Skip to main content

Advertisement

Log in

Efficiency of Silicate-Based Composites in the Healing Process of Diabetic Wound

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Diabetic wound is considered as the most important side effect of diabetes. This wound can lead to increase of various complications in diabetic patients. Different strategies have been developed for treatment of diabetic wounds. The use of wound dressing with suitable biological properties is the most considerable. In this review, we described the diabetic wounds and biological process of wound healing. Then, we focused on description of ideal wound dressing and their biochemical properties with special attention to silicate bioceramics. Based on our literature review, silicate bioceramics can be used as ideal alternative to traditional dressings for treatment of diabetic wounds via regulation of the activity of keratinocytes, fibroblasts, macrophages, and endothelial cells; increase of cell growth tissue regeneration and epithelial reformation; and inhibition of microbial growth. However, paying attention to the optimal concentration of silicate bioceramics should be noted for reduction of its toxicity. Considering these mentioned properties and the possibility of preparing composites from them, silicate bioceramics-based wound dressings can be recommended for wound healing compared to traditional dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data is available in manuscript.

References

  1. Kavitha, K. V., et al. (2014). Choice of wound care in diabetic foot ulcer: A practical approach. World Journal of Diabetes, 5(4), 546.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, Y., et al. (2021). Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment. ACS Applied Materials & Interfaces, 13(28), 33584–33599.

    Article  CAS  Google Scholar 

  3. Jones, R. E., Foster, D. S., & Longaker, M. T. (2018). Management of chronic wounds—2018. JAMA, 320(14), 1481–1482.

    Article  PubMed  Google Scholar 

  4. Liang, Y., He, J., & Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 15(8), 12687–12722.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Y., et al. (2020). Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromolecular Rapid Communications, 41(24), 2000441.

    Article  CAS  Google Scholar 

  6. Shevchenko, R. V., James, S. L., & James, S. E. (2010). A review of tissue-engineered skin bioconstructs available for skin reconstruction. Journal of the Royal Society Interface, 7(43), 229–258.

    Article  CAS  PubMed  Google Scholar 

  7. Yildirimer, L., Thanh, N. T., & Seifalian, A. M. (2012). Skin regeneration scaffolds: A multimodal bottom-up approach. Trends in Biotechnology, 30(12), 638–648.

    Article  CAS  PubMed  Google Scholar 

  8. Tian, T., Wu, C., & Chang, J. (2016). Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi 4 O 10, Cup) bioceramics. RSC Advances, 6(51), 45840–45849.

    Article  CAS  ADS  Google Scholar 

  9. Soltaninejad, H., et al. (2021). Antimicrobial peptides from amphibian innate immune system as potent antidiabetic agents: A literature review and bioinformatics analysis. Journal of Diabetes Research 2021,2894722.

  10. Yazdanpanah, Z., et al. (2017). Effect of Ziziphus jujube fruit infusion on lipid profiles, glycaemic index and antioxidant status in type 2 diabetic patients: A randomized controlled clinical trial. Phytotherapy Research, 31(5), 755–762.

    Article  CAS  PubMed  Google Scholar 

  11. Kandimalla, R., Thirumala, V., & Reddy, P. H. (2017). Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1078–1089.

    Article  CAS  PubMed  Google Scholar 

  12. Harding, J. L., et al. (2019). Global trends in diabetes complications: A review of current evidence. Diabetologia, 62, 3–16.

    Article  PubMed  Google Scholar 

  13. Du, X., et al. (2022). pH-switchable nanozyme cascade catalysis: A strategy for spatial–temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. Journal of Nanobiotechnology, 20(1), 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang, L., et al. (2021). In situ photo-cross-linking hydrogel accelerates diabetic wound healing through restored hypoxia-inducible factor 1-alpha pathway and regulated inflammation. ACS Applied Materials & Interfaces, 13(25), 29363–29379.

    Article  CAS  Google Scholar 

  15. Rosyid, F. N. (2017). Etiology, pathophysiology, diagnosis and management of diabetics’ foot ulcer. International Journal of Research in Medical Sciences, 5(10), 4206–4213.

    Article  Google Scholar 

  16. Ansari, M., et al. (2018). Biodegradable cell-seeded collagen based polymer scaffolds for wound healing and skin reconstruction. Journal of Macromolecular Science, Part B, 57(2), 100–109.

    Article  CAS  ADS  Google Scholar 

  17. Alven, S., et al. (2022). Polymer-based wound dressing materials loaded with bioactive agents: Potential materials for the treatment of diabetic wounds. Polymers, 14(4), 724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nwomeh, B. C., et al. (1999). MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. Journal of Surgical Research, 81(2), 189–195.

    Article  CAS  PubMed  Google Scholar 

  19. Gill, S. E., & Parks, W. C. (2008). Metalloproteinases and their inhibitors: Regulators of wound healing. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1334–1347.

    Article  CAS  Google Scholar 

  20. Mao, S., Sun, W., & Kissel, T. (2010). Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 62(1), 12–27.

    Article  CAS  PubMed  Google Scholar 

  21. Howard, K. A., et al. (2009). Chitosan/siRNA nanoparticle–mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Molecular Therapy, 17(1), 162–168.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., et al. (2022). 45S5 Bioglass® works synergistically with siRNA to downregulate the expression of matrix metalloproteinase-9 in diabetic wounds. Acta Biomaterialia, 145, 372–389.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, Y., et al. (2020). Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials, 256, 120216.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Howard, K. A., et al. (2006). RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Molecular Therapy, 14(4), 476–484.

    Article  CAS  PubMed  Google Scholar 

  25. Nawroth, I., et al. (2010). Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis. Radiotherapy and Oncology, 97(1), 143–148.

    Article  CAS  PubMed  Google Scholar 

  26. Burgess, J. L., et al. (2021). Diabetic wound-healing science. Medicina, 57(10), 1072.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ordooei, M., et al. (2014). Effect of vitamin D on HbA1c levels of children and adolescents with diabetes mellitus type 1. Minerva Pediatrica, 69(5), 391–395.

    PubMed  Google Scholar 

  28. Zhu, Y., et al. (2020). A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Advanced Functional Materials, 30(6), 1905493.

    Article  CAS  Google Scholar 

  29. Wu, H., et al. (2019). Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Central Science, 5(3), 477–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blakytny, R., & Jude, E. B. (2009). Altered molecular mechanisms of diabetic foot ulcers. The International Journal of Lower Extremity Wounds, 8(2), 95–104.

    Article  PubMed  Google Scholar 

  31. Ryan, M. C., et al. (1999). Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. The Journal of Cell Biology, 145(6), 1309–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strycharz-Dudziak, M., et al. (2020). Glutathione peroxidase (GPx) and superoxide dismutase (SOD) in oropharyngeal cancer associated with EBV and HPV coinfection. Viruses, 12(9), 1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, H. Y., et al. (2011). A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Experimental Dermatology, 20(12), 969–974.

    Article  CAS  PubMed  Google Scholar 

  34. Deng, L., et al. (2021). The role of oxidative stress and antioxidants in diabetic wound healing. Oxidative Medicine and Cellular Longevity, 2021, 1–11

  35. Obrosova, I. G. (2003). Update on the pathogenesis of diabetic neuropathy. Current diabetes reports, 3(6), 439–445.

    Article  PubMed  Google Scholar 

  36. Zochodne, D. W. (2008). Diabetic polyneuropathy: An update. Current opinion in neurology, 21(5), 527–533.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, PK. (1997). Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Diabetes 46(Supplement_2), S54–7

  38. Zimmet, P., et al. (2005). The metabolic syndrome: A global public health problem and a new definition. Journal of Atherosclerosis and Thrombosis, 12(6), 295–300.

    Article  CAS  PubMed  Google Scholar 

  39. Cameron, N., & Cotter, M. (1996). Comparison of the effects of ascorbyl γ-linolenic acid and γ-linolenic acid in the correction of neurovascular deficits in diabetic rats. Diabetologia, 39, 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  40. Xia, P., et al. (1994). Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes, 43(9), 1122–1129.

    Article  CAS  PubMed  Google Scholar 

  41. Honing, M. L., et al. (1998). Nitric oxide availability in diabetes mellitus. Diabetes/Metabolism Reviews, 14(3), 241–249.

    Article  CAS  PubMed  Google Scholar 

  42. Yorek, M. A., et al. (1993). Reduced motor nerve conduction velocity and Na+-K+-ATPase activity in rats maintained on L-fucose diet: Reversal by myo-inositol supplementation. Diabetes, 42(10), 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  43. Cameron, N., et al. (1997). Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia, 40, 271–281.

    Article  CAS  PubMed  Google Scholar 

  44. Pittenger, G., & Vinik, A. (2003). Nerve growth factor and diabetic neuropathy. Experimental diabesity research, 4(4), 271–285.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Noor, S., Zubair, M., & Ahmad, J. (2015). Diabetic foot ulcer—A review on pathophysiology, classification and microbial etiology. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(3), 192–199.

    Article  Google Scholar 

  46. Shaw, J. E., & Boulton, A. J. (1997). The pathogenesis of diabetic foot problems: An overview. Diabetes, 46(Supplement_2), S58–S61.

    Article  CAS  PubMed  Google Scholar 

  47. Gardner, S. E., & Frantz, R. A. (2008). Wound bioburden and infection-related complications in diabetic foot ulcers. Biological Research for Nursing, 10(1), 44–53.

    Article  PubMed  Google Scholar 

  48. Clayton Jr, W., & Elasy, T. A. (2009). A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clinical Diabetes, 27(2), 52–58.

    Article  Google Scholar 

  49. David L. (2001). Diabetic wounds: assessment, classification and management. Chronic wound care: A clinical book for healthcare professionals. 3rd ed. Health Management Pub. 2001, 589–97

  50. Iqbal, Z., et al. (2021). Lipids and peripheral neuropathy. Current Opinion in Lipidology, 32(4), 249–257.

    Article  CAS  PubMed  Google Scholar 

  51. Generini, S., et al. (2004). Topical application of nerve growth factor in human diabetic foot ulcers. A study of three cases. Experimental and Clinical Endocrinology & Diabetes, 112(09), 542–544.

    Article  CAS  Google Scholar 

  52. Lipsky, B.A., et al. (2004). Diagnosis and treatment of diabetic foot infections. Clinical Infectious Diseases 1, 885–910

  53. Colwell, J. A. (1986). Effects of exercise on platelet function, coagulation, and fibrinolysis. Diabetes/Metabolism Reviews, 1(4), 501–512.

    Article  CAS  PubMed  Google Scholar 

  54. Dinh, T. L., & Veves, A. (2005). A review of the mechanisms implicated in the pathogenesis of the diabetic foot. The International Journal of Lower Extremity Wounds, 4(3), 154–159.

    Article  PubMed  Google Scholar 

  55. Shah, S. A., et al. (2019). Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. International Journal of Biological Macromolecules, 139, 975–993.

    Article  CAS  PubMed  Google Scholar 

  56. Jhamb, S., Vangaveti, V. N., & Malabu, U. H. (2016). Genetic and molecular basis of diabetic foot ulcers: Clinical review. Journal of Tissue Viability, 25(4), 229–236.

    Article  PubMed  Google Scholar 

  57. Almasian, A., et al. (2021). Preparation of polyurethane/pluronic F127 nanofibers containing peppermint extract loaded gelatin nanoparticles for diabetic wounds healing: Characterization, in vitro, and in vivo studies. Evidence-Based Complementary and Alternative Medicine, 2021, 1–16

  58. Yang, X., et al. (2022). Biocompatibility of a new calcium silicate-based root canal sealer mediated via the modulation of macrophage polarization in a rat model. Materials, 15(5), 1962.

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Li, B., et al. (2021). Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions. Burns & Trauma, 9, tkab029.

    Article  Google Scholar 

  60. Wang, J., et al. (2017). Distinctively expressed cytokines by three different inflammation cells and their interaction with keratinocytes in wound healing. Inflammation, 40, 2151–2162.

    Article  CAS  PubMed  Google Scholar 

  61. Golebiewska, E. M., & Poole, A. W. (2015). Platelet secretion: From haemostasis to wound healing and beyond. Blood Reviews, 29(3), 153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Akbari, A., et al. (2012). Red blood cell lysate modulates the expression of extracellular matrix proteins in dermal fibroblasts. Molecular and Cellular Biochemistry, 370, 79–88.

    Article  CAS  PubMed  Google Scholar 

  63. Yang, F., et al. (2021). The biological processes during wound healing. Regenerative Medicine, 16(04), 373–390.

    Article  CAS  PubMed  Google Scholar 

  64. Cunnion, K. M., et al. (2017). Complement activation and STAT4 expression are associated with early inflammation in diabetic wounds. PLoS ONE, 12(1), e0170500.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kim, H., et al. (2019). Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Advanced Science, 6(20), 1900513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sîrbulescu, R. F., et al. (2017). Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions. Wound Repair and Regeneration, 25(5), 774–791.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tanno, H., et al. (2015). Contribution of invariant natural killer T cells to skin wound healing. The American Journal of Pathology, 185(12), 3248–3257.

    Article  CAS  PubMed  Google Scholar 

  68. Nosbaum, A., et al. (2016). Cutting edge: Regulatory T cells facilitate cutaneous wound healing. The Journal of Immunology, 196(5), 2010–2014.

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Q., et al. (2012). NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. The American Journal of Pathology, 181(2), 452–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, D., & Insel, P. A. (2014). Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. American Journal of Physiology-Cell Physiology, 306(9), C779–C788.

    Article  CAS  PubMed  Google Scholar 

  71. Hu, X., et al. (2020). Activation of mTORC1 in fibroblasts accelerates wound healing and induces fibrosis in mice. Wound Repair and Regeneration, 28(1), 6–15.

    Article  CAS  PubMed  Google Scholar 

  72. Kechagia, J. Z., Ivaska, J., & Roca-Cusachs. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews Molecular Cell Biology, 20(8), 457–473.

    Article  CAS  PubMed  Google Scholar 

  73. Li, Y., & Huard, J. (2002). Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. The American Journal of Pathology, 161(3), 895–907.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nakagawa, T., et al. (2013). Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy. Journal of diabetes Research, 2013, 1–7

  75. Leoni, G., et al. (2015). Wound repair: Role of immune–epithelial interactions. Mucosal Immunology, 8(5), 959–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wojtowicz, A. M., et al. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration, 22(2), 246–255.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hu, X., et al. (2012). Epidermal cells delivered for cutaneous wound healing. Journal of Dermatological Treatment, 23(3), 224–237.

    Article  CAS  PubMed  Google Scholar 

  78. Shankhdhar, K., et al. (2011). A case report: Offloading the diabetic foot wound in the developing world. J Diab Foot Comp, 3(2), 26–29.

    Google Scholar 

  79. Webster, J., et al. (2011). Negative pressure wound therapy for skin grafts and surgical wounds healing by primary intention (Protocol). Cochrane Database of Systematic Reviews, 18(4):1–13

  80. El Fawal, G., et al. (2021). Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. Journal of Drug Delivery Science and Technology, 63, 102501.

    Article  Google Scholar 

  81. Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing—A review. Journal of Pharmaceutical Sciences, 104(11), 3653–3680.

    Article  CAS  PubMed  Google Scholar 

  82. Powers, J. G., Morton, L. M., & Phillips, T. J. (2013). Dressings for chronic wounds. Dermatologic Therapy, 26(3), 197–206.

    Article  PubMed  Google Scholar 

  83. Weng, T., et al. (2020). Regeneration of skin appendages and nerves: Current status and further challenges. Journal of Translational Medicine, 18(1), 1–17.

    Article  MathSciNet  Google Scholar 

  84. Boateng, J. S., et al. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923.

    Article  CAS  PubMed  Google Scholar 

  85. Fonder, M. A., et al. (2008). Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. Journal of the American Academy of Dermatology, 58(2), 185–206.

    Article  PubMed  Google Scholar 

  86. Morin, R. J., & Tomaselli, N. L. (2007). Interactive dressings and topical agents. Clinics in Plastic Surgery, 34(4), 643–658.

    Article  PubMed  Google Scholar 

  87. Kennedy, J., et al. (1998). Carbohydrate polymers as wound management aids. Carbohydrate Polymers, 4(34), 422.

    Google Scholar 

  88. Mulder, M. (2011). The selection of wound care products for wound bed preparation: Wound care. Professional Nursing Today, 15(6), 30–36.

    Google Scholar 

  89. Harding, K., Jones, V., & Price,. (2000). Topical treatment: which dressing to choose. Diabetes/Metabolism Research and Reviews, 16(S1), S47–S50.

    Article  PubMed  Google Scholar 

  90. Morton, L. M., & Phillips, T. J. (2012). Wound healing update. in seminars in Cutaneous Medicine and Surgery. WB Saunders.

    Google Scholar 

  91. Wittaya-areekul, S., & Prahsarn, C. (2006). Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings. International Journal of Pharmaceutics, 313(1–2), 123–128.

    Article  CAS  PubMed  Google Scholar 

  92. Liu, H., et al. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533–7549.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Moura, L. I. F. (2013). Development of novel therapeutic approaches for wound healing in diabetes. Portugal: Universidade de Coimbra.

    Google Scholar 

  94. El Fawal, G. F. (2020). Polymer nanofibers electrospinning: A review. Egyptian Journal of Chemistry, 63(4), 1279–1303.

    Google Scholar 

  95. Tort, S., Acartürk, F., & Beşikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1–2), 642–653.

    Article  CAS  PubMed  Google Scholar 

  96. Liu, M., et al. (2017). Electrospun nanofibers for wound healing. Materials Science and Engineering: C, 76, 1413–1423.

    Article  CAS  PubMed  Google Scholar 

  97. Heydari, P., et al. (2018). Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core-shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings. Polymers for Advanced Technologies, 29(6), 1795–1803.

    Article  CAS  Google Scholar 

  98. Merrell, J. G., et al. (2009). Curcumin loaded poly (ε-caprolactone) nanofibers: Diabetic wound dressing with antioxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology & Physiology, 36(12), 1149.

    Article  CAS  Google Scholar 

  99. Hilton, J., et al. (2004). Wound dressings in diabetic foot disease. Clinical Infectious Diseases, 39(Supplement_2), S100–S103.

    Article  PubMed  Google Scholar 

  100. Zhao, Y., et al. (2022). Skin-adaptive film dressing with smart-release of growth factors accelerated diabetic wound healing. International Journal of Biological Macromolecules, 222, 2729–2743.

    Article  CAS  PubMed  Google Scholar 

  101. Hu, C., et al. (2021). Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chemical Engineering Journal, 411, 128564.

    Article  CAS  Google Scholar 

  102. Hamedi, H., et al. (2018). Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 199, 445–460.

    Article  CAS  PubMed  Google Scholar 

  103. Ansari, M., Meftahizadeh, H., & Eslami, H. (2023). Physical and antibacterial properties of chitosan-guar-peppermint gel for improving wound healing. Polymer Bulletin, 80(7), 8133–8149.

    Article  CAS  Google Scholar 

  104. Hu, H., et al. (2022). Microalgae-based bioactive hydrogel loaded with quorum sensing inhibitor promotes infected wound healing. Nano Today, 42, 101368.

    Article  CAS  Google Scholar 

  105. Vijayan, A., Vipin, C., & Kumar, G. V. (2022). Dual growth factor entrapped nanoparticle enriched alginate wafer-based delivery system for suppurating wounds. International Journal of Biological Macromolecules, 208, 172–181.

    Article  CAS  PubMed  Google Scholar 

  106. Pawar, H. V., et al. (2014). Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing. Journal of Pharmaceutical Sciences, 103(6), 1720–1733.

    Article  CAS  PubMed  Google Scholar 

  107. Sandhu, S. K., et al. (2023). Nanocurcumin and viable Lactobacillus plantarum based sponge dressing for skin wound healing. International Journal of Pharmaceutics, 643, 123187.

    Article  Google Scholar 

  108. Anisha, B., et al. (2013). Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. International Journal of Biological Macromolecules, 62, 310–320.

    Article  CAS  PubMed  Google Scholar 

  109. Paul, W. (2015). Advances in wound healing materials. Smithers Rapra.

    Google Scholar 

  110. Wang, X., & Tang, M. (2022). Bioceramic materials with ion-mediated multifunctionality for wound healing. Smart Medicine, 1(1), e20220032.

    Article  Google Scholar 

  111. Vishwakarma, A., & Karp, J. M. (2017). Biology and engineering of stem cell niches. Academic Press.

    Google Scholar 

  112. Punj, S., Singh, J., & Singh, K. (2021). Ceramic biomaterials: Properties, state of the art and future prospectives. Ceramics International, 47(20), 28059–28074.

    Article  CAS  Google Scholar 

  113. Mehrabi, T., Mesgar, A. S., & Mohammadi, Z. (2020). Bioactive glasses: A promising therapeutic ion release strategy for enhancing wound healing. ACS Biomaterials Science & Engineering, 6(10), 5399–5430.

    Article  CAS  Google Scholar 

  114. Rahman, M. A., et al. (2020). Calcium ion mediated rapid wound healing by nano-ZnO doped calcium phosphate-chitosan-alginate biocomposites. Materialia, 13, 100839.

    Article  CAS  Google Scholar 

  115. Kong, L., et al. (2018). Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Applied Materials & Interfaces, 10(36), 30103–30114.

    Article  CAS  Google Scholar 

  116. Chitra, S., et al. (2020). Impact of copper on in-vitro biomineralization, drug release efficacy and antimicrobial properties of bioactive glasses. Materials Science and Engineering: C, 109, 110598.

    Article  CAS  PubMed  Google Scholar 

  117. Yu, Q., Chang, J., & Wu, C. (2019). Silicate bioceramics: From soft tissue regeneration to tumor therapy. Journal of Materials Chemistry B, 7(36), 5449–5460.

    Article  CAS  PubMed  Google Scholar 

  118. Liu, W., et al. (2016). Akermanite used as an alkaline biodegradable implants for the treatment of osteoporotic bone defect. Bioactive Materials, 1(2), 151–159.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lin, Y., et al. (2016). Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Materials Science and Engineering: C, 67, 440–452.

    Article  CAS  PubMed  Google Scholar 

  120. Wu, J., Sun, J., & Liu, J. (2014). Evaluation of PHBV/calcium silicate composite scaffolds for cartilage tissue engineering. Applied Surface Science, 317, 278–283.

    Article  CAS  ADS  Google Scholar 

  121. Zhai, W., et al. (2013). Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomaterialia, 9(8), 8004–8014.

    Article  CAS  PubMed  Google Scholar 

  122. Han, Y., et al. (2013). The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomaterialia, 9(11), 9107–9117.

    Article  CAS  PubMed  Google Scholar 

  123. Wang, X., Chang, J., & Wu, C. (2018). Bioactive inorganic/organic nanocomposites for wound healing. Applied Materials Today, 11, 308–319.

    Article  Google Scholar 

  124. Li, Y., et al. (2017). Multifunctional hydrogels prepared by dual ion cross-linking for chronic wound healing. ACS Applied Materials & Interfaces, 9(19), 16054–16062.

    Article  CAS  Google Scholar 

  125. Lv, F., et al. (2017). A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomaterialia, 60, 128–143.

    Article  CAS  PubMed  Google Scholar 

  126. Wu, C., Ramaswamy, Y., & Zreiqat, H. (2010). Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering. Acta Biomaterialia, 6(6), 2237–2245.

    Article  CAS  PubMed  Google Scholar 

  127. Fan, C., et al. (2022). Multi-functional wound dressings based on silicate bioactive materials. Biomaterials, 287, 121652.

    Article  CAS  PubMed  Google Scholar 

  128. Cui, C., et al. (2018). An autolytic high strength instant adhesive hydrogel for emergency self-rescue. Advanced Functional Materials, 28(42), 1804925.

    Article  Google Scholar 

  129. Sasaki, Y., Sathi, G. A., & Yamamoto, O. (2017). Wound healing effect of bioactive ion released from Mg-smectite. Materials Science and Engineering: C, 77, 52–57.

    Article  CAS  PubMed  Google Scholar 

  130. Ma, J., et al. (2021). 3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regeneration. Advanced Healthcare Materials, 10(16), 2100523.

    Article  CAS  ADS  Google Scholar 

  131. Zhao, S., et al. (2015). Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials, 53, 379–391.

    Article  CAS  PubMed  Google Scholar 

  132. Wu, C., et al. (2013). Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 34(2), 422–433.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, H., et al. (2022). Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Advanced healthcare materials, 11(10), 2102359.

    Article  MathSciNet  CAS  Google Scholar 

  134. Zhang, Z., et al. (2021). Design of a biofluid-absorbing bioactive sandwich-structured Zn–Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioactive Materials, 6(7), 1910–1920.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, Z., et al. (2020). Design of a multifunctional biomaterial inspired by ancient Chinese medicine for hair regeneration in burned skin. ACS applied materials & interfaces, 12(11), 12489–12499.

    Article  CAS  Google Scholar 

  136. Yu, Q., et al. (2019). Chinese sesame stick-inspired nano-fibrous scaffolds for tumor therapy and skin tissue reconstruction. Biomaterials, 194, 25–35.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, Z., et al. (2021). Curcumin/Fe-SiO2 nano composites with multi-synergistic effects for scar inhibition and hair follicle regeneration during burn wound healing. Applied Materials Today, 23, 101065.

    Article  Google Scholar 

  138. Song, E.-H., et al. (2017). Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Materials Science and Engineering: C, 79, 866–874.

    Article  CAS  PubMed  Google Scholar 

  139. Yang, Y., et al. (2022). A quaternized chitin derivatives, egg white protein and montmorillonite composite sponge with antibacterial and hemostatic effect for promoting wound healing. Composites Part B: Engineering, 234, 109661.

    Article  CAS  Google Scholar 

  140. Yuan, Z., et al. (2023). Anti-inflammatory, antibacterial, and antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing. Smart Materials in Medicine, 4, 407–426.

    Article  Google Scholar 

  141. Nozari, M., et al. (2021). Studies on novel chitosan/alginate and chitosan/bentonite flexible films incorporated with ZnO nano particles for accelerating dermal burn healing: In vivo and in vitro evaluation. International Journal of Biological Macromolecules, 184, 235–249.

    Article  CAS  PubMed  Google Scholar 

  142. Xue, J., et al. (2019). Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomaterialia, 100, 270–279.

    Article  CAS  PubMed  Google Scholar 

  143. Aydogdu, M. O., et al. (2018). Production and characterization of antimicrobial electrospun nanofibers containing polyurethane, zirconium oxide and zeolite. Bionanoscience, 8, 154–165.

    Article  MathSciNet  Google Scholar 

  144. Long, M., et al. (2021). A new nanoclay-based bifunctional hybrid fiber membrane with hemorrhage control and wound healing for emergency self-rescue. Materials Today Advances, 12, 100190.

    Article  CAS  Google Scholar 

  145. Zhang, Y., et al. (2019). Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale, 11(13), 6315–6333.

    Article  CAS  PubMed  Google Scholar 

  146. Li, X., et al. (2015). Effect of composite SiO2@ AuNPs on wound healing: In vitro and vivo studies. Journal of Colloid and Interface Science, 445, 312–319.

    Article  CAS  PubMed  ADS  Google Scholar 

  147. Wang, X., et al. (2016). Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomaterialia, 46, 286–298.

    Article  CAS  PubMed  Google Scholar 

  148. Li, Y., et al. (2020). Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics, 10(11), 4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zeng, Q., et al. (2015). Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B, 3(45), 8856–8864.

    Article  CAS  PubMed  Google Scholar 

  150. Alvarez, G. S., et al. (2014). Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. Journal of Materials Chemistry B, 2(29), 4660–4670.

    Article  CAS  PubMed  Google Scholar 

  151. El-Kady, A. M., Ali, A., & El-Fiqi, A. (2020). Controlled delivery of therapeutic ions and antibiotic drug of novel alginate-agarose matrix incorporating selenium-modified borosilicate glass designed for chronic wound healing. Journal of Non-Crystalline Solids, 534, 119889.

    Article  CAS  Google Scholar 

  152. Qin, P., et al. (2022). Zn2+ Cross-linked alginate carrying hollow silica nanoparticles loaded with RL-QN15 Peptides provides promising treatment for chronic skin wounds. ACS Applied Materials & Interfaces, 14(26), 29491–29505.

    Article  CAS  Google Scholar 

  153. Yuan, S., Tomson, T., & Larsson, S. C. (2021). Modifiable risk factors for epilepsy: A two-sample Mendelian randomization study. Brain and Behavior, 11(5), e02098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wali, A., et al. (2019). In vivo wound healing performance of halloysite clay and gentamicin-incorporated cellulose ether-PVA electrospun nanofiber mats. ACS Applied Bio Materials, 2(10), 4324–4334.

    Article  CAS  PubMed  Google Scholar 

  155. Ren, X., et al. (2018). An aligned porous electrospun fibrous membrane with controlled drug delivery–an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomaterialia, 70, 140–153.

    Article  CAS  PubMed  Google Scholar 

  156. Chen, Y.-H., et al. (2021). Multifunctional injectable hydrogel loaded with cerium-containing bioactive glass nanoparticles for diabetic wound healing. Biomolecules, 11(5), 702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huang, X., et al. (2022). Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. Journal of Nanobiotechnology, 20(1), 1–19.

    Article  Google Scholar 

  158. Zhu, W., et al. (2022). A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomaterialia, 154, 212–230.

    Article  CAS  PubMed  Google Scholar 

  159. Naveen, N. R., et al. (2023). QbD assisted formulation design and optimization of thiol pectin based polyethyleneglycol and montmorillonite (PEG/MMT) nanocomposite films of neomycin sulphate for wound healing. Journal of Drug Delivery Science and Technology, 82, 104348.

    Article  Google Scholar 

  160. dos Santos Gomes, D., et al. (2022). Ceramic nanofiber materials for wound healing and bone regeneration: A brief review. Materials, 15(11), 3909.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  161. Li, H., et al. (2016). Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials, 84, 64–75.

    Article  CAS  PubMed  ADS  Google Scholar 

  162. Solanki, A. K., et al. (2021). Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomaterials Research, 25, 1–16.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  163. Zheng, K., et al. (2021). Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomaterialia, 133, 168–186.

    Article  CAS  PubMed  Google Scholar 

  164. Wang, Y., et al. (2023). Multi-layer-structured bioactive glass nanopowder for multistage-stimulated hemostasis and wound repair. Bioactive Materials, 25, 319–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ma, J., & Wu, C. (2022). Bioactive inorganic particles‐based biomaterials for skin tissue engineering. Exploration. Wiley Online Library.

    Google Scholar 

  166. Baker, S. E., et al. (2007). Controlling bioprocesses with inorganic surfaces: Layered clay hemostatic agents. Chemistry of Materials, 19(18), 4390–4392.

    Article  CAS  Google Scholar 

  167. Fortis, S. P., et al. (2024). Effect of silica-based mesoporous nanomaterials on human blood cells. Chemico-Biological Interactions, 387, 110784.

    Article  CAS  PubMed  Google Scholar 

  168. Lopes, P., et al. (2011). Silicate and borate glasses as composite fillers: A bioactivity and biocompatibility study. Journal of Materials Science: Materials in Medicine, 22, 1501–1510.

    CAS  PubMed  Google Scholar 

  169. Thrivikraman, G., Madras, G., & Basu, B. (2014). In vitro/in vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Advances, 4(25), 12763–12781.

    Article  CAS  ADS  Google Scholar 

  170. Stea, S., et al. (2000). Apoptosis in peri-implant tissue. Biomaterials, 21(13), 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  171. Xiao, J., et al. (2017). A cooperative copper metal–organic framework-hydrogel system improves wound healing in diabetes. Advanced functional materials, 27(1), 1604872.

    Article  PubMed  Google Scholar 

  172. Jugdaohsingh, R. (2007). Silicon and bone health. The Journal of Nutrition, Health & Aging, 11(2), 99.

    CAS  Google Scholar 

  173. Schwarz, K. (1973). A bound form of silicon in glycosaminoglycans and polyuronides. Proceedings of the National Academy of Sciences, 70(5), 1608–1612.

    Article  CAS  ADS  Google Scholar 

  174. Huang, Y., et al. (2022). Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & Pharmacotherapy, 151, 113053.

    Article  CAS  Google Scholar 

  175. Passagne, I., et al. (2012). Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology, 299(2–3), 112–124.

    Article  CAS  PubMed  Google Scholar 

  176. Huang, Y.-C., et al. (2006). Effect of calcium ion concentration on keratinocyte behaviors in the defined media. Biomedical Engineering: Applications, Basis and Communications, 18(01), 37–41.

    Google Scholar 

  177. Hennings, H., et al. (1980). Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell, 19(1), 245–254.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

In this study, all authors contributed to the design, write, and review of the manuscript. MR contributed to search and data collection. HS contributed to data collection and management. HZZ managed and supervised the project. MA contributed to search and data collection and edition of manuscript. NA contributed to preparation of figures and tables.

Corresponding author

Correspondence to Hadi Zare-Zardini.

Ethics declarations

Competing Interests

None.

Ethical Approval

None.

Consent for Publication

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaei, M., Eslami, H., Zare-Zardini, H. et al. Efficiency of Silicate-Based Composites in the Healing Process of Diabetic Wound. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01314-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01314-2

Keywords

Navigation