Skip to main content

Advertisement

Log in

Nanotechnology-Based Delivery of Genistein to Overcome Physicochemical Hindrance and Enhance Therapeutic Response in Skin Cancer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Genistein is typical soy isoflavone, having cytotoxic potential toward different types of cancer cells. The success of the delivery of genistein for therapeutic application is restricted due to its physicochemical characteristics. Genistein is a strong acidic drug and their pKa is 7.03 with a molecular weight of 270.241 g/mol. Genistein is having a limited solubility in water about 0.9 μg/ml categorized as slightly soluble in aqueous media. On other hand, its lipophilicity is very high. Its octanol-water partition coefficient is about log P 3.04. A high intestinal and hepatobiliary metabolism of genistein further makes hindrance to achieve desired bioavailability post systemic administration. This problem is handled by a nanotechnological approach easily and gets successful in various aspects. These innovative approaches provide targeted delivery of drugs to various tissues and involve treating large numbers of cancer such as skin, lung, brain, cervical, colon, breast, and leukaemia. The present review provides detailed information about the prospects of nanoparticles, vesicle carriers, disperse liquid crystals, and capsuled systems developed by nanotechnological approach to combat the traditional delivery challenge of this anti-cancer drug in success for skin cancer. Rather than overcoming the delivery challenge, this novel delivery system also enhances the therapeutic response by various means.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

On demand data will be provided.

Abbreviations

AKT:

Protein kinase B

BCC:

Basal cell carcinoma

CPPs:

Cell-penetrating peptides

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability retention effect

ERP:

Effective refractory period

MAPK:

Mitogen-activated protein kinase

PLA:

Poly DL-lactic acid

PLGA:

Poly lactic acid co-glycolic acid

PEGSiHNM:

Polyethylene glycol silica hybrid nano materials

SCC:

Squamous cell carcinoma

TTPs:

Tumor-targeting peptides

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. Cui, S., Wang, J., Wu, Q., Qian, J., Yang, C., & Bo, P. (2017). Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget., 8(13), 21674–21691. https://doi.org/10.18632/oncotarget.15535.

    Article  Google Scholar 

  3. Hussain, N., Kakoti, B. B., Rudrapal, M., Junejo, J. A., Laskar, M. A., Lal, M., & Sarwa, K. K. (2020). Anticancer and antioxidant activities of Cordia dichotoma Forst. International Journal of Green Pharmacy (IJGP), 14(3), 265–279. https://doi.org/10.22377/ijgp.v14i03.2940

    Article  Google Scholar 

  4. Sarwa, K. K., Das, P. J., & Mazumder, B. (2014a). A nanovesicle topical formulation of Bhut Jolokia (hottest capsicum): A potential anti-arthritic medicine. Expert Opinion on Drug Delivery, 11(5), 661–676. https://doi.org/10.1517/17425247.2014.891581.

    Article  Google Scholar 

  5. Sarwa, K. K., Suresh, P. K., Debnath, M., & Ahmad, M. Z. (2013). Tamoxifen citrate loaded ethosomes for transdermal drug delivery system: preparation and characterization. Current Drug Delivery, 10(4), 466–476. https://doi.org/10.2174/1567201811310040011.

    Article  Google Scholar 

  6. Liu, B., Edgerton, S., Yang, X., Kim, A., Ordonez-Ercan, D., Mason, T., Alvarez, K., McKimmey, C., Liu, N., & Thor, A. (2005). Low-dose dietary phytoestrogen abrogates tamoxifen-associated mammary tumor prevention. Cancer Research, 65(3), 879–886.

    Article  Google Scholar 

  7. Branca, F., & Valtuena, S. (2001). The prevention of post menopausal osteporosis through phytoestrogen consumption. Journal of Natural Science, Biology and Medicine, 2(2), 154–163. https://doi.org/10.4103/0976-9668.92322.

    Article  Google Scholar 

  8. Arora, A., Nair, M. G., & Strasburg, G. M. (1998). Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Archives of Biochemistry and Biophysics, 356(2), 133–141. https://doi.org/10.1006/abbi.1998.0783.

    Article  Google Scholar 

  9. Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z., & Wu, L. (2011). Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment. International Journal of Nanomedicine, 6, 2429–2435. https://doi.org/10.2147/IJN.S24185.

    Article  Google Scholar 

  10. Sarwa, K. K., Patel, D., Uraon, D., Jangde, M. S., Suryawanshi, V. K., & Saraf, S. (2022). Nanoparticulate delivery systems for phytoconstituents. In M. Rudrapal (Ed.), Phytoantioxidants and Nanotherapeutics (pp. 121–138. ISBN: 978-1-119-81177-0). Wiley. https://doi.org/10.1002/9781119811794.ch6.

    Chapter  Google Scholar 

  11. Emerich, D. F., & Thanos, C. G. (2006). The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomolecular Engineering, 23(4), 171–184. https://doi.org/10.1016/j.bioeng.2006.05.026.

    Article  Google Scholar 

  12. Rudrapal, M., Chetia, D., Sarwa, K. K., & Bhattacharya, S. (2019). Nanotoxicity: Physicochemical and Biological (PK-PD) Perspectives. In P. R. Rauta, Y. K. Mohanta, & D. Nayak (Eds.), Nanotechnology in Biology and Medicine: Research Advancements & Future Perspectives (pp. 259–267). CRC Press | Taylor & Francis Group ISBN 9780367200503.

    Chapter  Google Scholar 

  13. Verma, V. K., Zaman, M. K., Verma, S., Verma, S. K., & Sarwa, K. K. (2019). Role of semi-purified andrographolide from Andrographis paniculata extract as nano-phytovesicular carrier for enhancing oral absorption and hypoglycemic activity. Chinese Herbal Medicines, 12(2), 142–155. https://doi.org/10.1016/j.chmed.2019.12.004.

    Article  Google Scholar 

  14. Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews. Clinical Oncology, 7(11), 653–664. https://doi.org/10.1038/nrclinonc.2010.139.

    Article  Google Scholar 

  15. Jaswani, R., Sarwa, K. K., Debnath, M., & De, B. (2013). Nanotechnology Products. In N. K. Navani & S. Sinha (Eds.), ‘Nanotechnology’ Vol. 1: Fundamentals and Applications. Publisher Studium Press LLC USA ISBN: 1-62699-001-8.

    Google Scholar 

  16. Sarwa, K. K., Mazumder, B., Suresh, P. K., & Kaur, C. D. (2016). Topical analgesic nanolipid vesicles formulation of capsaicinoids extract of Bhut Jolokia (Capsicum chinense Jacq): Pharmacodynamic evaluation in rat models and acceptability studies in human volunteers. Current Drug Delivery, 13(8), 1325–1338. https://doi.org/10.2174/1567201813666160614120809.

    Article  Google Scholar 

  17. Li, C., Chen, R., Xu, M., Qiao, J., Yan, L., & Guo, X. D. (2018). Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Delivery, 25(1), 1258–1265. https://doi.org/10.1080/10717544.2018.1474972.

    Article  Google Scholar 

  18. Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy & Bioallied Sciences, 2(4), 282–289. https://doi.org/10.4103/0975-7406.72127.

    Article  Google Scholar 

  19. Ferdous, Z., & Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375. https://doi.org/10.3390/ijms21072375.

    Article  Google Scholar 

  20. Sarwa, K. K., Suresh, P. K., Rudrapal, M., & Verma, V. K. (2014b). Penetration of tamoxifen citrate loaded ethosomes and liposomes across human skin: a comparative study with confocal laser scanning microscopy. Current Drug Delivery, 11(3), 332–337. https://doi.org/10.2174/1567201811666140115113127.

    Article  Google Scholar 

  21. Fadeev, R., Chekanov, A., Solovieva, M., Bezborodova, O., Nemtsova, E., Dolgikh, N., Fadeeva, I., Senotov, A., Kobyakova, M., Evstratova, Y., et al. (2019). Improved anticancer Effect of recombinant protein izTRAIL combined with sorafenib and peptide iRGD. International Journal of Molecular Sciences, 20(3), 525. https://doi.org/10.3390/ijms20030525.

    Article  Google Scholar 

  22. Tuli, H. S., Tuorkey, M. J., Thakral, F., Sak, K., Kumar, M., Sharma, A. K., Sharma, U., Jain, A., Aggarwal, V., & Bishayee, A. (2019). Molecular mechanisms of action of genistein in cancer: Recent advances. Frontiers in Pharmacology, 10, 1336. https://doi.org/10.3389/fphar.2019.01336.

    Article  Google Scholar 

  23. Dixon, R. A., & Ferreira, D. (2002). Genistein. Phytochemistry., 60(3), 205–211. https://doi.org/10.1016/s0031-9422(02)00116-4.

    Article  Google Scholar 

  24. Rosenberg Zand, R. S., Jenkins, D. J., & Diamandis, E. P. (2002). Flavonoids and steroid hormone-dependent cancers. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 777(1-2), 219–232. https://doi.org/10.1016/s1570-0232(02)00213-1.

    Article  Google Scholar 

  25. Wang, H., Li, J., Gao, Y., et al. (2010). Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Asian Journal of Andrology, 12(4), 535–547. https://doi.org/10.1038/aja.2010.14.

    Article  Google Scholar 

  26. Akiyama, T., Ishida, J., Nakagawa, S., et al. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of Biological Chemistry, 262, 5592–5595.

    Article  Google Scholar 

  27. El Touny, L. H., & Banerjee, P. P. (2009). Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Research, 69(8), 3695–3703. https://doi.org/10.1158/0008-5472.CAN-08-2958.

    Article  Google Scholar 

  28. Li, H. Q., Luo, Y., & Qiao, C. H. (2012). The mechanisms of anticancer agents by genistein and synthetic derivatives of isoflavone. Mini Reviews in Medicinal Chemistry, 12(4), 350–362. https://doi.org/10.2174/138955712799829258

    Article  Google Scholar 

  29. Gong, L., Li, Y., Nedeljkovic-Kurepa, A., & Sarkar, F. H. (2003). Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene., 22(30), 4702–4709. https://doi.org/10.1038/sj.onc.1206583.

    Article  Google Scholar 

  30. Pavese, J. M., Farmer, R. L., & Bergan, R. C. (2010). Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Reviews, 29(3), 465–482. https://doi.org/10.1007/s10555-010-9238-z

    Article  Google Scholar 

  31. Roncato, F., Rruga, F., Porcù, E., et al. (2018). Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the avidin-nucleic-acid-nano-assemblies. Nature Communications, 9(1), 4070. https://doi.org/10.1038/s41467-018-06602-6.

    Article  Google Scholar 

  32. Hassan, M. S., Ansari, J., Spooner, D., & Hussain, S. A. (2010). Chemotherapy for breast cancer (Review). Oncology Reports, 24(5), 1121–1131. https://doi.org/10.3892/or_00000963.

    Article  Google Scholar 

  33. Hull, R., Mbele, M., Makhafola, T., Hicks, C., Wang, S. M., Reis, R. M., Mehrotra, R., Mkhize-Kwitshana, Z., Kibiki, G., Bates, D. O., & Dlamini, Z. (2020). Cervical cancer in low and middle-income countries. Oncology Letters, 20(3), 2058–2074. https://doi.org/10.3892/ol.2020.11754.

    Article  Google Scholar 

  34. Zhang, H. Y., Cui, J., Zhang, Y., Wang, Z. L., Chong, T., & Wang, Z. M. (2016). Isoflavones and prostate cancer: A review of some critical issues. Chinese Medical Journal, 129(3), 341–347. https://doi.org/10.4103/0366-6999.174488.

    Article  Google Scholar 

  35. Yellepeddi, V. K., Vangara, K. K., Kumar, A., & Palakurthi, S. (2012). Comparative evaluation of small-molecule chemosensitizers in reversal of cisplatin resistance in ovarian cancer cells. Anticancer Research, 32(9), 3651–3658.

    Google Scholar 

  36. Tomasz, B., & Oniszczuk, A. (2017). Extraction methods for the isolation of isoflavonoids from plant material. Open Chemistry, 15, 34–45. https://doi.org/10.1515/chem-2017-0005.

    Article  Google Scholar 

  37. Jyoti, S. S. (2015). Agrawal, Shikha Saxena, Archana Sharma, Phytoestrogen “genistein”: Its extraction and isolation from soybean seeds. International Journal of Pharmacognosy and Phytochemical Research, 7(6), 1121–1126.

    Google Scholar 

  38. Maione-Silva, L., Rocha, K. A., de Oliveira, L. C., Taveira, S. F., & Lima, E. M. (2012). Development and validation of a simple and rapid liquid chromatography method for the determination of genistein in skin permeation studies. Biological & Pharmaceutical Bulletin, 35(11), 1986–1990. https://doi.org/10.1248/bpb.b12-00442.

    Article  Google Scholar 

  39. Wu, J. G., Ge, J., Zhang, Y. P., et al. (2010). Solubility of genistein in water, methanol, ethanol, propan-2-ol, 1-butanol, and ethyl acetate from 280 to 333 K. Journal of Chemical & Engineering Data, 55, 5286–5288.

    Article  Google Scholar 

  40. Ha, C. T., Li, X. H., Fu, D., Xiao, M., & Landauer, M. R. (2013). Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation. Radiation Research, 180(3), 316–325. https://doi.org/10.1667/RR3326.1.

    Article  Google Scholar 

  41. Cassidy, A., Brown, J. E., Hawdon, A., et al. (2006). Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. The Journal of Nutrition, 136, 45–51.

    Article  Google Scholar 

  42. Friedman, A. D., Claypool, S. E., & Liu, R. (2013). The smart targeting of nanoparticles. Current Pharmaceutical Design, 19(35), 6315–6329. https://doi.org/10.2174/13816128113199990375.

    Article  Google Scholar 

  43. Kebebe, D., Liu, Y., Wu, Y., Vilakhamxay, M., Liu, Z., & Li, J. (2018 Mar). Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. International Journal of Nanomedicine, 9(13), 1425–1442. https://doi.org/10.2147/IJN.S156616.

    Article  Google Scholar 

  44. Low, P. S., & Kularatne, S. A. (2009). Folate-targeted therapeutic and imaging agents for cancer. Current Opinion in Chemical Biology, 13(3), 256–262.

    Article  Google Scholar 

  45. Banerjee, R., Tyagi, P., Li, S., & Huang, L. (2004). Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. International Journal of Cancer, 112(4), 693–700.

    Article  Google Scholar 

  46. Cruz, L. J., Tacken, P. J., Pots, J. M., Torensma, R., Buschow, S. I., & Figdor, C. G. (2012). Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials., 33(16), 4229–4239.

    Article  Google Scholar 

  47. Kozikowski, A. P., Nan, F., Conti, P., Zhang, J., Ramadan, E., Bzdega, T., et al. (2001). Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). Journal of Medicinal Chemistry, 44(3), 298–301.

    Article  Google Scholar 

  48. Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63(3), 131–135. https://doi.org/10.1016/j.addr.2010.03.011.

    Article  Google Scholar 

  49. Montet, X., Funovics, M., Montet-Abou, K., Weissleder, R., & Josephson, L. (2006). Multivalent effects of RGD peptides obtained by nanoparticle display. Journal of Medicinal Chemistry, 49(20), 6087–6093. https://doi.org/10.1021/jm060515m.

    Article  Google Scholar 

  50. Deepagan, V. G., Sarmento, B., Menon, D., Nascimento, A., Jayasree, A., Sreeranganathan, M., et al. (2012). In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (London, England), 7(4), 507–519.

    Article  Google Scholar 

  51. Yang, K., Zhang, F. J., Tang, H., Zhao, C., Cao, Y. A., Lv, X. Q., et al. (2011). In-vivo imaging of oral squamous cell carcinoma by EGFR monoclonal antibody conjugated near-infrared quantum dots in mice. International Journal of Nanomedicine, 6, 1739–1745.

    Article  Google Scholar 

  52. Ding, B., Wu, X., Fan, W., Wu, Z., Gao, J., Zhang, W., et al. (2011). Anti-DR5 monoclonal antibody-mediatedDTIC- loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: Target formulation development and in vitro anticancer activity. International Journal of Nanomedicine, 6, 1991–2005.

    Google Scholar 

  53. Liu, X., Wang, Y., & Hnatowich, D. J. (2011). A nanoparticle for tumor targeted delivery of oligomers. Methods in Molecular Biology, 764, 91–105.

    Article  Google Scholar 

  54. Sugahara, K. N., Teesalu, T., Karmali, P. P., et al. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science., 328(5981), 1031–1035. https://doi.org/10.1126/science.1183057.

    Article  Google Scholar 

  55. Ebrahimnejad, P., Sodagar Taleghani, A., Asare-Addo, K., & Nokhodchi, A. (2022). An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discovery Today, 27(2), 471–489. https://doi.org/10.1016/j.drudis.2021.11.011.

    Article  Google Scholar 

  56. Nogueira, E., Gomes, A. C., Preto, A., & Cavaco-Paulo, A. (2016). Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine., 12(4), 1113–1126. https://doi.org/10.1016/j.nano.2015.12.365.

    Article  Google Scholar 

  57. Khan, S. I., Zhao, J., Khan, I. A., Walker, L. A., & Dasmahapatra, A. K. (2011). Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reproductive Biology and Endocrinology, 9, 91. https://doi.org/10.1186/1477-7827-9-91.

    Article  Google Scholar 

  58. Wei, Z., Huang, L., Cui, L., & Zhu, X. (2020). Mannose: Good player and assister in pharmacotherapy. Biomedicine & Pharmacotherapy, 129, 110420. https://doi.org/10.1016/j.biopha.2020.110420.

    Article  Google Scholar 

  59. Jo, H., & Ban, C. (2016). Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Experimental & Molecular Medicine, 48(5), e230. https://doi.org/10.1038/emm.2016.44.

    Article  Google Scholar 

  60. Davatgaran-Taghipour, Y., Masoomzadeh, S., Farzaei, M. H., et al. (2017). Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. International Journal of Nanomedicine, 12, 2689–2702. https://doi.org/10.2147/IJN.S131973.

    Article  Google Scholar 

  61. Ganesan, P., & Choi, D. K. (2016). Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. International Journal of Nanomedicine, 11, 1987–2007. https://doi.org/10.2147/IJN.S104701.

    Article  Google Scholar 

  62. Ismail, M., Ibrahim, S., El-Amir, A., EL-Rafei, A. M., Allam, N. K., & Abdellatif, A. (2018). Genistein loaded nanofibers protect spinal cord tissue following experimental injury in rats. Biomedicines, 6, 96. https://doi.org/10.3390/biomedicines6040096.

    Article  Google Scholar 

  63. Dianzani, C., Zara, G. P., Maina, G., et al. (2014). Drug delivery nanoparticles in skin cancers [published correction appears in Biomed Res Int. 2021 Feb 16;2021:6158298]. BioMed Research International, 2014, 895986. https://doi.org/10.1155/2014/895986.

    Article  Google Scholar 

  64. Dong, S., Cho, H. J., Lee, Y. W., et al. (2014). Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules, 15(5), 1560–1567. https://doi.org/10.1021/bm401593n.

    Article  Google Scholar 

  65. Son, J., Yang, S. M., Yi, G., et al. (2018). Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochemical and Biophysical Research Communications, 498(3), 523–528. https://doi.org/10.1016/j.bbrc.2018.03.013.

    Article  Google Scholar 

  66. Xiao, Y., Ho, C.-T., Chen, Y., Wang, Y., Wei, Z., Dong, M., & Huang, Q. (2020). Synthesis, characterization, and evaluation of genistein-loaded zein/carboxymethyl chitosan nanoparticles with improved water dispersibility, enhanced antioxidant activity, and controlled release property. Foods, 9, 1604. https://doi.org/10.3390/foods9111604.

    Article  Google Scholar 

  67. Rassu, G., Porcu, E. P., Fancello, S., Obinu, A., Senes, N., Galleri, G., Migheli, R., Gavini, E., & Giunchedi, P. (2018). Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics., 11(1), 8. https://doi.org/10.3390/pharmaceutics11010008.

    Article  Google Scholar 

  68. Cai, L., Yu, R., Hao, X., & Ding, X. (2017). Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Research Letters, 12(1), 509. https://doi.org/10.1186/s11671-017-2253-z.

    Article  Google Scholar 

  69. Zhang, H., Liu, G., Zeng, X., et al. (2015). Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. International Journal of Nanomedicine, 10, 2461–2473. https://doi.org/10.2147/IJN.S78988.

    Article  Google Scholar 

  70. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules., 25(1), 112. https://doi.org/10.3390/molecules25010112.

    Article  Google Scholar 

  71. Ghasemi Goorbandi, R., Mohammadi, M. R., & Malekzadeh, K. (2020). Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomaterials Research, 24, 9. https://doi.org/10.1186/s40824-020-00187-2.

    Article  Google Scholar 

  72. Pool, H., Campos-Vega, R., Herrera-Hernández, M. G., et al. (2018). Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. American Journal of Translational Research, 10(8), 2306–2323.

    Google Scholar 

  73. Lu, Z., Long, Y., Cun, X., et al. (2018). A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapy. Nanoscale., 10(21), 9957–9970. https://doi.org/10.1039/c8nr01184b

    Article  Google Scholar 

  74. Vodnik, V. V., Mojić, M., Stamenović, U., et al. (2021). Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Materials Science & Engineering. C, Materials for Biological Applications, 124, 112078. https://doi.org/10.1016/j.msec.2021.112078.

    Article  Google Scholar 

  75. Andrade, L. M., de Fátima, R. C., Maione-Silva, L., et al. (2014). Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 40–47. https://doi.org/10.1016/j.ejpb.2014.04.015.

    Article  Google Scholar 

  76. Pawlikowska-Pawlega, B., Misiak, L. E., Zarzyka, B., Paduch, R., Gawron, A., & Gruszecki, W. I. (2012). Localization and interaction of genistein with model membranes formed with dipalmitoylphosphatidylcholine (DPPC). Biochimica et Biophysica Acta, 1818(7), 1785–1793. https://doi.org/10.1016/j.bbamem.2012.03.020.

    Article  Google Scholar 

  77. Maher, E. A., Furnari, F. B., Bachoo, R. M., et al. (2001). Malignant glioma: Genetics and biology of a grave matter. Genes & Development, 15(11), 1311–1333. https://doi.org/10.1101/gad.891601

  78. Kloska, A., Narajczyk, M., Jakóbkiewicz-Banecka, J., et al. (2012). Synthetic genistein derivatives as modulators of glycosaminoglycan storage. Journal of Translational Medicine, 10, 153. https://doi.org/10.1186/1479-5876-10-153.

    Article  Google Scholar 

  79. Phan, V., Walters, J., Brownlow, B., et al. (2013). Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. Journal of Drug Targeting, 21(10), 1001–1011. https://doi.org/10.3109/1061186X.2013.847099.

    Article  Google Scholar 

  80. Song, Y. Y., Yuan, Y., Shi, X., & Che, Y. Y. (2020). Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids and Surfaces, B: Biointerfaces, 190, 110966. https://doi.org/10.1016/j.colsurfb.2020.110966.

    Article  Google Scholar 

  81. Hollmerus, S., Yousaf, S., Islam, Y., et al. (2018). Isoflavones-based liposome formulations as anti-aging for skincare. Novel Approaches in Drug Designing & Development, 3(3), 1–4. https://doi.org/10.19080/NAPDD.2018.03.555615.

    Article  Google Scholar 

  82. Steventon, K. (2013). Factors of skin aging. Global Cosmetic Industry, 181(6), 60–63.

    Google Scholar 

  83. Wong, Q. Y. A., & Chew, F. T. (2021). Defining skin aging and its risk factors: A systematic review and meta-analysis. Scientific Reports, 11(1), 22075. https://doi.org/10.1038/s41598-021-01573-z.

    Article  Google Scholar 

  84. Ran, R., Wang, H., Liu, Y., et al. (2018). Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics, 130, 1–10. https://doi.org/10.1016/j.ejpb.2018.06.017.

    Article  Google Scholar 

  85. Gökçe Evren, H., Algın, Y. E., Sakine, T., et al. (2016). Nanobiomaterials in galenic formulations and cosmetics. In Nanocarriers in cosmetology (Vol. 10, pp. 363–393). https://doi.org/10.1016/B978-0-323-42868-2.00014-0.

    Chapter  Google Scholar 

  86. Sharma, V. K., Sarwa, K. K., & Mazumder, B. (2014). Fluidity enhancement: A critical factor for performance of liposomal transdermal drug delivery system. Journal of Liposome Research, 24(2), 83–89. https://doi.org/10.3109/08982104.2013.847956.

    Article  Google Scholar 

  87. Nemitz, M. C., Moraes, R. C., Koester, L. S., et al. (2015). Bioactive soy isoflavones: Extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochemistry Reviews, 14, 849–869. https://doi.org/10.1007/s11101-014-9382-0.

    Article  Google Scholar 

  88. Tyug, T. S., Prasad, N. A., & Ismai, A. (2010). Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chemistry, 123(3), 583–589. https://doi.org/10.1016/j.foodchem.2010.04.074.

    Article  Google Scholar 

  89. Nie, Q., Xing, M., Hu, J., Hu, X., Nie, S., & Xie, M. (2017). Metabolism and health effects of phyto-estrogens. Critical Reviews in Food Science and Nutrition, 57(11), 2432–2454. https://doi.org/10.1080/10408398.2015.1077194.

    Article  Google Scholar 

  90. Sroda, K., Michalak, K., Maniewska, J., et al. (2008). Genistein derivatives decrease liposome membrane integrity--calcein release and molecular modeling study. Biophysical Chemistry, 138(3), 78–82. https://doi.org/10.1016/j.bpc.2008.09.010.

    Article  Google Scholar 

  91. Lopes de Azambuja, C. R., dos Santos, L. G., Rodrigues, M. R., Rodrigues, R. F., et al. (2015). Physico-chemical characterization of asolectin-genistein liposomal system: An approach to analyze it’s in vitro antioxidant potential and effect in glioma cells viability. Chemistry and Physics of Lipids, 193, 24–35. https://doi.org/10.1016/j.chemphyslip.2015.10.001.

    Article  Google Scholar 

  92. Kang, K. H., Kang, M. J., Lee, J., & Choi, Y. W. (2010). Influence of liposome type and skin model on skin permeation and accumulation properties of genistein. Journal of Dispersion Science and Technology, 31(8), 1061–1066. https://doi.org/10.1080/01932690903224813.

    Article  Google Scholar 

  93. Shen, H., He, D., Wang, S., Ding, P., Wang, J., & Ju, J. (2018). Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system. Drug Development and Industrial Pharmacy, 44(9), 1536–1542. https://doi.org/10.1080/03639045.2018.1483384.

    Article  Google Scholar 

  94. Wang, Y., Khan, A., Liu, Y., Feng, J., Dai, L., Wang, G., Alam, N., Tong, L., & Ni, Y. (2019a). Chitosan oligosaccharide-based dual pH-responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydrate Polymers, 223, 115061. https://doi.org/10.1016/j.carbpol.2019.115061.

    Article  Google Scholar 

  95. Yin, L., Chen, Y., Zhang, Z., et al. (2015). Biodegradable micelles capable of mannose-mediated targeted drug delivery to cancer cells. Macromolecular Rapid Communications, 36(5), 483–489. https://doi.org/10.1002/marc.201400650.

    Article  Google Scholar 

  96. de Vargas, B. A., Bidone, J., Oliveira, L. K., Koester, L. S., Bassani, V. L., & Teixeira, H. F. (2012). Development of topical hydrogels containing genistein-loaded nanoemulsions. Journal of Biomedical Nanotechnology, 8(2), 330–336. https://doi.org/10.1166/jbn.2012.1386.

    Article  Google Scholar 

  97. Silva, A. P., Nunes, B. R., De Oliveira, M. C., Koester, L. S., Mayorga, P., Bassani, V. L., & Teixeira, H. F. (2009). Development of topical nanoemulsions containing the isoflavone genistein. Pharmazie., 64(1), 32–35.

    Google Scholar 

  98. Back, P. I., Furtado, L. R., Nemitz, M. C., Balestrin, L. A., Fachel, F. N. S., Gomes, H. M., Schuh, R. S., Moreira, J. C., von Poser, G. L., & Teixeira, H. F. (2018 Oct). Skin permeation and oxidative protection effect of soybean isoflavones from topical nanoemulsions-A comparative study of extracts and pure compounds. AAPS PharmSciTech, 19(7), 3029–3039. https://doi.org/10.1208/s12249-018-1133-x.

    Article  Google Scholar 

  99. Wang, Y., Wang, Y., Liu, Y., Liu, Q., Jang, J., & Han, J. (2019b). Preparation, characterization, and antioxidant activities of cellulose nanocrystals/genistein nanocomposites. BioRes., 14(1), 336–348.

    Article  Google Scholar 

  100. Zampieri, A. L., Ferreira, F. S., Resende, E. C., Gaeti, M. P., Diniz, D. G., Taveira, S. F., & Lima, E. M. (2013). Biodegradable polymeric nanocapsules based on poly(DL-lactide) for genistein topical delivery: Obtention, characterization and skin permeation studies. Journal of Biomedical Nanotechnology. https://doi.org/10.1166/jbn.2013.1555.

  101. Gour, A., & Jain, N. K. (2019 Dec). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844–851. https://doi.org/10.1080/21691401.2019.1577878.

    Article  Google Scholar 

  102. Castaño, M., Martínez, E., Osorio, M., & Castro, C. (2022). Development of genistein drug delivery systems based on bacterial nanocellulose for potential colorectal cancer chemoprevention: effect of nanocellulose surface modification on genistein adsorption. Molecules, 27, 7201. https://doi.org/10.3390/Molecules27217201.

    Article  Google Scholar 

  103. Yadwade, R., Kirtiwar, S., & Ankamwar, B. (2021). A review on green synthesis and applications of iron oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 21(12), 5812–5834. https://doi.org/10.1166/jnn.2021.19285.

    Article  Google Scholar 

  104. Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., et al. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506–8517. https://doi.org/10.3390/molecules17078506.

    Article  Google Scholar 

  105. Vanaja, M., Gnanajobitha, G., Paulkumar, K., et al. (2013). Phytosynthesis of silver nanoparticles by Cissus quadrangularis: Influence of physicochemical factors. Journal of Nanostructure in Chemistry, 3, 17. https://doi.org/10.1186/2193-8865-3-17.

    Article  Google Scholar 

  106. Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N. M., Thajuddin, N., & Velusamy, P. (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids and Surfaces, B: Biointerfaces, 96, 69–74. https://doi.org/10.1016/j.colsurfb.2012.03.023.

    Article  Google Scholar 

  107. Kara, Z., Sabır, A., Koç, F., et al. (2021). Silver nanoparticles synthesis by grape seeds (Vitis vinifera L.) extract and rooting effect on grape cuttings. Erwerbs-Obstbau, 63(Suppl 1), 1–8. https://doi.org/10.1007/s10341-021-00572-8.

    Article  Google Scholar 

  108. Michailidu, J., Maťátková, O., Kolouchová, I., Masák, J., & Čejková, A. (2022). Silver nanoparticle production mediated by Vitis vinifera cane extract: Characterization and antibacterial activity evaluation. Plants (Basel)., 11(3), 443. https://doi.org/10.3390/plants11030443.

    Article  Google Scholar 

  109. Varghese, R., Almalki, M. A., Ilavenil, S., Rebecca, J., & Choi, K. C. (2019). Silver nanopaticles synthesized using the seed extract of Trigonella foenum-graecum L. and their antimicrobial mechanism and anticancer properties. Saudi Journal of Biological Sciences, 26(1), 148–154. https://doi.org/10.1016/j.sjbs.2017.07.001.

    Article  Google Scholar 

  110. Moond, M., Singh, S., Sangwan, S., Devi, P., Beniwal, A., Rani, J., Kumari, A., & Rani, S. (2023). Biosynthesis of silver nanoparticles utilizing leaf extract of Trigonella foenum-graecum L. for catalytic dyes degradation and colorimetric sensing of Fe3+/Hg2+. Molecules., 28(3), 951. https://doi.org/10.3390/molecules28030951.

    Article  Google Scholar 

  111. Vidhu, V. K., Aromal, S. A., & Philip, D. (2011). Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 83(1), 392–397. https://doi.org/10.1016/j.saa.2011.08.051.

    Article  Google Scholar 

  112. Fard, S. E., Tafvizi, F., & Torbati, M. B. (2018). Silver nanoparticles biosynthesised using Centella asiatica leaf extract: Apoptosis induction in MCF-7 breast cancer cell line. IET Nanobiotechnology, 12(7), 994–1002. https://doi.org/10.1049/iet-nbt.2018.5069.

    Article  Google Scholar 

  113. Qais, F. A., Shafiq, A., Khan, H. M., Husain, F. M., Khan, R. A., Alenazi, B., Alsalme, A., & Ahmad, I. (2019). Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic Chemistry and Applications, 2019, 4649506. https://doi.org/10.1155/2019/4649506.

    Article  Google Scholar 

  114. Kabeerdass, N., Murugesan, K., Arumugam, N., Almansour, A. I., Kumar, R. S., Djearamane, S., Kumaravel, A. K., Velmurugan, P., Mohanavel, V., Kumar, S. S., Vijayanand, S., Padmanabhan, P., Gulyás, B., & Mathanmohun, M. (2022). Biomedical and textile applications of Alternanthera sessilis leaf extract mediated synthesis of colloidal silver nanoparticle. Nanomaterials (Basel)., 12(16), 2759. https://doi.org/10.3390/nano12162759.

    Article  Google Scholar 

  115. Shobana, C., Rangasamy, B., Poopal, R. K., Renuka, S., & Ramesh, M. (2018). Green synthesis of silver nanoparticles using Piper nigrum: Tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. Environmental Science and Pollution Research International, 25(12), 11812–11832. https://doi.org/10.1007/s11356-018-1454-z.

    Article  Google Scholar 

  116. Rasheed, T., Bilal, M., Iqbal, H. M. N., & Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces, B: Biointerfaces, 158, 408–415. https://doi.org/10.1016/j.colsurfb.2017.07.020.

    Article  Google Scholar 

  117. Ke, Y., Al Aboody, M. S., Alturaiki, W., et al. (2019). Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1938–1946. https://doi.org/10.1080/21691401.2019.1614017.

    Article  Google Scholar 

  118. Das, R. K., Gogoi, N., & Bora, U. (2011). Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess and Biosystems Engineering, 34(5), 615–619. https://doi.org/10.1007/s00449-010-0510-y.

    Article  Google Scholar 

  119. Vankar, P. S., & Bajpai, D. (2010). Preparation of gold nanoparticles from Mirabilis jalapa flowers. Indian Journal of Biochemistry & Biophysics, 47(3), 157–160.

    Google Scholar 

Download references

Funding

The authors report no financial conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Author information

Authors and Affiliations

Authors

Contributions

Rachana R. Yeligar conceptualized the project and gave technical inputs in conducting the study and preparing the predraft manuscript plan. Khomendra Kumar Sarwa and Manmohan Singh Jangde edited the manuscript. Manisha Chandrakar gave technical inputs in drafting and substantively revised the manuscript.

Corresponding author

Correspondence to Khomendra Kumar Sarwa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

Not applicable.

Informed Consent

Not applicable.

Ethical Approval

NA

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeligar, R.R., Sarwa, K.K., Chandrakar, M. et al. Nanotechnology-Based Delivery of Genistein to Overcome Physicochemical Hindrance and Enhance Therapeutic Response in Skin Cancer. BioNanoSci. 13, 1339–1358 (2023). https://doi.org/10.1007/s12668-023-01118-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01118-w

Keywords

Navigation