Skip to main content
Log in

Green Synthesized Titanium Dioxide Nanoparticle from Aloe Vera Extract as a Promising Candidate for Radiosensitization Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Radiosensitizers have played a key role in the enhancement of radiation therapy to minimize the effect of ionizing radiation on healthy tissue. Different types of radiosensitizers had been developed and utilized in radiation therapy such as hyperbaric oxygen, carbogen, mitomycin-C, and fluorodeoxyuridine. With the development of nanotechnology, attention had been paid to produce nano-radiosensitizers such as gold, silver, titanium, gadolinium, and iron, silicon NPs to overcome the side effects of chemical radiosensitizers. In this manuscript, TiO2 NPs had been synthesized using different concentrations (10 ml, 20 ml, and 30 ml) of aloe vera extract. The physicochemical characteristics Of TiO2 NPs were characterized by X-ray diffraction (XRD), UV–vis spectroscopy (UV), RAMAN, Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA). MTT assay was used to assess the cytotoxicity of the samples under investigation before and after irradiation. The obtained results revealed aloe vera extract can be used as a reducing agent to synthesis of TiO2 NPs; also, the concentration of aloe vera extract is a key factor in the size and bioactivity of TiO2 NPs. Moreover, the green synthesis of TiO2 NPs enhances its biocompatibility as indicated in the decrease of its cytotoxicity to HepG2 cells. The green synthesized TiO2 NPs from aloe vera extract showed a promising radiosensitization ability with a dose- and concentration-dependent manner.

Graphical Abstract

Graphical abstract: created by biorender.com

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All the data used to support the findings of this study are included within the article. Other data are available from the corresponding author upon request.

Abbreviations

NPs:

Nanoparticles

ROS:

Reactive oxygen species

ROS:

Titanium isopropoxide

PEG:

Polyethylene glycol

HepG2:

Liver hepatocellular cells

DMSO:

Dimethylsulfoxide

OD:

Optical density

XRD:

X-ray diffraction

FWHM:

Full width at half maximum

HRTEM:

High-resolution transmission electron microscope

FTIR:

Fourier transformation infrared

TGA:

Thermogravimetric analysis

DMEM:

Dulbecco’s Modified Eagle’s Medium

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyltetrazolium

SSD:

Source surface distance

References

  1. Sakamoto, J. H., et al. (2010). Enabling individualized therapy through nanotechnology. Pharmacological Research, 62(2), 57–89. https://doi.org/10.1016/j.phrs.2009.12.011

    Article  Google Scholar 

  2. Gong, L., Zhang, Y., Liu, C., Zhang, M., & Han, S. (2021). Application of Radiosensitizers in Cancer Radiotherapy. International Journal of Nanomedicine, 16, 1083. https://doi.org/10.2147/IJN.S290438

    Article  Google Scholar 

  3. Martin, OA., Martin, RF. (2020) “Cancer Radiotherapy: Understanding the Price of Tumor Eradication,” Front. Cell Dev. Biol., vol. 8, https://doi.org/10.3389/FCELL.2020.00261.

  4. Garibaldi, C. et al (2017) “Recent advances in radiation oncology,” Ecancermedicalscience, vol. 11, https://doi.org/10.3332/ECANCER.2017.785.

  5. Ansari, M. A., et al. (2020). Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Current Pharmaceutical Design, 26(11), 1128–1137. https://doi.org/10.2174/1381612826666200116153912

    Article  Google Scholar 

  6. Chen, Y., Yang, J., Fu, S., & Wu, J. (2020). Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. International Journal of Nanomedicine, 15, 9407. https://doi.org/10.2147/IJN.S272902

    Article  Google Scholar 

  7. Zhao, J., et al. (2019). Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation Therapy. International Journal of Nanomedicine, 14, 9483. https://doi.org/10.2147/IJN.S224160

    Article  Google Scholar 

  8. E. Q. Youkhana, “Investigations of TiO 2 NP as Radiation Dose Enhancement Agent : In Vitro and Phantom Based Studies,” no. September, 2017.

  9. Du, Y., et al. (2020). Radiosensitization Effect of AGuIX, a Gadolinium-Based Nanoparticle, in Nonsmall Cell Lung Cancer. ACS Applied Materials & Interfaces, 12(51), 56874–56885. https://doi.org/10.1021/ACSAMI.0C16548

    Article  Google Scholar 

  10. McMahon, S. J., Paganetti, H., & Prise, K. M. (2016). Optimising element choice for nanoparticle radiosensitisers. Nanoscale, 8(1), 581–589. https://doi.org/10.1039/c5nr07089a

    Article  Google Scholar 

  11. Abdul Rashid, R. et al (2019) “Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam,” OpenNano., vol. 4, https://doi.org/10.1016/j.onano.2018.100027.

  12. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology, 16(1), 1–24. https://doi.org/10.1186/S12951-018-0408-4

    Article  Google Scholar 

  13. Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artif. Cells, Nanomedicine Biotechnol., 47(1), 844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  Google Scholar 

  14. Pradhan, S., et al. (2022). Artemisinin Based Nanomedicine for Therapeutic Applications: Recent Advances and Challenges. Pharmacol. Res. - Mod. Chinese Med., 2, 100064. https://doi.org/10.1016/J.PRMCM.2022.100064

    Article  Google Scholar 

  15. Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L., & Shahi, S. K. (2018). Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. J. Nanostructure Chem., 8(3), 217–254. https://doi.org/10.1007/S40097-018-0267-4

    Article  Google Scholar 

  16. Irshad, MA. et al (2021) “Synthesis, characterization and advanced sustais of titanium dioxide nanoparticles: A review,” Ecotoxicol. Environ. Saf., 212, https://doi.org/10.1016/J.ECOENV.2021.111978.

  17. Długosz, O., Szostak, K., Staroń, A., Pulit-Prociak, J., and Banach, M. (2020) “Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine,” Materials (Basel)., vol. 13, no. 2, https://doi.org/10.3390/ma13020279.

  18. Reddy, G. B., Madhusudhan, A., Ramakrishna, D., Ayodhya, D., Venkatesham, M., & Veerabhadram, G. (2015). Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. Nanostructure Chem., 5(2), 185–193. https://doi.org/10.1007/S40097-015-0149-Y

    Article  Google Scholar 

  19. Yusof, H. M., Aini, N., Rahman, A., and Mohamad, R. (2020) “Biosynthesis of zinc oxide nanoparticles by cell ‑ biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties,” Sci. Rep., pp. 1–13, https://doi.org/10.1038/s41598-020-76402-w.

  20. Arya, S., Sonawane, H., Math, S., Tambade, P., Chaskar, M., & Shinde, D. (2021). Biogenic titanium nanoparticles (TiO2NPs) from Tricoderma citrinoviride extract: Synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. Int. Nano Lett., 11(1), 35–42. https://doi.org/10.1007/S40089-020-00320-Y

    Article  Google Scholar 

  21. Bogdan, J., Pławińska-Czarnak, J., and Zarzyńska, J. (2017) “Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review,” Nanoscale Res. Lett., vol. 12, no. 1, https://doi.org/10.1186/S11671-017-2007-Y.

  22. Hasanzadeh Kafshgari, M., and Goldmann, WH., (2020) “Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine,” Nano-Micro Lett., vol. 12, no. 1, https://doi.org/10.1007/S40820-019-0362-1.

  23. Bekele, E. T., Gonfa, B. A., Zelekew, O. A., Belay, H. H., and Sabir, F. K. (2020) “Synthesis of Titanium Oxide Nanoparticles Using Root Extract of Kniphofia foliosa as a Template, Characterization, and Its Application on Drug Resistance Bacteria,” J. Nanomater., vol. 2020, https://doi.org/10.1155/2020/2817037.

  24. Rajkumari, J et al (2019) “Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1,” J. Photochem. Photobiol. B., vol. 201, https://doi.org/10.1016/J.JPHOTOBIOL.2019.111667.

  25. Santhoshkumar, T., et al. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976. https://doi.org/10.1016/S1995-7645(14)60171-1

    Article  Google Scholar 

  26. Al-Shabib, N. A. et al (2020) “Phyto-Mediated Synthesis of Porous Titanium Dioxide Nanoparticles From Withania somnifera Root Extract: Broad-Spectrum Attenuation of Biofilm and Cytotoxic Properties Against HepG2 Cell Lines,” Front. Microbiol., vol. 11, https://doi.org/10.3389/FMICB.2020.01680.

  27. Martínez-Burgos, W. J., et al. (2022). Aloe vera: From ancient knowledge to the patent and innovation landscape – A review. South African J. Bot., 147, 993–1006. https://doi.org/10.1016/j.sajb.2022.02.034

    Article  Google Scholar 

  28. Maan, A. A., et al. (2018). The therapeutic properties and applications of Aloe vera: A review. J. Herb. Med., 12, 1–10. https://doi.org/10.1016/J.HERMED.2018.01.002

    Article  MathSciNet  Google Scholar 

  29. Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374. https://doi.org/10.1007/s10311-020-01074-x

    Article  Google Scholar 

  30. Sorbiun, M., Shayegan Mehr, E., Ramazani, A. and Mashhadi Malekzadeh, A. (2018) “Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties,” Nanochemistry Res., vol. 3, no. 1, pp. 1–16, https://doi.org/10.22036/NCR.2018.01.001.

  31. Al-Harbi, L. M., Mohamed, W. S., Ebnalwaled, A. A., Said, A. H., & Ezzeldien, M. (2023). The effect of synthesis conditions on the photokilling activity of TiO 2 nanostructures. Mater. Res. Express, 10(1), 015004. https://doi.org/10.1088/2053-1591/acb121

    Article  Google Scholar 

  32. Kamal, Z et al (2022) “Ameliorative effect of biosynthesized titanium dioxide nanoparticles using garlic extract on the body weight and developmental toxicity of liver in albino rats compared with chemically synthesized nanoparticles,” Front. Vet. Sci., vol. 9, https://doi.org/10.3389/fvets.2022.1049817.

  33. Nadeem, M., et al. (2018). The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chemistry Letters and Reviews, 11(4), 492–502. https://doi.org/10.1080/17518253.2018.1538430

    Article  Google Scholar 

  34. Venkatesh, K. S., et al. (2015). Facile one step synthesis of novel TiO 2 nanocoral by sol–gel method using Aloe vera plant extract. Indian Journal of Physics, 5(89), 445–452. https://doi.org/10.1007/S12648-014-0601-8

    Article  Google Scholar 

  35. Patle, L. B., Labhane, P. K., Huse, V. R., Gaikwad, K. D., & Chaudhari, A. L. (2018). Synthesis and structural analysis of Fe doped TiO2 nanoparticles using Williamson Hall and Scherer Model. AIP Conf. Proc., 1953(1), 030045. https://doi.org/10.1063/1.5032380

    Article  Google Scholar 

  36. Dunlap, R. A. (2018) X-ray diffraction techniques. pp. 2–16.

  37. Arabi, N., Kianvash, A., Hajalilou, A., Abouzari-Lotf, E., & Abbasi-Chianeh, V. (2020). A facile and green synthetic approach toward fabrication of Alcea- and Thyme-stabilized TiO2 nanoparticles for photocatalytic applications. Arabian Journal of Chemistry, 13(1), 2132–2141. https://doi.org/10.1016/j.arabjc.2018.03.014

    Article  Google Scholar 

  38. Subhapriya, S., & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116, 215–220. https://doi.org/10.1016/J.MICPATH.2018.01.027

    Article  Google Scholar 

  39. Dobrucka, R. (2017) “Synthesis of Titanium Dioxide Nanoparticles Using Echinacea purpurea Herba,” Iran. J. Pharm. Res. IJPR, vol. 16, no. 2, p. 756, Accessed: Mar. 02, 2023. [Online]. Available: /pmc/articles/PMC5603885/.

  40. Verma, V., Al-Dossari, M., Singh, J., Rawat, M., Kordy, M. G. M., & Shaban, M. (2022). A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers (Basel), 14(7), 1444. https://doi.org/10.3390/polym14071444

    Article  Google Scholar 

  41. Srujana, S. et al (2022) “A Comprehensive Study on the Synthesis and Characterization of TiO2Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye,” Adsorpt. Sci. Technol., vol. 2022, https://doi.org/10.1155/2022/7244006.

  42. Zhang, W. F., He, Y. L., Zhang, M. S., Yin, Z., & Chen, Q. (2000). Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics. D. Applied Physics, 33(8), 912. https://doi.org/10.1088/0022-3727/33/8/305

    Article  Google Scholar 

  43. León, A., et al. (2017). FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci., 7(1), 49. https://doi.org/10.3390/APP7010049

    Article  MathSciNet  Google Scholar 

  44. Hashem, M., & Al-Karagoly, H. (2021). Synthesis, Characterization, and Cytotoxicity of Titanium Dioxide Nanoparticles and in Vitro Study of its Impact on Lead Concentrations in Bovine Blood and Milk. J. Biotech Res., 12, 93–105.

    Google Scholar 

  45. Shanavas, S., et al. (2020). Green synthesis of titanium dioxide nanoparticles using Phyllanthus niruri leaf extract and study on its structural, optical and morphological properties. Mater. Today Proc., 26, 3531–3534. https://doi.org/10.1016/J.MATPR.2019.06.715

    Article  Google Scholar 

  46. Zhang, X. F., Liu, Z. G., Shen, W, and Gurunathan, S. (2016) “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches,” Int. J. Mol. Sci., 17, 9, https://doi.org/10.3390/IJMS17091534.

  47. DevanandVenkatasubbu, G., Ramasamy, S., Ramakrishnan, V., & Kumar, J. (2013). Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol., 24(6), 947–954. https://doi.org/10.1016/J.APT.2013.01.008

    Article  Google Scholar 

  48. Órdenes-Aenishanslins, N. A., Saona, L. A., Durán-Toro, V. M., Monrás, J. P, Bravo, D. M., Pérez-Donoso, J. M (2014) “Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells,” Microb. Cell Fact., vol. 13, no. 1, https://doi.org/10.1186/S12934-014-0090-7.

  49. Youkhana, EQ. (2017) Investigations of TiO2 NP as Radiation Dose Enhancement Agent: In Vitro and Phantom Based Studies A, no. September. 2017.

  50. Wang, H., Mu, X., He, H., & Zhang, X.-D. (2018). Cancer Radiosensitizers. Trends Pharmacol. Sci., 39(1), 24–48. https://doi.org/10.1016/J.TIPS.2017.11.003

    Article  Google Scholar 

  51. Rezaei-Tavirani, M., Dolat, E., Hasanzadeh, H., Seyyedi, S.-S., Semnani, V., and Sobhi, S (2021) “TiO2 Nanoparticle as a Sensitizer Drug in Radiotherapy: in Vitro Study,” Int. J. Cancer Manag. 2013 6Supplement, vol. 6, no. Supplement, Dec. 2013, Accessed: Oct. 12, 2021. [Online]. Available: https://sites.kowsarpub.com/ijcm/articles/80460.html.

Download references

Funding

This research was supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt, Grant No 6658.

Author information

Authors and Affiliations

Authors

Contributions

Yasmin Abo Elhassan did the experimental part and Alaa Hassan Said analyzed the data and wrote the original manuscript. N. K. Ahmed, A. Abbady revised the original manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alaa Hassan Said.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N.K., Abbady, A., Elhassan, Y.A. et al. Green Synthesized Titanium Dioxide Nanoparticle from Aloe Vera Extract as a Promising Candidate for Radiosensitization Applications. BioNanoSci. 13, 730–743 (2023). https://doi.org/10.1007/s12668-023-01085-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01085-2

Keywords

Navigation