2B17 have been studied extensively in
LNCaP cells where they have been found to be major deter-
minants of the androgen response. Inhibition of their expres-
sion by siRNA markedly inhibited glucuronidating activity,
resulting in increased DHT levels in cell culture media and
an increased proliferative response [15]. Interestingly, these
genes are regulated by the AR and subject to DHT-induced
down regulation [47], such that their expression is increased in
the presence of antiandrogens [48]. This de-repression of
UGT2B15 and UGT2B17 expression byAR antagonists, with
resultant increased expression and increased glucuronidation
capacity was postulated by the authors to be one factor con-
tributing to the anti-tumor activity of these agents. In this
regard, the increased expression of these enzymes observed
in CRPC specimens is counterintuitive and suggests that al-
ternate explanations of their function in CRPC may be rele-
vant (discussed further below).

In Vivo Studies of Pre-Receptor Enzymes and DHT
Metabolism in PCa Xenografts

Alterations in enzymes involved in pre-receptor DHT metab-
olism in association with changes in intracellular androgen
levels have also been reported in PCa xenograft models. In
an orthotopic VCaP xenograft model, tumors grown in cas-
trate hosts had levels of intratumoral androgens similar to

those in intact mice and demonstrated increased expression
of enzymes involved in steroid synthesis (CYP17A,
AKR1C3) as well as in prevention of DHT catabolism
(HSD17B6) [49]. A study of two AR positive, castration-
sensitive LuCaP xenograft models revealed basal differences
in intratumoral androgen levels that correlated strongly with
their relative expression of genes mediating DHT synthesis vs
DHT catabolism. Compared to LuCaP35, LuCaP96 tumors
had a lower ratio of intratumoral DHT:T (1:10 vs 1:2), in
association with lower expression of genes mediating produc-
tion and maintenance of DHT (SRD5A1, HSD17B10,
HSD17B6) and higher levels of enzymes mediating DHT ca-
tabolism (AKR1C2 and UGT2B17) [50]. In a study of castra-
tion resistant LuCaP35 and LuCaP23 xenograft tumors that
recurred after treatment with abiraterone, levels of DHT in the
recurrent tumors were strongly correlated with the expression
of genes involved in maintenance of DHT levels, including
HSD17B6 and HSD17B10 [51]. These observations are con-
sistent with the hypothesis that genes mediating pre-receptor
control of DHT metabolism play an important role in deter-
mining intratumoral androgen levels.

Regulation of Enzymes Involved in Pre-Receptor DHT
Metabolism in PCa Models

Studies in PCa models have also evaluated the impact of cy-
tokines and growth factors present in the PCa microenviron-
ment on enzymes involved in pre-receptor DHT metabolism.
Induction of AKR1C1 expression was induced by insulin-like
growth factor 1 (IGF1), interleukin 6 (IL6), and transforming
growth factor beta 1 (TGFβ1) in PC-3 cells [52]. In LNCaP
cells, expression of UGT2B17 was decreased in response to
IL-1α, epidermal growth factor (EGF), and fibroblast growth
factor (FGF); expression of UGT2B15 was reduced in re-
sponse to FGF, while IL4 and IL6 did not affect the expression
of either [13, 14, 53, 54]. The decrease in UGT2B17 expres-
sion caused by IL-1α, EGF, and FGF was accompanied by a
functional decrease in DHT glucuronidation, suggesting the
presence of these factors in the prostate tumor microenviron-
ment could lead to higher intratumoral DHT levels. From a
therapeutic perspective, calcitriol was found to be a negative
regulator of UGT2B15 and UGT2B17 in LNCaPs, resulting
in decreased rates of DHT glucuronidation and suggesting that
the proposed anti-proliferative properties of calcitriol in PCa
cells could be limited by this accompanying decrease in DHT
catabolism [55]. The potential chemoprotective agent, sulfo-
raphane (SFN), an isothiocyanate found in cruciferous vege-
tables, was found to induce expression of multiple AKR1C
family members, including AKR1C1, AKR1C2, and
AKR1C3 (via activity of the Nrf2 transcription factor) in
breast cancer models [56]. Whether the same occurs in PCa
cell models and/or whether modulation of cellular androgens
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plays a role in the proposed chemoprotective activity of SFN
in PCa is unknown [57].

Genetic Variation in Genes Involved in Pre-Receptor
Control of DHT Metabolism

Genetic variation in key genes involved in DHT synthesis has
been convincingly described for HSD3B1 [58] and SRD5A2
[59, 60]. While data on polymorphisms and associations with
PCa risk for many of the genes involved in pre-receptor DHT
catabolism are limited [61], functional variants in UGT genes
and AKR1C2 have been described. UGT genes, in particular,
are characterized by common polymorphisms and copy num-
ber variants (CNV) that affect gene expression and enzymatic
activity and have been associated with PCa risk and outcomes.
Although not studied in PCa as extensively as UGT2B15 or
UGT2B17, UGT2B28 is another UGT enzyme expressed in
prostate with capacity to glucuronidated steroid substrates [17,
19, 62]. Whole gene deletions in UBT2B17 and UGT2B28
occur in Caucasians at 27 and 13.5 %, respectively, with 57 %
harboring a deletion in at least one of these genes [63]. A
nonsynonymous single nucleotide polymorphism (SNP) in
UGT2B15 (D85Y, rs1902923: G>T) increases maximal ve-
locity for DHT and androstanediol 2-fold and occurs in 32 %
of Caucasians [64]. CNV in UBT2B17 and UGT2B28 are
associated with decreased levels of circulating androgen
glucuronides, while CNV in UGT2B17 are also associ-
ated with altered levels of intraprostatic and urinary an-
drogen glucuronides [65–67].

Gene deletions in UGT2B17 have been linked with an
increased risk of biochemical relapse, while deletion of
UGT2B17 and the UGT2B15 SNP D85Y has been linked
with increased PCa risk in some (but not all) studies
[67–71]. In particular, the UGT2B17 homozygous deletion
polymorphism was associated with (1) an increased risk of
biochemical recurrence after surgical treatment and signifi-
cantly lower androgen glucuronides in Caucasian and Asian
patients [71]; (2) an increased risk for PCa compared with
insertion carriers in Caucasian and Swedish individuals, but
not in African American men [72–74]; and (3) in two meta-
analyses spanning 17,000 subjects, and was linked to an in-
creased PCa susceptibility [75, 76]. Of note, however, the high
activity UGT2B15 D85Y SNP (which would decrease expo-
sure to active androgens) is less prevalent in Asians than
Caucasians (18 vs 32 %), while CNV in UGT2B17 (which
would increase androgen exposure) is higher in Asians
than Caucasians (73 vs 27 %), suggesting that decreases
in androgen exposure due to glucuronidating enzymes are
not overt mediators of the decreased PCa risk observed in
Asian populations [64, 71].

Functional variants in AKR1C2 have also been described,
although studies linking these with clinical associations are

yet to be reported. Takahashi et al. evaluated the impact of
11 naturally occurring AKR1C2 SNPs on the ability of
AKR1C2 to reduce DHT to 3α-diol, demonstrating signifi-
cant reductions in Vmax for two variants (F46Y and L172Q)
[77]. The F46Y variant is of particular interest as the allele
frequency of this SNP is the highest in African Americans
(15 %), followed by Caucasians (5.9 %), and then Asians
(0 %). This parallels the risk for PCa observed in these popu-
lations, raising the hypothesis that the decreased catabolism of
DHT mediated by the F46Yvariant in African American men
may influence PCa risk. (The L172Q variant has an allele
frequency of 32 % in Caucasians and has not been detected
in African American or Asian populations.)

A Non-Classical Role for DHT Metabolizing
Enzymes

A significant body of data supports the hypothesis that genes
mediating pre-receptor control of DHT metabolism play an
important role in determining intratumoral androgen levels
in primary and castrate resistant prostate tumors. However,
the increased expression of DHT catabolizing enzymes such
as AKR1C2, UGT2B15, and UGT2B17 in CRPC (which
would theoretically lower ligand levels available for AR acti-
vation) are not entirely congruent with this hypothesis.
Several potential explanations for these observations exist,
including the joint regulation of multiple steroidogenic genes
by single transcription factors [78], the potential engagement
of metabolism pathways that bypass testosterone synthesis
[41], and the possibility that putatively Bsteroidogenic^ en-
zymes may have cancer-related functions beyond their ste-
roidogenic potential.

The AKR1C family is an important reminder that many
steroidogenic enzymes have alternative substrates and have
capacity to modify non-steroidal metabolites which can influ-
ence disease progression or response to therapy independently
of their steroid metabolizing function. For example, AKR1C1
is involved in detoxification of lipid peroxidation products
[79] which may influence responses to oxidative stress, and
AKR1C3 and AKR1C2 are critical regulators of prostaglan-
din (PG) synthesis [80]. In particular, AKR1C3 forms PGF2α
and 11beta-PGF2α which stimulate the prostaglandin F (FP)
receptor and prevent the activation of PPARγ, resulting in a
pro-proliferative signal that may stimulate PCa growth inde-
pendently of an effect on steroidogenesis [81]. Increased ex-
pression of AKR1C2 in vitro and its associated increase in
levels of prostaglandin F2α has also been associated with
resistance to several chemotherapy drugs [82], illustrating an-
other mechanism by which these genes may influence treat-
ment response again independent of androgen signaling.

Alternatively, these proteins may also have functions inde-
pendent of any enzymatic activity. For example, AKR1C3 has

HORM CANC (2016) 7:104–113 109



recently been identified as an AR coactivators and thus may
play dual roles in promoting ligand synthesis and AR activa-
tion [83]. AKR1C3 has also been shown to bind and stabilize
the ubiquitin ligase Siah2, inhibiting its degradation and there-
by enhancing Siah2-dependent regulation of AR activity in
PCa cells [84]. Notably, AKR1C3 may play a role in modu-
lating epigenetic susceptibility in PCa cells independently of
an effect on AR. Knockdown of AKR1C3 was accompanied
by a significantly reduced expression of a range of histone
deacetylases, transcriptional co-regulators, and increased sen-
sitivity towards SAHA, a clinically approved histone
deacetylase inhibitor [85]. Looking beyond PCa, UGT2B17
has been identified as a disease accelerator in chronic lympho-
cytic leukemia [86], and knockdown of UGT2B17 in an en-
dometrial carcinoma cell line resulted in an increase in apo-
ptosis in association with downregulation of the anti-apoptotic
protein Mcl-1 and upregulation of the pro-apoptotic target of
Mcl-1, Puma [87]. While the mechanism of UGT2B17 in-
volvement in these tumors remains to be elucidated, these
reports underscore the potential role of these enzymes in
non-steroid metabolizing capacities.

Importantly, it remains to be established whether the in-
creased expression of these genes is truly pathogenic or mere-
ly a bystander of altered CRPC signaling. For example, while
UGT genes are generally repressed by AR regulated signaling
[47, 67], UGT2B17 has been identified as a positively regu-
lated gene target of the constitutively active AR splice variants
present in many CRPC tumors [67]. Thus, its presence in
CRPC tumors may simply be a reflection of an altered, AR-
variant associated transcriptional profile rather than an inher-
ently pathogenic alteration.

Concluding Remarks

In conclusion, there is significant evidence that pre-receptor
control of DHT metabolism pathways plays an important role
in modulating tumor androgen levels, thereby facilitating con-
tinued AR signaling in the progression to castration resistant
disease. Whether these pathways will also be prominent me-
diators of resistance to new agents targeting the AR axis such
as abiraterone and enzalutamide is under active investigation
[88, 89]. However, while it is tempting to focus on steroid
metabolic pathways as drivers of PCa biology, alternative hy-
potheses remain to be explored, including the capacity of met-
abolic enzymes to modify non-steroidal substrates with pro or
anti-carcinogenic activity and their potential to act in roles
independent of their catalytic functions.
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