Skip to main content
Log in

Bayesian Modeling Coherenced Green Synthesis of NiO Nanoparticles Using Camellia sinensis for Efficient Antimicrobial Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Among various nanoparticles reported, nickel has been notable for its antimicrobial and photocatalytic exercises. However, to reduce the toxicity of the direct use of nickel, Camellia sinensis (tea) plant extract has been used in this work for the synthesis of nickel oxide nanoparticles (NiO NPs). The synthesis of NiO NPs has been confirmed by the UV absorption peak at 346 nm and photoluminescence peak at 341 nm. TEM images confirm the formation of NiO NPs with an average particle size of 2 nm. SEM pictures are indicating the formation of well-defined nanosheet-like NiO NPs. Statistical tools could be used to reinforce the confidence that the materials have been characterized correctly. Here, the bivariate Gaussian model has been applied to interrelate among absorbance and intensity with the wavelength, which was obtained in UV-Vis and photoluminescence spectra, respectively. A more generalized Bayesian estimate along with 95% highest probability density interval of the maximum absorption or emission wavelength observed at the highest absorbance or intensity has been calculated and investigated by using the observed values through Markov chain Monte Carlo simulations. Further, NiO NPs show efficient antimicrobial activity against both gram-negative and gram-positive bacteria strain. The synthesized NiO NPs using tea leaf extract could provide a green pathway against bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bharali, P., Saikia, P., & Reddy, B. M. (2012). Large scale synthesis of ceria based nano oxides with high CO oxidation activity. Catalysis Science & Technology, 2, 931–933.

    Article  Google Scholar 

  2. Toshimitsu, F., & Nakashima, N. (2014). Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry. Nature Communications, 5(1), 5041.

    Article  Google Scholar 

  3. Lokesh, K., Kavitha, G., Manikandan, E., Mani, G. K., Kaviyarasu, K., Rayappan, J. B., Ladchumananandasivam, R., Jayachandran, M., & Maaza, M. (2016). Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sensors Journal, 16, 2477–2483.

    Article  Google Scholar 

  4. Kaviyarasu, K., & Devarajan, P. A. (2011). A versatile route to synthesize MgO nanocrystals by combustion technique. Der Pharma Chemica, 3(5), 248–254.

    Google Scholar 

  5. Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Mazza, M., Ayeshamariam, A., & Kennedy, L. J. (2016). Green synthesis of NiO nanoparticles using Moringa oleifra extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. Journal of Photochemistry and Photobiology B: Biology, 164, 352–360.

    Article  Google Scholar 

  6. Ghorai, T. K., Dhak, D., Biswas, S. K., Dalai, S., & Pramanik, P. (2007). Photocatalytic oxidation of organic dyes by nano-sized metalmolybdate incorporated titanium dioxide (MxMoxTi1−xO6) (M = Ni, Cu, Zn) photocatalysts. Journal of Molecular Catalysis A: Chemical, 273, 224–229.

    Article  Google Scholar 

  7. Reddy, V. P., Kumar, A. V., & Rao, K. R. (2010). Copper oxide nanoparticles catalyzed vinylation of imidazoles with vinylhalides under ligand-free conditions. Tetrahedron Letters, 51, 3181–3185.

    Article  Google Scholar 

  8. Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.

    Article  Google Scholar 

  9. Dharmaraj, N., Prabhu, P., Nagarajan, S., Kim, C. H., Park, J. H., & Kim, H. Y. (2006). Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Materials Science and Engineering B: Advanced, 128, 111–114.

    Article  Google Scholar 

  10. Morita, M., Niwa, O., Tou, S., & Watanabe, N. (1999). Nickel content dependence of electrochemical behavior of carbohydrates on a titanium–nickel alloy electrode and its application to a liquid chromatography detector. Journal of Chromatography. A, 837, 17–24.

    Article  Google Scholar 

  11. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J. M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407, 496–499.

    Article  Google Scholar 

  12. Yoshimura, K., Miki, T., & Tanemura, S. T. S. (1995). Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering. Japanese Journal of Applied Physics, 34, 2440–2446.

    Article  Google Scholar 

  13. Pang, H., Lu, Q., Li, Y., & Gao, F. (2009). Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chemical Communications, 48, 7542–7544.

    Article  Google Scholar 

  14. Tong, L., Wu, W., Kuepper, K., Scheurer, A., & Meyer, K. (2018). Electrochemically deposited nickel oxide from molecular complexes for efficient water oxidation catalysis. ChemSusChem, 11, 2752–2757.

    Article  Google Scholar 

  15. Wong, Y. C., Nurdiyana, W. A. W., & Yap, Y. H. T. (2018). The effects of different sonication times of nickel oxide and zirconium oxide catalysts in syngas production. Jurnal Teknologi, 80, 2180–3722.

    Article  Google Scholar 

  16. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., & Yang, P. (2001). Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials, 13(2), 113–116.

    Article  Google Scholar 

  17. El-Shishtawy, R. M., Asiri, A. M., & Al-Otaibi, M. M. (2011). Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochimica Acta Part A, 79, 1505–1510.

    Article  Google Scholar 

  18. Loo, Y. Y., Chieng, B. W., Nishibuchi, M., & Radu, S. (2012). Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. International Journal of Nanomedicine, 7, 4263–4267.

    Google Scholar 

  19. Sudhasree, S., Banu, A. S., Brindha, P., & Kurian, G. A. (2014). Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicological and Environmental Chemistry, 96, 743–754.

    Article  Google Scholar 

  20. Din, M. I., & Rani, A. (2016). Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. International Journal of Analytica, 2016, 3512145.

    Google Scholar 

  21. Swain, S., Barik, S. K., Behera, T., Nayak, S. K., Sahoo, S. K., Mishra, S. S., & Swain, P. (2016). Green synthesis of gold nanoparticles using root and leaf extracts of Vetiveria zizanioides and Cannabis sativa and its antifungal activities. BioNanoSci, 6, 205–213.

    Article  Google Scholar 

  22. El-Houseiny, W., Mansour, M. F., Mohamed, W. A. M., Al-Gabri, N. A., El-Sayed, A. A., Altohamy, D. E., & Ibrahim, R. E. (2021). Silver nanoparticles mitigate Aeromonas hydrophila-induced immune suppression, oxidative stress, and apoptotic and genotoxic effects in Oreochromis niloticus. Aquac, 535, 736430.

    Article  Google Scholar 

  23. El-Sayed, A. A., Amr, A., Kamel, O. M. H. M., El-Saidi, M. M. T., & Abdelhamid, A. E. (2020). Eco-friendly fabric modification based on AgNPs@Moringa for mosquito repellent applications. Cellulose, 6, 205–213.

    Google Scholar 

  24. Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis, 8, 399–340.

    Article  Google Scholar 

  25. Alagesan, V., & Venugopal, S. (2018). Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoSci, 9, 105–116.

    Article  Google Scholar 

  26. Yulizar, Y., Kusrini, E., Apriandanu, D. O. B., & Nurdini, N. (2020). Datura metel L. leaves extract mediated CeO2 nanoparticles: Synthesis, characterizations, and degradation activity of DPPH radical. Surfaces and Interfaces, 19, 100437.

    Article  Google Scholar 

  27. Rasheed, P., Haq, S., Waseem, M., Rehman, S. U., Rehman, W., Bibi, N., & Shah, S. A. A. (2020). Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Materials Research Express, 7, 025011.

    Article  Google Scholar 

  28. Hosny, N. M. (2011). Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron, 30, 470–476.

    Article  Google Scholar 

  29. Danial, A. S., Saleh, M. M., Salih, S. A., & Awad, M. I. (2015). On the synthesis of nickel oxide nanoparticles by sol–gel technique and its electrocatalytic oxidation of glucose. Journal of Power Sources, 293, 101–108.

    Article  Google Scholar 

  30. Beach, E. R., Shqau, K., Brown, S. E., Rozeveld, S. J., & Morris, P. A. (2009). Solvothermal synthesis of crystalline nickel oxide nanoparticles. Materials Chemistry and Physics, 115, 371–377.

    Article  Google Scholar 

  31. Salavati-Niasari, M., Davar, F., & Fereshteh, Z. (2010). Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. Journal of Alloys and Compounds, 494, 410–414.

    Article  Google Scholar 

  32. Karthik, K., Shashank, M., Revathi, V., & Tarachuk, T. (2018). Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Molecular Crystals and Liquid Crystals, 673, 70–80.

    Article  Google Scholar 

  33. Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Ramalingam, R. J., & Al-Lohedan, H. A. (2018). Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry and Photobiology. B, 180, 39–50.

    Article  Google Scholar 

  34. Sabouri, Z., Akbari, A., Hosseini, H. A., Hashemzadeh, A., & Darroudi, M. (2019). Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. Journal of Cluster Science, 30, 1425–1434.

    Article  Google Scholar 

  35. Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014). Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater. Letters, 128, 170–174.

    Google Scholar 

  36. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., Hassan, D., & Maaza, M. (2016). Sageretia thea (Osbeck) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artificial Cells, Nanomedicine, and Biotechnology, 43, 838–852.

    Google Scholar 

  37. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., & Darroudi, M. (2020). Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron, 178, 114351.

    Article  Google Scholar 

  38. Haider, A., Ijaz, M., Ali, S., Haider, J., Imran, M., Majeed, H., Shahzadi, I., Ali, M. M., Khan, J. A., & Ikram, M. (2020). Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Research Letters, 15, 50.

    Article  Google Scholar 

  39. Abbasi, B.A., Iqbal, J., Mahmood, T., Ahmad, R., Kanwal, S., & Afridi, S. (2019). Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Materials Research Express 60850a7.

  40. Vilchis-Nestor, A. R., Sanchez-Mendieta, V., Camacho-Lopez, M. A., Gomez-Espinosa, R. M., Camacho-Lopez, M. A., & Arenas-Alatorre, J. A. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater., 62, 3103–3105.

    Google Scholar 

  41. Lebaschi, S., Hekmati, M., & Veisi, H. (2017). Green synthesis of palladium nanoparticles mediated by black tealeaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. Journal of Colloid and Interface Science, 485, 223–231.

    Article  Google Scholar 

  42. Boruah, S. K., Boruah, P. K., Sarma, P., Medhi, C., & Medhi, O. K. (2012). Green synthesis of gold nanoparticles using Camellia sinensis and kinetics of the reaction. Advanced Materials Letters, 3, 481–486.

    Article  Google Scholar 

  43. Tounekti, T., Joubert, E., Hernandez, I., & Munne-Bosch, S. (2013). Improving the polyphenol content of tea. Critical Reviews in Plant Sciences, 32, 192–215.

    Article  Google Scholar 

  44. de Mejia, E. G., Ramirez-Mares, M. V., & Puangpraphant, S. (2009). Bioactive components of tea: Cancer, inflammation and behavior. Brain, Behavior, and Immunity, 23, 721–731.

    Article  Google Scholar 

  45. Bibi, I., Kamal, S., Ahmed, A., Iqbal, M., Nouren, S., Jilani, K., Nazar, N., Amir, M., Abbas, A., Ata, S., & Majid, F. (2017). Nickel nanoparticle synthesis using Camellia sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation. International Journal of Biological Macromolecules, 103, 783–790.

    Article  Google Scholar 

  46. Kamaraj, M., Kidane, T., Muluken, K. U., & Aravind, J. (2019). Biofabrication of iron oxide nanoparticles as a potential photocatalyst for dye degradation with antimicrobial activity. International journal of Environmental Science and Technology, 16, 8305–8314.

    Article  Google Scholar 

  47. Grabow, W. O. K. Water and health (1st ed.p. 219). Water and development.

  48. Perez, C., Pauli, M., & Bazerque, P. (1990). An antibiotic assay by agar well diffusion method. Acta Biologiae et Medicinae Experimentalis, 15, 113–115.

    Google Scholar 

  49. Liang, Z.-H., Zhu, Y.-J., & Hu, X.-L. (2004). β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. The Journal of Physical Chemistry. B, 108, 3488–3491.

    Article  Google Scholar 

  50. Yousefi, S. R., Ghanbari, D., Salavati-Niasari, M., & Hassanpour, M. (2016). Photo-degradation of organic dyes: Simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. Journal of Materials Science: Materials in Electronics, 27, 1244–1125.

    Google Scholar 

  51. Ouyang, Y., Xia, X., Ye, H., Wang, L., Jiao, X., Lei, W., & Ha, Q. (2018). Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Applied Materials & Interfaces, 10, 3549–3561.

    Article  Google Scholar 

  52. Wang, H., Fan, X., Zhang, X., Huang, Y., Wu, Q., Pan, Q., & Li, Q. (2017). In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li–O2 batteries. RSC Advances, 7, 23328–23333.

    Article  Google Scholar 

  53. Fayemi, O. E., Adekunle, A. S., & Ebenso, E. E. (2016, 2016). Electrochemical detection of phenanthrene using nickel oxide doped PANI nanofiber based modified electrodes. Journal of Nanomaterials, 9614897.

  54. Anandan, K., & Rajendran, V. (2011). Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Materials Science in Semiconductor Processing, 4, 43–47.

    Article  Google Scholar 

  55. Gondal, M. A., Saleh, T. A., & Drmosh, Q. A. (2012). Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Applied Surface Science, 258, 6982–6986.

    Article  Google Scholar 

  56. Adler, D., & Feinleib, J. (1970). Electrical and optical properties of narrow-band materials. Physical Review B, 2, 3112–3134.

    Article  Google Scholar 

  57. Diaz-Guecrra, C., Remon, A., Garcia, J. A., & Piqueras, J. (1997). Cathodoluminescence and photoluminescence spectroscopy of NiO. Physica Status Solidi A, 163, 497–503.

    Article  Google Scholar 

  58. Chowdhury, P. R., Verma, V., Medhi, H., & Bhattacharyya, K. G. (2019). Empirical modeling of electron transport in Fe/Ti layered double hydroxide using exponential, Gaussian and mixed Gauss–exponential distribution. ACS Omega, 4, 10599.

    Article  Google Scholar 

  59. Chowdhury, P. R., Verma, V., Medhi, H., & Bhattacharyya, K. G. (2020). Mn/Ti layered double hydroxide: An investigation into the structure and electron transport through combinatorial experimental and theoretical approaches. Materials Research Express, 6, 125549.

    Article  Google Scholar 

  60. Verma, V., Mishra, A. K., & Narang, R. (2019). Application of Bayesian analysis in medical diagnosis. Journal of the Practice of Cardiovascular Sciences, 5, 136.

    Article  Google Scholar 

  61. Ghosh, J.K., Delampady, M., & Samanta, T. (2007) An introduction to Bayesian analysis: Theory and methods. Springer Science & Business Media.

  62. Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician, 49, 327–335.

    Google Scholar 

  63. Jesudoss, S. K., Vijaya, J. J., Clament, N., Selvam, S., Kombaiah, K., Sivachidambaram, M., Adinaveen, T., & Kennedy, L. J. (2016). Effect of Ba doping on structural, morphological, optical, and photocatalytic properties of self-assembled ZnO nonospheres. Clean Technologies and Environmental Policy, 18, 729–741.

    Article  Google Scholar 

  64. Kokkoris, M., Trapalis, C. C., Kossionides, S., Vlastou, R., Nsouli, B., Grötzschel, R., Spartalis, S., Kordas, G., & Paradellis, T. (2002). RBS and HIRBS studies of nanostructured AgSiO2 solgel thin coatings. Nuclear Instruments, 188, 67–72.

    Article  Google Scholar 

  65. Diggle, S. P., & Whiteley, M. (2020). Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. Microbiology, 166, 30–33.

    Article  Google Scholar 

  66. Blum, R. A., & Rodvold, K. A. (1987). Recognition and importance of Staphylococcus epidermidis infections. Clinical Pharmacy, 6, 464–475.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-NEIST and Gauhati University for providing the analytical facilities. The authors would like to thank anonymous reviewers and the editorial team for their valuable comments and suggestions that improvised the quality of this article.

Funding Statement

Funding was provided by the Ministry of Human Resource Development, Govt. of India, under TEQIP III.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivek Verma or Pranjal Saikia.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Consent for Publication

All authors have approved for the final version of the article.

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplementary Data SEM images, UV-Vis spectra, and PL spectra of NiO NPs (Fig. S1, S2a, and S2b, respectively) are provided as supplementary information.(DOCX 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, C., Sarkar, R.D., Verma, V. et al. Bayesian Modeling Coherenced Green Synthesis of NiO Nanoparticles Using Camellia sinensis for Efficient Antimicrobial Activity. BioNanoSci. 11, 825–837 (2021). https://doi.org/10.1007/s12668-021-00882-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00882-x

Keywords

Navigation