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Abstract
Many viruses appear each year. Some of these viruses result in severe disease and even death. The frequency of 
epidemics and pandemics is growing at an alarming rate. The lack of virus-specific etiopathogenic drugs necessi-
tates the search for new tools for the complex treatment of severe viral diseases and their late complications. Small 
noncoding RNAs and their antagonists may be effective therapeutic tools for preventing virus-induced damage to 
targeted epithelial cells and surrounding tissues in the manifestation stage. Moreover, sncRNAs could interfere with 
the virus-interacting host genes that trigger the malignant transformation of target cells as a late complication of 
severe viral diseases.
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1 Introduction

Over 5630 confirmed virus species exist on Earth, and 
at least 320,000 undiscovered viruses infect mammalian 
hosts. Every year, many human virus-induced diseases 
emerge. Viruses can cause numerous disorders affect-
ing all human organs and systems, injuring target cells. 
Viruses cause irreversible changes and death, minimal 
host morphology or function changes, and mediate adap-
tive reactions, depending on their virulence and patho-
genicity. In the near future, the number of virus-induced 
infections will increase as environmental conditions 
change (for example, technologic progress, technogenic 
catastrophes and changes in climate and sun activity) 
due to the ability of viruses to develop new genetic mod-
ifications allowing them to adapt to new living condi-
tions. Human population increases and overcrowding 
facilitate viral transmission from person to person and 
cause epidemics and pandemics.

2  Viruses and Immunity

Viruses have tropism for different cells depending on their 
capsid structure. Viruses activate the innate and adaptive 
immune systems in the host. The final outcome of viral 
infection may be full elimination, induction of an abortive 
response or latent, persistent, restricted or productive infec-
tion. All these outcomes depend on host immune system 
functionality and virus pathogenicity. In the worst situa-
tion, immune cells become targets for viruses, or a primar-
ily defective immune system becomes incapable of recog-
nizing viral antigens. Viral targeting of immune cells may 
provoke the development of haematologic neoplasms (acute 
lymphocytic leukaemia or chronic lymphocytic leukaemia) 
and/or secondary (acquired) immunodeficiency. The major-
ity of infections can be effectively cured, but not when the 
therapeutic target is virus-injured immune system cells 
that have altered functionality due to the infection. Viruses 
that have such effects on immune cells include the measles 
virus, which injures T-lymphocytes (decreases proliferation) 
and dendritic cells; the influenza A virus, which induces 
neutrophil degranulation with further destruction of sur-
rounding tissues (especially in the lungs); human immune 
deficiency virus (HIV), which injures CD4+ cells due to 
their depletion; human T cell lymphotropic virus-1 (HTLV-
1), which alters T cells and NK cells (induces inhibition of 
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cytokine-producing functions in T cells and decreases natu-
ral killer (NK) cell activity); cytomegalovirus, which causes 
immune senescence by decreasing the number of naïve T 
cells and increasing the accumulation of memory T cells; 
and Epstein–Barr virus, which depletes B cells (X-linked 
lymphoproliferative syndrome) and induces the development 
of gammopathy and autoimmune reactions [1].

Cytokine storm syndrome (CSS) is the main virus-
induced pathogenic mechanism in the host that results in 
tissue destruction (e.g. in the lungs, liver and kidneys). The 
pathogenesis of CSS is associated with two mechanisms: 
one is the depletion in number or decrease in functional-
ity of some types of T lymphocytes, and the other is con-
nected with the activation of macrophages, NK cells and 
dendritic cells (DCs) by pathogens and the release of deadly 
levels of proinflammatory cytokines, such as C-X-C motif 
chemokine ligand 8 (CXCL8), C-X-C motif chemokine 
ligand 9 (CXCL9), C-X-C motif chemokine ligand 10 
(CXCL10), C-C motif chemokine ligand 2 (CCL2), 
C-C motif chemokine ligand 3 (CCL3) and C-C motif 
chemokine ligand 5 (CCL5), along with cytokines, such 
as interleukin-1β (IL-1β), interleukin 6 (IL-6), interleukin 
12 (IL-12), interleukin 18 (IL-18), interleukin 23 (IL-23), 
IFN-α, IFN-γ, TNF-α and transforming growth factor beta 
(TGF-β). In the case of Middle East respiratory syndrome 
coronavirus (MERS-CoV), increased expression levels of 
proinflammatory cytokines, such as IFN-α and IL-6, and 
chemokines, including CCL-5, CXCL-8 and CXCL-10, have 
been reported [5]. An extremely high rate of CCR6 T-helper 
17 (Th17) lymphocytes has been detected in the peripheral 
blood of COVID-19 (coronavirus disease 2019) patients, 
sustaining a Th17-type cytokine storm [2–5]. Some known 
viruses can induce CSS, such as Epstein–Barr virus [6, 7], 
influenza virus (H5N1, H1N1, H7N9) [8], measles [9], 
Ebola virus [10], Dengue virus [11], Lassa virus [12–14], 
Marburg virus [15, 16], yellow fever virus [17], Crimean-
Congo haemorrhagic fever virus [18], human immunodefi-
ciency virus [19], MERS-CoV [20] and severe acute respira-
tory syndrome coronavirus (SARS-CoV) [21–23].

CSS induces secondary immunodeficiency. Virus-induced 
secondary immunodeficiency has temporary or long-term 
characteristics. Measles infection causes several weeks of 
immunosuppression after disease onset [9]. Influenza infec-
tion also temporarily suppresses immune responses. T-cell 
lymphotrophic-1 and human immune deficiency viruses 
induce long-term immunodeficiency [8].

3  RNA Viruses and CSS

RNA viruses are the most contagious among humans. SARS 
coronaviruses, the Ebola virus and MERS-CoV have caused 
pandemics. SARS-CoV and MERS-CoV viral infections 

caused global epidemics in 2003 and 2012, respectively, char-
acterized by high fatality, pathogenicity and contagiousness 
rates.

SARS-CoV-2 (severe acute respiratory syndrome coro-
navirus-2), responsible for the recent pandemic, causes the 
multisymptomatic illness COVID-19. This virus is a mem-
ber of the Group IV Baltimore classification of RNA viruses. 
This group also includes hepatitis C virus (HCV), West Nile 
virus, dengue virus and rhinovirus. SARS-CoV-2 is a single-
stranded RNA virus belonging to the family Coronaviridae 
and is most closely related to SARS-CoV and MERS-CoV. 
The SARS-CoV-2 RNA sequence has 89.1% identity to 
SARS-CoV and 50% identity to MERS-CoV.

CSS in COVID-19 is associated with elevated production 
of interleukin-1β, interleukin-6, interleukin-10 and related 
factors. Its pathways are connected with the induction of 
STAT2, SUZ12, JUN, STAT1, MEF2A, RAD21, STAT3, 
BCL11A, NFE2 and BATF expression in peripheral blood 
mononuclear cells. Activation of these factors results in tis-
sue damage and multiple organ failure [24].

4  Molecular Targets for SARS‑CoV 
and SARS‑CoV‑2

While no effective antiviral drugs are currently available to treat 
COVID-19, detecting the molecular targets of SARS-CoV-2 
could help find an effective treatment [25]. The pathophysiol-
ogy of this deadly pathogen is complex, and a Calu-3-specific 
human-SARS-CoV-2 interactome (CSI) has been identified. 
Recently, in CSI, nodes corresponding to hubs and bottlenecks, 
including respiratory chain complex I proteins and immunophi-
lins (CoV nonstructural protein 1 — Nsp1), were identified as 
targets of SARS-CoV-2 [26], and 332 SARS-CoV-2 interacting 
proteins (SIPs) have been detected in human tissues [27]. The 
pathophysiology of COVID-19 is also associated with several 
signalling pathways, including (1) eIF2 signalling/translation 
(induction of MXI1, BRCA1, ELF1, SIN3A, E2F4, IRF1, 
GABPB1, HMGN3, ETS1, SP2, POLR2A, ELK4, CHD2 and 
CCNT2); (2) inhibition of the ARE-mediated mRNA degrada-
tion pathway; (3) the protein ubiquitination pathway; (4) T cell 
receptor regulation of apoptosis; (5) the NER pathway; (6) RNA 
degradation; and (7) the retinoic acid-mediated apoptosis sig-
nalling pathway (expression of IRF1, CCNT2, BRCA1, MXI1, 
CHD2, POLR2A, SIN3A, E2F4 and HEY1). ETS1, ELK4, 
HMGN3, SP2, IRF1 and GABPB1) [28].

5  Carcinogenesis and Coronaviruses

Almost 150 types of viruses have carcinogenic potential in 
humans. Presumably, coronaviruses are not an exception. 
Severe viral infection likely provokes the development of 
cancers in target organs as a late complication. There are 
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several reasons to make this conclusion. Massive damage 
to lung tissue due to an oxidative burst induced by virus-
activated cells of the native immune system (ARDS — acute 
respiratory distress syndrome) and inhibition of adaptive 
immune responses may provoke local malignant transfor-
mation of normal cells [29, 30]. There is evidence that in a 
certain percentage of patients with severe manifestations of 
coronavirus infection, the virus may persist in target cells, 
with a higher probability of symptom recurrence [31–33]. 
Oxidative burst is accompanied by injury of the lung, kid-
ney, liver, brain and other organs (CSS) by pathogen-acti-
vated released components, and insufficient immune defence 
plus the possibility of virus persistence in target cells may 
be a reason for the development of malignant transformation 
in target organs.

Moreover, the direct action of SARS-CoV-2 on cancer-
inducing proteins, such as pRb and p53, was recently dem-
onstrated [34]. Khan and others [35] have suggested that 
COVID-19 has oncogenic potential. In an in vitro experi-
mental model of glioblastoma, SARS-CoV-2 had very high 
affinity to EGFR, VEGFR and c-MET receptors expressed 
on glial cells, which are strongly related to gliomagenesis. 
Moreover, SARS-CoV-2 may cross the blood–brain barrier, 
increasing the risk of injury to cells of the nervous system 
and causing many neurological symptoms [36].

Interestingly, SARS-CoV-2 tyrosine kinase activity was 
recently detected [37]. Tyrosine kinases can induce the 
malignant transformation of multiple cell types [38].

6  Tyrosine Kinase Inhibitors as Potentially 
Active Antiviral Therapeutic Tools

Passamonti and others [39] demonstrated that tyrosine 
kinase inhibitors were effective in SARS-CoV-2 in patients 
with CML. Patients with CML who were infected with 
SARS-CoV-2 and treated with tyrosine kinase inhibi-
tors overcame COVID-19 and survived. In these patients, 
decreases in TNF-alpha and interleukin-6 levels were 
detected. These effects may be connected with the regulation 
of NF-kB pathways by tyrosine kinase inhibitors [39–41].

In in vitro investigations, imatinib and dasatinib (ABL 
kinase inhibitors) inhibited both SARS-CoV and MERS-
CoV replication, while nilotinib inhibited only SARS-CoV 
replication [42]. The mechanism of the antiviral effects 
of imatinib against SARS-CoV and MERS-CoV is based 
on inhibition of the early stages of the virus life cycle and 
viral replication by targeted knockdown of ABL2 in vitro 
[43]. Recently, imatinib, similar to 17 other FDA-approved 
drugs, was reported to inhibit SARS-CoV-2, SARS-CoV and 
MERS-CoV with the same IC50 values in vitro [44, 45]. 

Moreover, there was a 4-log increase in the antiviral activity 
of imatinib against SARS-CoV-2 in vitro [46–48].

The effect of ibrutinib (Bruton’s tyrosine kinase inhibitor) 
was also clinically evaluated in six SARS-CoV-2 patients 
with Waldenström’s macroglobulinemia. These patients 
received different doses of ibrutinib: five received high doses 
(420 mg/day), and one received a low dose (140 mg/day). 
The patients receiving the higher dose had a more favourable 
COVID-19 course with milder symptoms, and hospitaliza-
tion was not necessary. The patient who received the lower 
dose had symptoms with poorer outcomes and required hos-
pitalization [37, 49].

Src tyrosine kinases regulate complex signalling path-
ways, including the EGF receptor (EGFR) pathway, Ras/Raf/
MEK, PI3K/AKT and JAK/STAT. The antiviral mechanism 
of targeted tyrosine kinase inhibitors is unclear [50]. Recent 
studies revealed that dasatinib (Bcl-Abl and Src-tyrosine 
kinase inhibitor) is highly effective against SARS-CoV and 
MERS-CoV [51]. Saracatinib is an inhibitor of multiple Src 
tyrosine kinase (SFK) family members, including Fyn and 
Lyn. Saracatinib inhibited the early stages of the MERS-
CoV life cycle in in vitro experiments in Huh-7 cells [52].

7  Small Noncoding RNAs and Viruses

Small noncoding RNAs are key regulators of multiple func-
tions in organisms, and they play key roles in the pathophysi-
ology of different diseases. Recently, the expression patterns 
of different microRNAs in SARS-CoV, SARS-CoV-2, influ-
enza and measles have been determined. SARS-CoV has 53 
unique miRNAs, influenza has 227, SARS-CoV-2 has 98 
and measles has 42. Viral miRNAs may interact with differ-
ent host genes to regulate host immune system responses, 
facilitating viral invasion, replication and dissemination 
[53].

SARS-CoV-2 invasion changes the expression levels of 
different host miRNAs. Downregulation of hsa-miR-1-3p, 
hsa-miR-17-5p, hsa-miR-199a-3p, hsa-miR-429, hsa-miR-
15a-5p and hsa-miR-20a-5p expression has been observed. 
The interaction network enabled the identification of 51 
miRNAs that interact with 77 transcription factor genes, 
including HMOX1, DNMT1, PLAT, GDF1 and ITGB1. 
These miRNAs are involved in modulating antiviral activ-
ity by the induction and epigenetic control of IFN-α2b 
(interferon-α2b) [54]. Both SARS-CoV-1 and SARS-CoV-2 
miRNAs interact with host miRNA genes that participate in 
TGF-β signalling, adherens junction function and AMPK 
signalling. SARS-CoV miRNAs mostly regulate host miR-
NAs that control the VEGFα-VEGFR2 and EGF/EGFR sig-
nalling pathways. Host miRNAs targeted by SARS-CoV-2 
miRNAs regulate the mTOR, Wnt and p38MAPK pathways 
[55].
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8  RNA Interference as a Therapeutic 
Antiviral Mechanism

The use of viral-targeted RNA interference as a treatment 
for SARS-CoV infection began in 2003. In that year, the 
viral sequence of SARS-CoV was determined [56]. At that 
time, siRNAs and shRNAs were used to inhibit SARS-CoV 
replication in vitro. The main targets for RNA interference 
were RNA polymerase and spike protein genes [57–60]. 
Viruses have a high mutation rate, and the search for virus-
targeting specific shRNAs or siRNAs is a “one-way ticket” 
for antiviral therapy. Despite the high therapeutic efficiency 
of one virus-specific siRNA or shRNA against a select virus 
strain, in the case of large mutational rearrangements of viral 
genetic material with changes in viral pathogenicity and the 
appearance of other virus strains, this siRNA or shRNA 
may become ineffective. Investigating new virus-interfering 
sequences will require additional funding, time and intellec-
tual resources. Identifying the main therapeutic targets for 
severe viral diseases necessitates the identification of key 
virus-induced pathways in the host organism.

9  miR‑155 and Viral Infections

SncRNAs, as coordinators of host–virus interactions, may 
be preferable tools for the treatment of severe viral infections 
and their late complications. Recently, the role of miR-155 
in the regulation of anti-SARS-CoV-2 and other viral infec-
tion immune responses was investigated. Increased levels 
of miR-155 were detected in patients with numerous viral 

diseases and SARS-CoV-2 patients [61, 62]. MiR-155 is a 
regulator of various immune functions. A decrease in miR-
155 expression increases Peli1 expression in CD4+ T cells 
and inhibits c-Rel due to compromised CD40L expression 
in CD4+ T cells and the impaired proliferation of antigen-
specific CD4+ T cells at the late cell differentiation stage. 
MiR-155 is a key factor for DC maturation and activation. 
Mature DCs obtained from miR-155-deficient mice exhib-
ited defects in DC morphology and decreased upregula-
tion of CD40 and CD86 [63]. MiR-155 plays a significant 
role in the regulation of different types of active immune 
cells, including T and B cells, DCs and NK cells. Moreover, 
increased miR-155 expression was observed during the acti-
vation of T cells, B cells, DCs and macrophages. Addition-
ally, miR-155 regulates the expression of immune modula-
tors and regulators such as Ship1, Socs1, Jarid2, Ets1, PU.1 
and Fosl2 [63] (Fig. 1).

The role of miR-155 in the activation and regulation of 
immune responses to viruses has recently been revealed [64, 
65]. This miRNA may act as a “double-edged sword” in 
different viral infections. In experiments with human NK 
cells infected with a lentivirus, it was observed that in cells 
treated with IL-12 and IL-18, miR-155 levels increased as 
interleukin concentrations increased. MiR-155 expression 
levels also correlated with IFN-γ release from NK cells 
[66]. Patients infected with RSV had highly elevated lev-
els of miR-155 in macrophages [67]. miR-155 was found to 
control leukotriene B4 pathways via leukotriene receptor 1 
signalling. The antago-miR against miR-155 prevented both 
the LTB4-mediated decrease in SOCS-1 and the increase in 
MyD88 levels in macrophages by controlling cell activation 
[68]. Lind et al. [69] showed that immunity to lymphocytic 

Fig. 1  The use of the sncRNAs/
DDMC complex as an antiviral 
therapeutic tool. The DDMC 
polymer vector is a carrier for 
sncRNAs or antago-miRs. It 
protects active RNAs from 
biodegradation in blood and 
cells. The complex of sncRNAs 
and DDMC slowly decays in the 
cytoplasm, releasing sncRNAs 
or their antago-miRs. SncR-
NAs induce RNA interference 
mechanisms. The effects and 
mechanisms regulated by miR-
155 and antago-miR-155 in 
virus-targeted cells are associ-
ated with severe viral manifesta-
tions and late complications
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choriomeningitis virus was lacking in miR-155-deficient 
mice. Significantly, miR-155 was overexpressed in EBV-
infected resting primary human B cells, increasing the sur-
vival of lymphoblastic cells. It was hypothesized that miR-
155 is important for EBV persistence [70].

Epithelial cells of the respiratory tract are the main tar-
gets in RV infection. miR-155 can regulate innate immune 
responses against RV-1B, resulting in targeting of the genetic 
components of RV [71]. miR-155 knockdown can stimulate 
RV replication [72, 73].

Recently, it was observed that the treatment of SARS-
CoV-2-infected tg-mice hACE2 (a mouse model of SARS-
CoV-2 infection; mice transgenic for human angiotensin 
I-converting enzyme 2 receptor) with antago-miR-155 
improved the clinical manifestations and increased animal 
survival rates. In antago-miR-155-treated tg-mice, hACE2 
cells infected with SARS-CoV-2 exhibited reduced levels 
of proinflammatory cytokines and induced antiviral and 
anti-inflammatory cytokine responses in the lungs [74, 75]. 
Woods and colleagues [76] revealed that pulmonary oedema 
(ARDS) in A/WSN/33 (H1N1) influenza-infected 155-KO 
mice was significantly reduced compared with that in virus-
infected control mice [76, 77].

In in vivo experiments, we recently obtained full recovery 
of mice with virus-induced src-tyrosine kinase sarcoma as a 
model of virus-induced tumours in humans. We used a slow-
biodegradable complex of antago-miR-155 with a polymer 
carrier for treatment. We did not detect src gene expres-
sion in the sectioned tissues of mice with virus-induced sar-
coma treated with antago-miR-155, and we did not find any 
tumours or tumour cells [78].

Our in vitro experiments also achieved irreversible trans-
formation of AML M0-M1 cancer cells into noncancer-
ous stem cells and their differentiation into other types of 
cells after adding different cell differentiating factors to the 
medium [79].

10  Conclusion

sncRNAs and their antago-miRs may be effective tools for 
the complex treatment of severe viral diseases. Primary 
manifestations of severe viral infections may be prevented 
by using sncRNAs, which play key roles in the epigenetic 
regulation of immune cells (reduction of the affected area 
by decreasing the release of injury factors by virus-induced 
target immune cells after treatment with sncRNAs). MiR-
155 regulates the expression of proinflammatory cytokines. 
Using antago-miR-155 inhibits the hyperreactivity of the 
immune system and prevents the development of CSS. The 
persistence of viruses in cells, oxidative bursts, immuno-
logic disturbances and activation of tumorigenic pathways 
by viruses may provoke late severe postviral complications 

and even the development of cancers in target organs. SncR-
NAs may prevent some virus-induced host carcinogenic 
pathways and may be an effective tool for treating late severe 
complications of viral diseases. Moreover, sncRNAs are not 
associated with severe side effects, unlike tyrosine kinase 
inhibitors.
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Key Points
• The number of severe viral infections and associated 

complications is increasing.
• Symptomatic therapy is sometimes not enough and/or is not 

effective for treating severe viral diseases.
• Etiopathogenic therapy has not been well studied in the 

context of viral diseases.
• Using tyrosine kinase inhibitors to treat coronavirus 

infections is effective but is associated with severe side effects.
• Some sncRNAs may effectively treat severe viral disease 

manifestations and late complications; antago-miR-155 may 
be effective for the complex therapy of severe coronavirus 
manifestations (ARDS) and late complications (viral tyrosine 
kinase-induced cancers).
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