Skip to main content
Log in

Development and Optimization of Cefuroxime Axetil Nanosuspension for Improved Oral Bioavailability: In-Vitro and In-Vivo Investigations

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cefuroxime axetil is a significantly used in drug formulation. Therefore, this study aimed to prepare a nanosuspension of cefuroxime axetil, a poorly water-soluble drug, using an antisolvent precipitation method, followed by ultrasonication. A 32 factorial design was used, and the effects of stirring speed (X1) and poloxamer 188 concentration (X2) on the particle size (Y1) and entrapment efficiency (Y2; %EE) of the prepared nanosuspension were investigated. The nanoparticles were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and zeta potential analysis. The bioavailability of the formulation was assessed in rats. The results indicated that increasing the stirring speed and reducing the poloxamer concentration decreased the size of the nanoparticles. The optimized formulation showed particle size and zeta potential of 170 nm and − 31.3 mV, respectively. FTIR analysis revealed no incompatibilities between the formulation components. XRD and DSC analyses confirmed the amorphization of cefuroxime axetil in the nanosuspension. The developed nanoformulation showed 10.98-fold improvement in the oral bioavailability of cefuroxime axetil. The anti-solvent precipitation process successfully produced a stable amorphous nanosuspension with a notably reduced particle size and improved bioavailability by evaluating and optimizing the critical process and formulation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data and material will be available on reasonable request.

References

  1. Dhumal, R. S., Biradar, S. V., Yamamura, S., Paradkar, A. R., & York, P. (2008). Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability. European Journal of Pharmaceutics and Biopharmaceutics 70, 109–115. https://doi.org/10.1016/j.ejpb.2008.04.001

  2. Rouge, N., Buri, P., & Doelker, E. (1996). Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. International Journal of Pharmaceutics, 136, 117–139. https://doi.org/10.1016/0378-5173(96)85200-8

    Article  Google Scholar 

  3. Finn, A., Straughn, A., Meyer, M., & Chubb, J. (1987). Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharmaceutics & Drug Disposition, 8(6), 519–526. https://doi.org/10.1002/bdd.2510080604

    Article  Google Scholar 

  4. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  5. Nadaf, S. J., Killedar, S. G., Kumbar, V. M., Bhagwat, D. A., & Gurav, S. S. (2022). Pazopanib-laden lipid based nanovesicular delivery with augmented oral bioavailability and therapeutic efficacy against non-small cell lung cancer. International Journal of Pharmaceutics, 628, 122287. https://doi.org/10.1016/j.ijpharm.2022.122287

    Article  Google Scholar 

  6. Kumbhar, P., Waghmare, P., Nadaf, S. J., Manjappa, A., Shah, R., & Disouza, J. (2023). QbD and Six Sigma quality approach for chromatographic estimation of repurposed simvastatin from nanostructured lipid carriers. Microchemical Journal, 185, 108310. https://doi.org/10.1016/j.microc.2022.108310

    Article  Google Scholar 

  7. Patel, D., Zode, S. S., & Bansal, A. K. (2020). Formulation aspects of intravenous nanosuspensions. International Journal of Pharmaceutics, 586, 119555. https://doi.org/10.1016/j.ijpharm.2020.119555

    Article  Google Scholar 

  8. Patravale, V. B., Date, A. A., & Kulkarni, R. M. (2004). Nanosuspensions: A promising drug delivery strategy. Journal of Pharmacy and Pharmacology, 56(7), 827–840. https://doi.org/10.1211/0022357023691

    Article  Google Scholar 

  9. Yadav, S. K., Mishra, S., & Mishra, B. (2012). Eudragit-based nanosuspension of poorly water-soluble drug: Formulation and in vitro-in vivo evaluation. An Official Journal of the American Association of Pharmaceutical Scientists, 13(4), 1031–1044. https://doi.org/10.1208/s12249-012-9833-0

    Article  Google Scholar 

  10. Qiao, H., Chen, L., Rui, T., Wang, J., Chen, T., Fu, T., Li, J., & Di, L. (2017). Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. International Journal of Nanomedicine, 12, 1033–1046. https://doi.org/10.2147/IJN.S120887

    Article  Google Scholar 

  11. Hong, C., Dang, Y., Lin, G., Yao, Y., Li, G., Shen, H., & Xie, Y. (2014). Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: An in vitro and in vivo evaluation. International Journal of Pharmaceutics, 477(1–2), 251–260. https://doi.org/10.1016/j.ijpharm.2014.10.044

    Article  Google Scholar 

  12. Luo, Y., Xu, L., Tao, X., Xu, M., Feng, J., & Tang, X. (2013). Preparation, characterization, stability and in vitro-in vivo evaluation of pellet-layered simvastatin nanosuspensions. Drug Development and Industrial Pharmacy, 39(7), 936–946. https://doi.org/10.3109/03639045.2012.699067

    Article  Google Scholar 

  13. Nadaf, S. J., & Killedar, S. G. (2018). Curcumin nanocochleates: Use of design of experiments, solid state characterization, in vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells. Journal of Drug Delivery Science and Technology, 47, 337–350. https://doi.org/10.1016/j.jddst.2018.06.026

    Article  Google Scholar 

  14. Clementino, A., & Sonvico, F. (2018). Development and validation of a RP-HPLC method for the simultaneous detection and quantification of simvastatin’s isoforms and coenzyme Q10 in lecithin/chitosan nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 155, 33–41. https://doi.org/10.1016/j.jpba.2018.03.046

    Article  Google Scholar 

  15. Sun, M., Gao, Y., Pei, Y., Guo, C., Li, H., Cao, F., Yu, A., & Zhai, G. (2010). Development of nanosuspension formulation for oral delivery of quercetin. Journal of Biomedical Nanotechnology, 6(4), 325–332. https://doi.org/10.1166/jbn.2010.1133

    Article  Google Scholar 

  16. Yasmin Begum, M., Saisree, R., Harshitha, P., Shwetha, A., & Sudhakar, M. (2017). Preparation and evaluation of nanosuspension of nifedipine. International Journal of Current Research., 9, 57091–57098.

    Google Scholar 

  17. Talekar, M., Ganta, S., Amiji, M., Jamieson, S., Kendall, J., Denny, W. A., & Garg, S. (2013). Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. International Journal of Pharmaceutics, 450(1–2), 278–289. https://doi.org/10.1016/j.ijpharm.2013.04.057

    Article  Google Scholar 

  18. Sahu, B. P., & Das, M. K. (2014). Nanosuspension for enhancement of oral bioavailability of felodipine. Applied Nanoscience, 4, 189–197. https://doi.org/10.1007/s13204-012-0188-3

    Article  Google Scholar 

  19. Dessai, S., Ayyanar, M., Amalraj, S., Khanal, P., Vijayakumar, S., Gurav, N., Rarokar, N., Kalaskar, M., Nadaf, S., & Gurav, S. (2022). Bioflavonoid mediated synthesis of TiO2 nanoparticles: Characterization and their biomedical applications. Materials Letters, 311, 131639. https://doi.org/10.1016/j.matlet.2021.131639

    Article  Google Scholar 

  20. Dias, C., Ayyanar, M. S., Amalraj, S., Khanal, P., Subramaniyan, V., Das, S., Gandhale, P., Biswa, V., Ali, R., Gurav, N., Nadaf, S., Rarokar, N., & Gurav, S. (2022). Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: characterization and mechanistic insights of therapeutic investigation. Journal of Drug Delivery Science and Technology, 73, 103444. https://doi.org/10.1016/j.jddst.2022.103444

    Article  Google Scholar 

  21. Killedar, S. G., Nale, A. B., More, H. N., Nadaf, S. J., Pawar, A. A., & Tamboli, U. S. (2014). Isolation, characterization, and evaluation of Cassia fistula Linn. seed and pulp polymer for pharmaceutical application. International Journal of Pharmaceutical Investigation, 4(4), 215–225. https://doi.org/10.4103/2230-973X.143128

    Article  Google Scholar 

  22. Nadaf, S., & Killedar, S. (2020). Development and validation of RP-HPLC method for estimation of curcumin from nanocochleates and its application in in-vivo pharmacokinetic study. Acta Chimica Slovenica, 67(4), 1100–1110.

    Article  Google Scholar 

  23. Na, Y. G., Pham, T. M. A., Byeon, J. J., Kim, M. K., Han, M. G., Baek, J. S., Lee, H. K., & Cho, C. W. (2020). Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. International Journal of Pharmaceutics, 581, 119287. https://doi.org/10.1016/j.ijpharm.2020.119287

    Article  Google Scholar 

  24. Massart, D. L., Vandeginste, B. G. M., Deming S. N., Michotte ,Y., Kaufman, L. (Eds) (2003). Exploration of response surfaces. In: Data Handling in Science and Technology. Elsevier, 271–291. https://doi.org/10.1016/S0922-3487(08)70230-2

  25. Jadhav, N. R., Nadaf, S. J., Lohar, D. A., Ghagare, P. S., & Powar, T. A. (2017). Phytochemicals formulated as nanoparticles: Inventions, recent patents and future prospects. Recent Patents on Drug Delivery & Formulation, 11, 173–186. https://doi.org/10.2174/1872211311666171120102531

    Article  Google Scholar 

  26. Yeole, B. D., Patil, R. P., Lone, K. D., & Tekade, A. R. (2016). Preparation of nanoparticles of poorly water-soluble dronedarone by antisolvent addition technique using the natural polymer as a stabilizer. Journal of Pharmaceutical Research and Clinical Practice, 6, 8–16.

  27. Dawood, N. M., Abdal-Hammid, N. R., & Hussien, A. A. (2018). Formulation and characterization of lafutidine nanosuspension for oral drug delivery system. International Journal of Applied Pharmaceutics, 10(2), 20–30.

    Article  Google Scholar 

  28. Sanjula, B., Shah, F. M., Javed, A., & Alka, A. (2009). Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. Journal of Drug Targeting, 17(3), 249–256. https://doi.org/10.1080/10611860902718672

    Article  Google Scholar 

  29. Agarwal, V., & Bajpai, M. (2014). Preparation and optimization of esomeprazole nanosuspension using evaporative precipitation– ultrasonication. Tropical Journal of Pharmaceutical Research, 13, 497–503.

    Article  Google Scholar 

  30. Zhang, J. Y., Shen, Z. G., Zhong, J., Hu, T. T., Chen, J. F., Ma, Z. Q., & Yun, J. (2006). Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. International Journal of Pharmaceutics, 323(1–2), 153–160. https://doi.org/10.1016/j.ijpharm.2006.05.048

    Article  Google Scholar 

  31. Gajera, B. Y., Shah, D. A., & Dave, R. H. (2019). Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. International Journal of Pharmaceutics, 559, 348–359. https://doi.org/10.1016/j.ijpharm.2019.01.054

    Article  Google Scholar 

  32. Bhattacharjee, S. (2016). DLS and zeta potential - what they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  Google Scholar 

  33. Patil, A. S., Hegde, R., Gadad, A. P., Dandagi, P. M., Masareddy, R., & Bolmal, U. (2021). Exploring the solvent-anti-solvent method of nanosuspension for enhanced oral bioavailability of lovastatin. Turkish Journal Of Pharmaceutical Sciences, 18(5), 541–549. https://doi.org/10.4274/tjps.galenos.2020.65047

    Article  Google Scholar 

  34. Alhamhoom, Y., Honmane, S. M., Hani, U., Osmani, R. A. M., Kandasamy, G., Vasudevan, R., Paramshetti, S., Dudhal, R. R., Kengar, N. K., & Charde, M. S. (2023). Study of formulation and process variables for optimization of piroxicam nanosuspension using 32 factorial design to improve solubility and in vitro bioavailability. Polymers, 15(3), 483. https://doi.org/10.3390/polym15030483

    Article  Google Scholar 

  35. Kolipaka, E., Sen, S., Mane, S. S., Bajad, G. D., Dengale, S. J., Ranjan, O. P. (2023). Development of posaconazole nanosuspension for bioavailability enhancement: formulation optimization, in vitro characterization, and pharmacokinetic study. Journal of Drug Delivery Science and Technology, 83:104434, ISSN 1773–2247. https://doi.org/10.1016/j.jddst.2023.104434

  36. Jadhav, N. R., Tone, J. S., Irny, P. V., & Nadaf, S. J. (2013). Development and characterization of gelatin based nanoparticles for targeted delivery of zidovudine. Int J Pharm Investig., 3(3), 126–130. https://doi.org/10.4103/2230-973X.119213

    Article  Google Scholar 

  37. Kousar, F., Jahan, N., Sultana, B., Khalil-Ur-Rahman (2022). Optimization of process parameters by response surface methodology to develop a more bioefficacious nanosuspension of Silybum marianum seed extract. Tropical Journal of Pharmaceutical Research, 21(7):1365–1375. https://doi.org/10.4314/tjpr.v21i7.2

  38. Hussain, A., Attique, F., Naqvi, S. A. R., Ali, A., Ibrahim, M., Hussain, H., Zafar, F., Iqbal, R. S., Ayub, M. A., Assiri, M. A., Imran, M., & Ullah, S. (2022). Nanoformulation of Curcuma longa root extract and evaluation of ıts dissolution potential. ACS Omega, 8(1), 1088–1096. https://doi.org/10.1021/acsomega.2c06258

    Article  Google Scholar 

  39. Sankari, T., & Al-Hariri, S. (2018). Preparation and characterization of cefuroxime axetil solid dispersions using poloxamer 188. Brazilian Journal of Pharmaceutical Sciences, 54, 17644.

    Article  Google Scholar 

  40. Marimuthu, S., Nantheeswaran, S., Shanmugarathinam, A., & Purachikody, A. (2012). Formulation and characterization of cefuroxime axetil floating microspheres. International Journal of Pharmaceutics, 2(3), 526–533.

    Google Scholar 

Download references

Acknowledgements

This work is a Ph.D. research work of Mr. Haragouri Mishra registered under Centurion University of Technology and Management, Odisha, under the guidance of Dr. Amulyaratna Behra and Dr. Sidharth S. Kar.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Concept — H.M., S.K.; design — H.M., S.D., S.K.; supervision — A.B.; resources —A.B., S.D.; materials — A.B.; data collection and/or processing — H.M., A.B.; analysis and/or interpretation — H.M., A.B., S.K., S.D.; literature search — H.M. A.B., S.D.; writing — H.M.; critical reviews — H.M., A.B., S.K., S.D, S.M and SS.

Corresponding authors

Correspondence to Amulyaratna Behera, Sidhartha Sankar Kar or Suresh Sagadevan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

Authors have followed all applicable international, national, and/or institutional guidelines for the care and use of animals. The animal studies were accomplished according to CPCSEA guidelines. The animal studies were approved by the Centurion University of Technology and Management, Odisha, India.

Informed Consent

We, all the author declares that there are no conflicts of interest among us. All the research facilities were provided by Centurion University of Technology and Management, Odisha. The animal experimentation was conducted as per the guidelines of CPCSEA (2024/PO/Re/S/18/CPCSEA) and approved by IAEC (CUTM/IAEC-03 dated 27/03/2023) of CUTM.

Consent for Publication

Not applicable.

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, H., Behera, A., Kar, S.S. et al. Development and Optimization of Cefuroxime Axetil Nanosuspension for Improved Oral Bioavailability: In-Vitro and In-Vivo Investigations. BioNanoSci. 13, 2371–2384 (2023). https://doi.org/10.1007/s12668-023-01214-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01214-x

Keywords

Navigation