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Abstract Signal transduction pathways downstream of
receptor tyrosine kinases (RTKs) are often deregulated
during oncogenesis, tumor progression, and metastasis. In
particular, the peptide growth factor hormone, hepatocyte
growth factor (HGF), and its specific receptor, Met tyrosine
kinase, regulate cancer cell migration, thereby conferring an
aggressive phenotype (Nakamura et al., J Clin Invest 106
(12):1511–1519, 2000; Huh et al., Proc Natl Acad Sci U S
A 101:4477–4482, 2004). Additionally, overexpression of
Met is associated with enhanced invasiveness of breast
cancer cells (Edakuni et al., Pathol Int 51(3):172–178,
2001; Jin et al., Cancer 79(4):749–760, 1997; Tuck et al.,
Am J Pathol 148(1):225–232, 1996). Here, we review the
regulation of recently identified novel downstream media-
tors of HGF/Met signaling, Breast tumor kinase (Brk/
PTK6), and Src-associated substrate during mitosis of
68 kDa (Sam68), and discuss their relevance to mecha-
nisms of breast cancer progression.
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Introduction

Met receptor activity is critical to cell migration in both
normal physiological and pathological invasive growth

processes, such as during wound healing or as part of
cancer cell metastasis. The ability of cells to migrate,
invade neighboring tissues, survive in a foreign microenvi-
ronment, and settle/proliferate at distant sites defines a
biological event known as the “invasive growth program.”
This program is appropriately utilized during normal
embryonic development, organ formation, as part of
inflammatory responses, and for injury repair. A similar
process is also prevalent during early cancer cell transfor-
mation, such as during epithelial-to-mesenchymal transition
(EMT) that precedes metastasis. EMT is characterized by
release of epithelial cell junctions, changes in cell polarity,
cytoskeletal rearrangement, and an increased ability to
move through the extracellular matrix (ECM). Met-driven
signal transduction (primarily PI3K/Akt, STAT, and Ras/
ERK1/2 MAP kinase driven) is now well studied in both
normal and neoplastic models of cell motility and invasive
cellular behavior. Herein, we review recent studies that
suggest the addition of a novel signaling pathway charac-
terized by regulation of breast tumor kinase (Brk/PTK6),
Erk5, and Sam68 molecules that function as mediators of
cellular migration downstream of Met receptor activation.

HGF/MET Tyrosine Kinase Growth Factor Receptor
Signaling: Structure and Function

HGF

The Met receptor ligand, hepatocyte growth factor (HGF),
also named scatter factor (SF), is a pleiotropic growth factor
initially isolated from the serum of hepatectomized rats [6,
7] and later from fibroblasts [8]. HGF belongs to the family
of plasminogen-related growth factors (PRGFs) and is also
called PRGF-1. Human HGF proteins are transcribed as
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inactive 90 kDa, single-chain precursors (pro-HGF) from a
single gene located on chromosome 7 q 21.1 [9, 10]. Pro-
HGF is then converted into an active, mature heterodimeric
form, consisting of a disulfide-linked 69 kDa α chain and
34 kDa β chain [11, 12].

HGF is widely expressed in different tissues and mainly
produced by mesenchymal and stromal cells. Biological
activation of pro-HGF is mediated by a single cleavage
event performed by several tightly regulated serine pro-
teases [13–18]. These enzymes require proteolytic activa-
tion by other proteases which are also regulated by specific
endogenous inhibitor proteins. The proteolytic cleavage of
pro-HGF occurs in the extracellular environment in
response to tissue damage or during tumor progression
[13]. HGF is an essential regulator of diverse cellular
functions including cell proliferation, motility, morphogen-
esis, and angiogenesis [19, 20] and has been called a
mitogen, motogen, and morphogen [21]. HGF acts in a
paracrine manner [22, 23] on epithelial cells [24], endothe-
lial cells [25], and cells of the macrophage/monocyte
lineage [26], through binding to an HGF-specific receptor
tyrosine kinase (RTK) termed Met.

Met

The Met receptor is a transmembrane RTK encoded by the
c-Met proto-oncogene located on chromosome 7q 21–31
[27]. c-Met was originally identified as a fusion protein
(Tpr/Met) generated from chromosomal translocation in
human osteogenic sarcoma (HOS) cells treated with the
carcinogen, N-methyl-N′-nitro-N-nitrosoguanidine [28]. In
these cells, the translocated promoter region locus (TPR) on
chromosome 1 is placed upstream of a portion of the c-Met
oncogene [29], generating the Trp/Met fusion protein
characterized by a constitutively phosphorylated and thus
active Met kinase domain.

Met is expressed in both epithelial and endothelial cells
[20] and is synthesized as a 170-kDa single-chain precursor
which is proteolytically converted into a disulfide-linked,
highly glycosylated extracellular 50 kDa α subunit and a
transmembrane 145-kDa β chain. The extracellular seg-
ment of the Met receptor, which includes the full α subunit,
contains an atypical protein–protein interaction motif, the
Sema domain, characterized by low ligand-binding affinity.
The extracellular portion of Met receptor also features a
cysteine-rich domain (Cys-domain) known as Met-related
sequence (MRS) and a classical protein–protein interaction
region made of four immunoglobulin-like motifs (IPT
domain).

The intracellular portion of the Met receptor contains a
juxtamembrane region, a tyrosine kinase domain, and a C-
terminal regulatory tail. The juxtamembrane domain plays
an essential role in receptor downregulation [20]. This

domain contains a serine residue (Ser985) that, upon
phosphorylation by PKC, is responsible for inhibition of
kinase activity and a tyrosine residue (Tyr 1003) that
mediates binding of the ubiquitin ligase Cbl; polyubiquiti-
nation of Met receptor by Cbl subsequently results in Met
degradation [30, 31]. The Met kinase domain contains key
tyrosine residues (Tyr 1230, 1234, and 1235) within the
activation loop responsible for the regulation of Met kinase
activity [32]. Upon HGF binding, Met receptors undergo
dimerization and autophosphorylation of Tyr1234 and
Tyr1235, leading to phosphorylation of Tyr1349 and
Tyr1356 of the C-terminal regulatory tail. When phosphor-
ylated, the C-terminal regulatory tail acts as a docking site
for intracellular adaptor molecules, such as Shc. Binding of
downstream kinases to Met can be direct, as it is for c-Src
and the p85 subunit of PI3K, or mediated by the scaffolding
protein Gab1 [33]. Recruitment of Src homology 2 (SH2)
domain-containing proteins favors the activation of down-
stream signal transduction cascades. These include
mitogen-activated protein kinase (MAPK), which is impor-
tant for cell proliferation and transformation [33], PI3K,
which is essential for cell motility [34] and preventing
apoptosis via Akt-activation [35], and JAK/STAT pathways
members [36], which are required for epithelial tubulo-
genesis [37] (Fig. 1).

As described above, Met is a single transmembrane
receptor extracellularly exposed on the phospholipidic bi-
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Fig. 1 HGF/Met receptor signaling pathway. Stimulation of Met
receptor by its specific ligand HGF leads to activation of a variety of
downstream signaling molecules, targeting cell proliferation, migra-
tion, and survival

HORM CANC (2012) 3:14–25 15



layer. The combination of ligand activation and dynamic
interaction with other cell surface receptors results in
synergetic integration of downstream signaling. For exam-
ple, Met interacts with additional tyrosine kinase receptor
family members. While the recepteur d'origine nantais
(RON) shares significant homology with the Met receptor,
it is specifically activated by binding to macrophage-
stimulating protein (MSP) [38]. However, when overex-
pressed, Met and RON interact in the absence of ligand;
activation of each receptor can induce the transphosphor-
ylation of the other family member. This cross talk appears
to occur independently of the C-terminal docking site on
either receptor but requires RON kinase activity, as kinase-
dead mutant RON is able to suppress the transforming
actions of Met receptor [39]. Additionally, Met shares
structural similarities with the receptor members of the
semaphorin family, such as plexins. Met interacts constitu-
tively with plexin B, and clustering of Met with activated
plexin BI causes HGF-independent stimulation of Met and
invasive growth [40].

Met is known to interact with multiple membrane-
associated proteins which function to modulate cell signal-
ing in response to HGF. For example, Met constitutively
associates with integrins, generating a platform for down-
stream signaling effectors necessary to promote cell
migration and invasion [20]. Met can also interact with
the death receptor Fas to protect cells from apoptosis [41].
Finally, Met receptors associate with CD44, a transmem-
brane glycoprotein that functions as a receptor for the major
ECM component, hyaluronic acid. Specific CD44 isoforms
generated by alternative splicing are able to trigger or
enhance Met activation. For example, the CD44 isoform
containing the variant exon 3 (CD44v3) strongly binds HGF
and is involved in concentrating HGF at the cell surface and
thus presents HGF to the Met receptor [42]. In addition,
CD44v6 is required for ligand-dependent activation of Met
[43]. Recently, Locatelli and Lange [44] showed that
activated Met receptors regulate keratinocyte cell migration
through expression of CD44v5, an isoform that correlates
with the invasiveness of renal cell carcinoma [45].

Met Signaling Drives an Invasive Growth Program
in Normal and Cancerous Tissues

The Met pathway is essential for normal development. Lack
of either HGF or Met in knockout mice leads to lethal
morphogenetic defects during embryogenesis [36]; HGF/Met
complexes control proliferation and cell survival of hepato-
cytes, placental formation, nervous system organization,
bone remodeling, angiogenesis, and cell migration from the
dermomyotome to targets where cells form skeletal muscle
[46–48]. In adult conditional mutant mice, deregulated HGF

or Met signaling contributes to compromised tissue repair
after injury [49]. HGF is upregulated during liver regener-
ation [50–52] and repair of other tissues like lung, kidney,
heart, and skin [1, 53–56]. In wound healing models, the
HGF/Met pathway promotes motility [21, 57, 58] and rapid
migration [24, 59] of keratinocyte (skin) cells. Birchmeier
and colleagues have shown that Met is specifically localized
to the leading edge of migrating keratinocytes and acts in an
autocrine fashion to promote wound healing; skin cells
expressing mutant Met receptors (loss of function) are no
longer able to proliferate and migrate into the wound area
[49]. In the normal mammary gland, HGF, primarily
produced by stromal fibroblasts [60], promotes bud elonga-
tion and infiltrating branching tubulogenesis via paracrine
stimulation of Met receptors expressed in normal ductal and
lobular breast epithelial cells [61].

In addition to normal processes, aberrant activation of
the HGF/Met signaling pathway leads to oncogenesis,
tumor progression, and metastasis [1, 2]. Constitutive
activation of the Met receptor occurs under the following
conditions: establishment of ligand–receptor activation
loops that induce sustained activation of the receptor in a
paracrine or autocrine manner [62], receptor overexpression
triggering oligomerization and reciprocal activation, a
condition that sensitizes cells to lower levels of HGF,
activating point mutations within the kinase domain, pathway
activation via hypoxic conditions (i.e., that increase Met
expression), transactivation by other membrane proteins, and
loss of negative regulators [63].

Mutations of Met proteins are not particularly frequent in
tumors, whereas enhanced Met expression has been reported
in a variety of solid tumors such as osteosarcomas [62], renal
[64], ovarian [65], hepatocellular [66], non-small cell lung
[67], gastric, pancreatic [68], prostatic [69], and invasive
breast carcinomas [4]. Overexpression of Met receptor is
associated with more aggressive and invasive phenotypes in
these tumors and poor prognosis. In the absence of gene
amplification [65] or mutation, overexpression of Met can be
driven by activation of oncogenes including Ras, RET
(rearranged during transfection), or Ets [70]. Interestingly,
the Met promoter contains four putative binding sites for
members of the Ets family of transcription factors, which are
involved in promoting invasive growth programs. Ets I
induces increased Met mRNA and protein levels which, in
turn, can mediate enhanced Ets I mRNA production,
suggesting that Ets protein family members act both
upstream and downstream of the HGF/Met signaling
pathway [71] in a “feed-forward” manner. In colorectal
cancers, the WNT/β catenin cascade leads to overexpression
and constitutive activation of Met receptors [72]. In the
mammary gland, Met shows a gradient of increasing
expression from normal breast/benign mammary hyperplasia
(lowest expression) to ductal carcinoma in situ (DCIS), and
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is overexpressed in invasive carcinoma [4]; Met mRNA
shows a similar gradient of strong presence at the stromal–
epithelial cell interface to weak expression in the inner part
of the tumor [5]. Met and HGF are expressed at the active
invading front of breast tumors [3, 5]; deregulated expression
of HGF/Met promotes the invasive growth program, leading
to breast tumor progression and metastasis.

Recent studies conducted in knock-in mice expressing
an activated Met receptor mutant revealed its tumorigenic
effect on mammary epithelium: Met mutant mice develop
diverse mammary tumors with high incidence, and these
adenocarcinomas show basal characteristics [73]. Met RNA
and protein expression is associated with the human basal-
like breast cancer subtype and poor outcome [73, 74];
moreover, Met expression correlates with increased levels
of EMT markers in breast tumors [74]. In accordance with
Met association with the basal-like breast tumor subtype,
there is an inverse correlation between Met and estrogen
receptor (ER), progesterone receptor (PR), and ErbB2/
HER2 expression in tumor hyperplastic regions, suggesting
a compensatory effect of Met signaling in the presence of
decreased or negligible detection of these other receptors
[73].

Activation of Brk/PTK6 Downstream of MET

Similar to the pattern of Met receptor overexpression in
invasive breast carcinomas, the expression of the non-RTK,
breast tumor kinase/protein tyrosine kinase 6 (Brk/PTK6),
increases in association with increasing histological grade

of breast tumors [75] and invasiveness of breast cancer cell
lines [76], while this kinase is notably absent from normal
mammary tissue [77]. We recently found that HGF robustly
activates Brk kinase activity in Met+ breast cancer cells
[78]. Brk was initially cloned in a screen for tyrosine
kinases expressed in metastatic breast cancers [79] and has
since been shown to be expressed in up to 86% of invasive
ductal breast carcinomas [75], as well as prostate and colon
carcinomas [77, 80, 81], 70% of serous ovarian carcinomas
[82], 37.5% of a small sample of head and neck squamous
cell carcinoma [83], and a small percentage of metastatic
melanomas [84].

Brk belongs to a family of soluble kinases similar to c-Src;
as such, Brk phosphorylation and kinase activity can be
induced via activation of growth factor receptor signaling
cascades, such as EGF, heregulin [75], or HGF [78]. The Brk
protein consists of an N-terminal SH2 domain, a Src
homology 3 (SH3) domain, and a C-terminal kinase domain
that is subject to autophosphorylation and autoinhibition [85]
(Fig. 2). However, unlike c-Src, Brk lacks an SH4 domain
required for myristoylation, thereby rendering it soluble (i.e.,
located in both cytoplasmic and nuclear compartments).
Similar to c-Src, Brk kinase activity is inhibited through
interactions with its own SH2 and SH3 domains [85], but the
Brk kinase domain shares higher homology to other family
members (Srm, Frk, and Src42A) than it does to the
prototypical c-Src kinase domain [86]. Proteins that can
associate with Brk (shown by immunoprecipitation) include
the RTKs EGFR/ErbB1, ErbB2, ErbB3 [87–89], adaptor
proteins, such as insulin receptor substrate-4 and GAP-A.p65
[90], RNA-binding proteins (Sam68; discussed below), and

Fig. 2 Brk protein domains and important regulatory residues. Brk
protein structure consists of one N-terminal SH3 domain, one SH2
domain, and a C-terminal kinase domain. Within the kinase domain
are three residues important for Brk kinase activity. Lys219 (K219) in
the ATP binding pocket is required for kinase activation. Mutation of
this site to Met (M) renders Brk kinase-inactive. Tyr342 (Y342) is
autophosphorylated upon Brk activation. Tyr447 (Y447) is required
for Brk autoinhibition. Substitution of Y to Phe (F) at this site mimics

phosphorylation and results in a constitutively active Brk molecule.
Brk domain-specific interacting proteins are indicated with dotted line
and substrates with arrow; references to the specific proteins are
reported in parenthesis [76, 78, 90, 92, 97, 98, 100, 101, 148–150].
PTB polypyrymidine tract, PSF protein-associated splicing factor,
IRS-4 insulin receptor substrate 4, BKS/STAP2 breast tumor kinase
substrate
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Erk5 MAPK [78] (Fig. 2). Similarly, Brk substrates include a
number of RNA-binding proteins and signaling molecules,
such as Sam68 [91], BKS/STAP-2 [92, 93], SLM-1 and -2
[94], paxillin [76], KAP3A [95], p190RhoGAP [96], and
PSF [97] (Fig. 2); most recently, Brk has been reported to
directly phosphorylate beta-catenin [98] and Akt/pkB [99].
Notably, signal transducers and activators of transcription
(STAT) 3 and STAT5b are direct substrates of Brk in vitro
[100, 101] and critical regulators of mammary gland function
[102, 103], in particular lactogenic differentiation (STAT5
[102]) and regression (STAT3 [104]) [105].

Like other protein tyrosine kinases, Brk mediates a range
of cellular processes related to the development or
maintenance of malignancy [106]. Brk expression sensitizes
mammary epithelial cells to the mitogenic effects of EGF
[87] and enhances PI3K signaling through increased ErbB3
phosphorylation [88], therefore increasing the strength of
pro-survival (potentially oncogenic) signaling events [102,
103]. Notably, Brk promotes anchorage independent
growth when expressed in non-transformed mammary
epithelial cells [87] and prevents detachment-induced
autophagic cell death in cancer cells [107, 108], suggesting
a potential mechanism for Brk-positive cancer cells to
survive the dissemination phase of metastasis. Brk also
promotes EGF or heregulin-induced Erk5 and p38 MAPK
activation as well as increased cyclin D1 expression [75]
and mediates HGF-induced Erk5 activation [78]; these
events were required for breast cancer cell migration
(further discussed below) [44, 75, 78]. Recently, Lofgren
et al. showed that WAP-driven Brk expression in mammary
epithelium of transgenic mice results in delayed post-
weaning mammary involution and early formation of
mammary tumors, most likely via promoting activation of
p38 MAPK. These events may prolong survival of
mammary epithelium normally programmed to undergo

apoptosis and alter the rate or progress of tissue remodel-
ing. Surviving cells may thus accumulate enough genetic
damage to form tumors [108].

Sam68 is a Tumor- and Brk-Associated RNA-Binding
Protein

Src-associated substrate during mitosis of 68 kDa (Sam68)
is an RNA-binding protein that was the first identified
substrate for Brk phosphorylation in vivo [91]. Brk
colocalizes with Sam68 in dynamic spherical nuclear
structures called Sam68/SLM nuclear bodies (SNBs)
[109]. SNBs measure less than 1 μM and are located in
proximity to the nucleoli. SNBs disassemble during mitosis
and upon treatment with transcriptional inhibitors [109].
Interestingly, SNBs were observed in immortalized and
transformed cells but absent in normal cells; in addition,
they correlate with differentiation status and tumorigenicity
in multiple breast cancer cell lines [109]. Thus, SNBs could
potentially be used as a marker for cancer cells.

Sam68 Domain Structure

Sam68 belongs to the heteronuclear ribonucleoprotein
particle K (hnRNP K) homology (KH) domain family of
RNA-binding proteins. Sam68 is also a member of the
signal transduction and activation of RNA (STAR) family
of proteins [110], as it contains a single extended KH
domain, embedded in a larger GSG domain, and motifs
recognized by downstream members of the signaling
pathways (Fig. 3). These domains and motifs allow
Sam68 to process RNA in response to extracellular signals.
The GSG domain (GRP33, Sam68, and GLD-1) is required

Fig. 3 Schematic representation of Sam68 structural/functional
domains. Sam68 is composed of a GSG domain, consisting of a
single RNA-binding KH domain flanked by NK (N-terminal of KH)
and CK (C-terminal of KH) segments, six consensus proline-rich

motifs (P0–P5), arginine-rich boxes (RG), C-terminal tyrosine-rich
domain (YY), and an NLS. Sam68 undergoes post-translational
modification such as SUMOylation (SU), acetylation (Ac), methyla-
tion (Me), and phosphorylation (P)
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for Sam68 RNA binding and homodimerization [4, 111].
While the mechanisms of action are unclear, this domain is
also essential for androgen-dependent proliferation and
survival of prostrate cancer cells [112]. Sam68 recognizes
bipartite RNA sequences and binds to RNA with high
affinity for poly (U) [113] and poly (A) [111] ribonucleo-
tide homopolymers [114]. Recently, the N-terminus of the
KH domain, referred to as Qua1, was identified as
sufficient for Sam68 homodimerization in vitro [115].
Tyrosine phosphorylation on Sam68 by soluble kinases,
such as Brk, causes a disruption of these dimers, reducing
the ability of Sam68 to bind RNA as compared to its
dephosphorylated state [91, 111, 116, 117].

In addition to the GSG domain, Sam68 contains six proline-
rich sequences (denoted P0 through P5) that are responsible for
Sam68 interaction with SH3 (Src homology 3) and WW
domain (a short conserved sequence with two signature Trp
(W) residues)-containing proteins [118] (Fig. 3). Sam68 was
originally identified as a substrate for Src kinase phosphor-
ylation during mitosis [113, 119, 120]; the interaction
between Src and Sam68 has been mapped to the SH2 and
SH3 domains of Src [113, 120]. In addition to c-Src, the SH3
domain of BRK/Sik (the mouse orthologue of Brk) [91], p85
subunit of PI3K [121], PLC γ-1 [122], and Grb2 [123]
interact with proline-rich sequences of Sam68; in particular,
P0, P3, P4, and P5 mediate the interaction with Src family
tyrosine kinases, leading to phosphorylation of Sam68 [122].

Upon phosphorylation, the tyrosine residues in the C-
terminal domain of Sam68 are important for binding to
proteins containing SH2 domains [91, 113, 119, 120, 122]
including BRK/Sik [116]. Association of Sam68 with SH3
domain-containing proteins decreases its RNA-binding
activity and induces its redistribution within the nucleus
[116]. Similar to other proteins involved in RNA metabo-
lism, Sam68 contains arginine-glycine (RG)-rich regions
and RGG boxes, flanked by proline-rich motifs P0, P3, and
P4 (Fig. 3), which are potential sites for arginine methyl-
ation [124]. Methylation of Sam68 induces localization to
the nuclear compartment [125] [126]. Sam68 exhibits a
non-conventional nuclear localization signal (NLS) that is
embedded in the last 24 amino acids (from 420 to 443) of
the C-terminal region [127] (Fig. 3). Finally, Sam68 also
contains two additional nuclear targeting motifs: PPXXR,
which is conserved in certain RNA-binding proteins [127],
and RXHPYQ/GR, which harbors arginine residues vital
for nuclear localization [128].

Sam68 Function and Cell Biology

Divergent roles for Sam68 in cancer have been defined and are
suggestive of diverse (context/cell type dependent) activities
that determine cell fate. Sam68 was originally defined as a

tumor suppressor protein [129, 130]; Sam68 knockout
fibroblast cells exhibit anchorage-independent growth, defec-
tive contact inhibition, and form metastatic tumors in nude
mice [129]. However, other studies suggest that Sam68
contributes to cell growth via regulation of alternative mRNA
splicing: in addition to CD44v5 [131], Sam68 is known to
regulate mRNA splicing of Bcl-xS [132] and cyclin D1
[133]. Additionally, Sam68 regulates cell cycle progression
by promoting S-phase entry through either its RNA-binding
or oligomerization abilities. Sam68 expression is elevated in
primary breast cancer compared to adjacent nontumorigenic
tissues, and its expression and cytoplasmic localization
correlate with clinical stage and ER protein levels [134].
Overexpression of wild-type Sam68 in mouse fibroblasts
leads to cell cycle arrest (in G1 phase) by downregulating
cyclin D1 expression, whereas overexpression of a natural
isoform of Sam68 (Sam68 ΔKH) with a deletion of amino
acid residues 170 to 208 (within the KH domain) induced
cell transformation (as measured by increased soft-agar
colony formation) [17, 135]. Downregulation of Sam68
expression reduces proliferation and anchorage-independent
growth of breast cancer cells [134]. Additionally, Sam68−/−

mice have defects in breast and uterine development, while
Sam68 haploinsufficiency correlates with delayed mammary
tumor onset [136]. In breast cancer cells, Sam68 colocalizes
with the transcriptional coactivator, CBP, and thus may act as
an indirect transcriptional repressor, independently of its
RNA binding ability [130]. Alternatively, in prostate, Sam68
interacts with androgen receptors and acts as a transcriptional
coactivator [137].

Phosphorylation of Sam68 Occurs on Both Tyr
and Ser/Thr Residues

Phosphorylation of Sam68 appears to be an important input to
its splicing and pro-metastatic activities. Interestingly, phos-
phorylation of Sam68 is elevated in specimens from breast
cancer patients [116]. Phosphorylation of the Sam68 C-
terminal domain at Tyr440 by Brk has been reported in
MDA-MB-231 breast cancer cells; upon EGF treatment, Brk
phosphorylates this residue leading to decreased Sam68
RNA-binding, Sam68 nuclear localization, and cell cycle
progression [116]. Notably, in this same model system,
Sam68 was also phosphorylated on Ser/Thr residues in a
MAP kinase-dependent manner following HGF/Met stimu-
lation [44]. Thus, Sam68 is a target of Brk and other soluble
tyrosine kinases and MAPKs (via Ser/Thr phosphorylation).
Sam68 contains eight potential proline-directed MAPK
phosphorylation sites [138] which are essential for
splicing activity and selectivity (namely, inclusion of exon
v5 in CD44 mature mRNA) in T-lymphocytes [131].
Moreover, Sam68 phosphorylation promotes EMT of
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colon adenocarcinoma cells via an ERK1/2-dependent
mechanism and alternative splicing of SF2/ASF tran-
scripts [139]. We found that HGF-induced Ser/Thr
phosphorylation of Sam68 occurs via either ERK1/2 or
ERK5-dependent pathways; these events were required for
HGF-induced migration of keratinocyte (HaCat) cells and
highly motile breast cancer (MDA-MB-231 and MDA-
MB-435) cells [44].

Thus, Sam68 appears to act as a convergence point for
multiple signaling pathways. Interestingly, phosphorylation
of Ser/Thr residues located outside of the Sam68 KH
domain mediated mRNA splicing (potentially of multiple
mRNA targets, including CD44v5) and ultimately in-
creased cell migration [44]. These data suggest a critical
role for Sam68 in breast tumor progression and potentially
in the process of metastasis. In sum, differential phosphor-
ylation events control Sam68 activity: tyrosine phosphory-
lation of Sam68 by Brk (or c-Src and Src-like kinases) may
primarily induce Sam68 nuclear localization and RNA
release required for proliferative responses [116], whereas
multisite Ser/Thr phosphorylation downstream of ERK1/2
or Brk-driven ERK5 signaling may control breast cancer
cell motility required for invasion and metastasis [44],
possibly via regulation of the specificity of Sam68-
dependent mRNA splicing (Fig. 4).

Novel Met Effectors (Brk, Erk5, and Sam68)
are Implicated in Breast Tumor Progression

In HGF-induced breast cancer and keratinocyte cell
migration, Brk acts downstream of Met receptors but

upstream of Erk5 [78]. We hypothesize that the HGF/Met
pathway functions to promote invasion and metastasis in
breast cancer (discussed above), in part via activation of
Brk and subsequent ERK5-dependent phosphorylation of
Sam68 on Ser/Thr residues. Brk likely mediates Met
receptor signaling to Erk5 via Brk/Erk5 complex formation.
Although the exact details of how Brk signals to Erk5 are
unknown, the Brk SH2 or SH3 domain(s) may function to
coordinate signaling complexes that recruit one or more
upstream kinases in the Erk5 MAPK module (MEKK2/3
and MEK5) and/or their activators, perhaps via linkage to
adaptor molecules that commonly recognize these abundant
signaling domains (discussed above). Remarkably, both
kinase-inactive and wild-type Brk activated endogenous
Erk5 and enhanced HGF-driven breast cancer cell motility

Fig. 4 Mechanism of action of Brk and Sam68 downstream of activated
Met receptors. Brk and Sam68 are essential effectors of HGF-induced cell
cycle progression (Brk-mediated Tyr phosphorylation of Sam68) and
migration (MAPK-mediated Ser/Thr phosphorylation of Sam68) via an
ERK5-dependent mechanism. Growth factor activation facilitates Brk
complex formation with ERK5 activating both tyrosine and serine/

threonine phosphorylation events which lead to downstream biological
outcomes. Brk also associates with and phosphorylates Sam68 to alter its
RNA binding activity and thus cell cycle progression. HGF binding to
Met receptors induces Brk, Erk5, and Sam68 dependent cellular
migration

Fig. 5 EGFR activity is required for HGF-induced phosphorylation of
Met receptors and activation of Erk5. MDA-MB-231 breast cancer
cells were pretreated with AG1478 (EGFR tyrosine kinase inhibitor)
for 30 min prior to HGF stimulation for 15 min. Cells were harvested
and Western blotted with antibodies against phospho-Met receptor,
total Met receptor, and total Erk5. The up-shifted higher migrating
band in the total Erk5 blot represents phosphorylated (i.e., on multiple
sites) and activated Erk5
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(Fig. 4). Sam68 was also required for HGF-induced cell
migration, and Sam68 phospho-mutants lacking multiple
ERK kinase consensus sites blocked migration in response
to HGF [78]. These studies indicate that scaffolding actions
are an important mediator of Brk function in breast cancer
cells. siRNA depletion of Brk, Erk5, or Sam68 abolished
HGF-induced cell migration in breast cancer cells [44, 78].
Notably, cellular migration and invasion are mediated by
Brk-induced Rac1 activation and phosphorylation of pax-
illin in response to EGF treatment [76]. Additionally,
downstream of Rac-1, Brk-dependent activation of p38
MAPK and increased expression of cyclin D1 appear to
contribute to EGF-induced cell migration [75].

Related to the above findings with EGF, Met can also
interact with the epidermal growth factor receptor (EGFR)
at multiple signaling levels, signifying an integration of
Brk/Erk5/Sam68 upstream activators. In hepatoma and
epidermoid carcinoma cell lines, ligand-independent phos-
phorylation of Met regulates TGFα-activated EGFR, as
TGFα and/or EGFR neutralizing antibodies abolished Met
phosphorylation [140]. In addition, EGFR activation in
thyroid carcinoma cells leads to Met overexpression and
constitutive activation [141]; more recently, Met has been
shown to collaborate with Her2 and Her3 [142]: Met/ErbB2
cooperation supports invasive growth by promoting break-
down of cell–cell junctions and enhancing cell invasion
[143]. Met also contributes to gefitinib resistance in EGFR-
activated cells through Met-driven ErbB3 (Her3) activation
[144]. Breast cancer cells insensitive to EGFR tyrosine
kinase inhibitors rely on Met and c-Src (and possibly Brk)
for growth signals [145, 146]. In hepatocellular and
pancreatic carcinoma, Met can be trans-activated not only
by EGFR but also by G-protein coupled receptors (GPCRs)
which increase reactive oxygen species (ROS), resulting in
tyrosine phosphatase inhibition and consequent Met recep-
tor activation [147]. Notably, in Brk+ MDA-MB-231 breast
cancer cells, HGF-induced activation of Met and Erk5 also
requires EGFR; blockade of EGFR kinase activation using
AG1478 abolished HGF-induced Met and Erk5 phosphor-
ylation (Fig. 5). Brk activation downstream of EGFR
family members is well documented ([106] and discussed
above). Thus, EGFR-dependent transactivation of Met
receptors provides a potential avenue for amplified Brk
signaling as a direct input to selected downstream effectors
important for cell migration, including Erk5 and Sam68
[44, 75, 78].

Summary

HGF/Met signaling to Brk, Erk5, and Sam68 is emerging as
an important pathway in breast tumorigenesis and breast
tumor progression (Fig. 4). Recent work from our group

has defined a pathway whereby activation of the Met
receptor (and ErbB receptors) induces a Brk/Erk5/Sam68
complex (Lange, unpublished data) which functions to
reprogram cell mRNA splicing and thus protein expression
to favor breast cancer cell motility [44, 75, 78]. HGF-
induced cell migration occurs independently of Brk kinase
activity [78], indicating that the ability of Brk to act as a
scaffold to increase MAPK (Erk1/2 and Erk5) activity
(leading to Sam68 Ser/Thr phosphorylation) is critical to
the oncogenic potential of Brk. However, the molecular
details of these events remain largely undefined. Perhaps in
cancer cells, Brk scaffolding actions ultimately become
dominant because overexpressed Brk-SH2 and -SH3
domains signal promiscuously; Brk is absent or expressed
at very low levels in normal mammary epithelial cells [77].
Clearly, a better understanding of the complexity and the
role(s) played by Brk, various ERKs, and other Sam68-
binding proteins functioning downstream of activated Met
receptors in breast cancer cells is badly needed; Met, Brk,
Erk5, and Sam68 may be considered as part of potential
targeted therapies for treatment of metastatic breast cancer
or serve as markers for tumors predicted to respond to
MAPK (MEK) inhibitors.
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