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Abstract
This paper presents a methodology to optimally design a multi-energy microgrid 
with thermal and electric loads considering N − 1 and probabilistic regulation 
reserves. This methodology consists of a chance-constrained optimization that 
determines the optimal sizing of the microgrid. Microgrid operations are rigorously 
considered by modelling hourly thermal and electric demand patterns as well as 
technology production schedules over a year. Such schedules include both electric 
and thermal power balances, ramp constraints, N − 1 and regulation reserves, among 
others. To ensure a reliable microgrid design and operation, reserve constraints have 
been proposed to deal with both N − 1 generation contingencies, and forecast errors. 
N − 1 reserves guarantee that a sudden outage of any of the electric generators is 
strategically covered by the remaining generators in order to avoid load shedding. 
Additionally, nonzero-mean random forecast errors of electric load and solar pro-
duction are addressed by a set of chance constraints able to schedule asymmetric 
up and down regulation reserves. Their levels are high enough to cover hourly ran-
dom forecast errors (or intermittencies) with a high threshold probability. The pro-
posed methodology results in a mixed integer second-order cone program. Results 
of microgrid designs with and without reliability reserves are carefully analysed 
and compared. Neglecting reliability constraints leads to a lower-cost design at the 
expense of exposing the microgrid to unsafe operation. Finally, sensitivity analysis 
to study the optimal portfolio sizing with respect to electric BESS investment cost, 
solar production forecast mean error, and random intermittency threshold probabil-
ity are performed.

Keywords Multi-energy microgrid sizing · MISOCP · N − 1 security criterion · 
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List of symbols

Sets and indexes
G  Fuel-fired conventional generator: ICE, MT and DSL. Subscript g.
J   Generation technologies: Solar (PV), Internal-Combustion Engine 

(ICE), Diesel (DSL), micro turbine (MT). Subscript j
K  All the available technologies in the MG (J ∪ S ∪ N) : PV, ICE, DSL, 

MT, EC, AC, TESS and BESS. Subscript k
N   Thermal energy technologies: Electric Chiller (EC), Absorption 

Chiller (AC). Subscript n
S  Energy Storage Systems: Battery (BESS), Thermal Storage (TESS). 

Subscript s
T   Time-step Set. Subscript t
Y  Lifespan for microgrid. Subscript y

Parameters

�R  Reserve cost for N − 1 and regulation reserves 
[

$

kW

]

Δt  Steplength for each considered timestep [h]
�sd
s

  Hourly self-discharge factor for storage s [%]
�rt
s
  Round-trip efficiency for storage s [N.A.]

�pv  Derating factor (Efficiency) of the PV system [N.A.]
�
+(−)

t   Violation probability to regulation reserve requirement during the 
time t

�  Yearly OPEX scale factor [N.A.]
�k  CO2 emissions tax for technology k 

[

$

kg

]

�j  Heat recovery factor per kW to generator j 
[

kW

kW

]

�g  Fuel price to operation of generator g 
[

$

MBTU

]

�n  Coefficient of performance of chiller n [N.A.]
�SOC

s
,�

SOC

s
  Min and Max operational limit for state-of-charge to storage s [p.u.]

�
j
  Minimal operational limit for generator j [p.u.]

�
n
  Minimal operational limit for chiller n [p.u.]

�D,t  Forecasting error for demand in the time t
�pv,t  Forecasting error for pv production in the time t
�t  Net Forecasting error in the time t
ag  Slope for the fuel rate curve for fuel-fired generator g MBTU

kWh

bg  Y-intercept for the fuel rate curve for fuel-fired generator g MBTU

h

CT  Temperature coefficient for PV-system 
[

%

◦C

]

Del
t
  Electric load demand to microgrid in time t [kW]

Elt
BESS

  Energy throughput for the BESS technology [kWh]
ER

CO2

k
  CO2 emissions rate for technology k 

[

kg

kWh

]
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Gstc  Standard condition solar radiation 
[

kW

m2

]

Gt  Solar radiation in time t 
[

kW

m2

]

Ichi
n

  Investment cost to chiller n 
[

$

kW

]

I
gen

j
  Investment cost to generator j 

[

$

kW

]

Isto,E  Investment cost per kWh for storage s 
[

$

kWh

]

I
sto,p
s   Investment cost per kW to storage s 

[

$

kW

]

M  Large value [N.A.]
N lt
BESS

  Average cycles to failure [N.A.]
OM

var(fix)

k
  Variable (fixed) OM cost for technology k 

[

$

kW

]

Qload
t

  Cooling load demand to microgrid in time t [kW]
QH

t
  Heat load demand at time t [kW−]

q
+(−)

t,1−�+(−)
  1 − � quantile for the positive(negative) forecasting error distribution

r  The discount rate used to compute Net Present Value
r
up

j
, rdown

j
  Maximum ramp up and down for power output change in generator j

Tamb
t

  Ambient temperature in time t [◦C]
Tmod
t

  Actual PV system cells temperature [◦C]
TOpNom  Nameplate operational temperature for PV system cells [◦C]

Variables
Δp

SR+(−)

BESS,t
  Up(Down) Regulation reserve for BESS at time t [kW]

ΔpSR+
j,t

  Up/Down regulation reserve for generator j at time t [kW]
ΔpS

BESS,t
  N − 1 security reserve for BESS against contingency in time t [kW]

ΔpS
j,t

  N − 1 security reserve for generator j against contingency in time t 
[kW]

�BESS,t  Wear cost for BESS technology during time-step t
COk,t  Carbon emission tax for technology k during time-step t
OMk,t  Operation and maintenance cost for the technology k during time-step 

t
SR

+(−)

t   Positive (negative) estimated regulation reserve requirements during 
time t

enom
s

  Nominal energy capacity to storage s [kWh]
eSOC
s,t

  State-of-charge of storage system s in time t [kWh]
Fg,t  Fuel cost for the fuel-fired generation g during time t
p
ch(dis)
s,t   Power charged(discharged) to storage s in time t [kW]

pnom
j

  Nominal power output for generator j [kW]
pnom
s

  Nominal charge/discharge power input/output to storage s [kW]
pj,t  Power output from generator j in time t [kW]
qnom
n

  Nominal power output for chiller n [kW]
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qn,t  Cooling power from cooling technology n in time t [kWh]
z
ch(dis)
s,t   Binary charge (discharge) power input for storage s in time t
zj,t  Binary power output decision for technology j in time t
zn,t  Binary power output decision for chiller n in time t

Abbreviations
AC  Absorption chiller
BESS  Battery energy storage systems
CAPEX  Capital expenditures
CO2  Carbon dioxide
EC  Electric chiller
IDEAM  Instituto de Hidrología, Meteorología y Estudios Ambientales
MISOCP  Mixed integer second-order cone programming
MILP  Mixed-integer linear programming
MT  Microturbine
O[MYAMP  M] Operation and maintenance
OPEX  Operational expenditures
PV  Photovoltaic system
SOC  State-of-charge
RMG  Reconfigurable microgrid
TESS  Thermal energy storage systems
WT  Wind turbines

1 Introduction

Renewable energies have become essential sources of electricity when it comes to 
the construction of microgrids around the world [1]. Several factors like increas-
ing fuel prices of conventional generation, decreasing installation costs of renewable 
energy [2], and environmental concerns have promoted their use. Even with such 
drivers, in order to support microgrid deployment, several challenges such as opti-
mal sizing and operation, optimal control strategies, and reliability supply, need to 
be addressed [3].

1.1  Motivation

Although the microgrid planning should consider estimates of both energy resources 
availability and demand, it is determined by the size of its elements (generators and 
storage systems). The sizing process, in turn, relies on the adopted operational strat-
egy of the microgrid and data assumptions. Operational aspects are considered dur-
ing the microgrid sizing phase to account for the operational conditions that will 
be employed during operation. Although the exact operational condition is not per-
fectly known during the sizing phase, considering operational constraints ensures 
that the microgrid is properly sized and thus the operational strategies can be fea-
sible. In general, determining the “appropriate” size of components for a given set 
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of electrical and/or thermal load profiles, remains a challenge. If components are 
oversized, the system capital cost and energy curtailment will be unnecessarily high. 
Also, generator may reach lower efficiency and higher maintenance costs which 
may lead to low generator reliability as fuel-fired diesel generators can develop 
“wet-stacking” at low power output w.r.t to rated capacity [4, 5]. If components are 
undersized continuous load shedding, unsatisfied demand and high non-renewable 
energy generation may occur leading to unsuccessful operation [6]. Thus, in order 
to guarantee a continuous and reliable energy supply to the users, an optimal siz-
ing methodology requires a rigorous modeling of operational aspects in short time 
frames. Sudden outages of technologies supplying energy to the microgrid as well 
as intermittence and uncertainties in both solar photovoltaic energy production and 
demands are essential elements to consider to guarantee a reliable and economic 
microgrid performance.

In this paper, a Mixed Integer Second-Order Cone Programming (MISOCP) 
model for jointly optimizing the sizing and operation of an islanded multi-energy 
microgrid is presented. The type of microgrids subject to study in this work is one 
that is not connected to the power grid and considers both thermal and electric loads 
on an hourly basis. The microgrid is designed considering a portfolio of distrib-
uted energy resources to deliver thermal energy and electricity to a set of thermal 
and electric loads commonly observed in hotel facilities. This portfolio includes 
conventional generation resources as internal combustion engines, microturbines 
and diesel-fueled generator, renewable generation resources as solar PV modules, 
energy storage systems such as batteries and thermal storage, and cooling supply-
ing technologies such as both absorption and electric chillers. Additionally, in order 
to ensure a reliability-based microgrid design, the N − 1 security criterion has also 
been included in the proposed optimization model. Finally, with the aim of guar-
anteeing continuous supply–demand balance, even during random fluctuations of 
demand and/or intermittent generation, a set of probabilistic chance constraints are 
imposed to schedule an appropriate level of hourly regulation reserves.

1.2  Literature review

The reliability-based optimal sizing of multi-energy microgrids is investigated in 
this paper. Although scientific literature related to microgrid planning has tradition-
ally focused on its operation and sizing, reliability criteria are not usually contem-
plated. In [7] authors present an optimal islanded microgrid planning with BESS. 
The BESS is scheduled as reserve provider. The BESS, defined by both, energy 
capacity and rated power, is defined as the maximum difference between pre-defined 
regulation reserves and power margin of committed units. Notwithstanding, reserve 
requirements are not estimated as a function of microgrid size, but they are consid-
ered as an input model parameter. In [8], authors present a computational framework 
to evaluate both economic and resilience in microgrid planning without consider-
ing reserve estimation. This work is extended in [9] to evaluate cooling and heating 
load, along with CHP systems, notwithstanding, reserves are not scheduled. Authors 
in [10] present a model to optimally size an electric microgrid using a multiyear 
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approach. The BESS degradation is considered as a function of the hourly power-
to-energy ratio. Detailed multi-year simulations spanning the entire lifetime of the 
project at an hourly basis are considered and the model is solved using an itera-
tive MILP-solving strategy. Regulation reserves are computed as a portion of the 
load and expected renewable production to account for the uncertainties. However, 
neither cooling loads nor N − 1 reserves are modeled. In [11] a stochastic optimi-
sation model for isolated multi-energy systems sizing is presented. Hydrogen and 
heat loads are considered. A tractable representation of a fully linear AC power flow 
equations were presented in the planning model. Authors do not model N − 1 and 
regulation reserves requirements. Authors of [12] presented a two-step Mixed-Inte-
ger Linear Programming (MILP) approach to determine the optimal sizing of a rural 
islanded microgrid in which four representative weeks are employed to describe one 
operating year; neither thermal demand nor reliability constraints were considered. 
In the work [13], a hybrid genetic algorithm-MILP approach is employed to find 
the optimal sizing of components of an islanded microgrid that delivers power to 
a hotel. The microgrid sizing is determined by the genetic algorithm; whereas the 
operational problem, that schedules technology production, is handled by a MILP 
model. The work [14] considers thermal and hydrogen loads. In order to reduce 
computational burden, twelve representative days (out of 365 days per year) are 
considered; N − 1 reserves are out of the scope of this work. In [15, 16] and [17] 
authors aim to find the optimal size of an islanded microgrid operating. Uncertain-
ties in electric and thermal demand are neglected. The sizing problem is tackled by 
a grid-search heuristic algorithm; and the operational problem is solved employing 
a MILP model over a 12-hour control horizon. These two problems are solved inde-
pendently, i.e., there is no joint optimization between the sizing and operation prob-
lems, and operational reliability aspects are not addressed. In [18] a MILP model 
is presented to design either grid-tied or islanded microgrids. Thermal and electri-
cal loads are assumed as known. The sizing and operating strategies are based on 
minimization of capital, operation, and maintenance costs of the selected technolo-
gies. This work has considered the existence of a thermal and an electric network; 
nevertheless, power reserves to cover component outages have not been considered. 
Reference [19] presents a MILP model to jointly optimize sizing and operation of an 
islanded electric microgrid via minimization of net present cost; Operational reli-
ability aspects have not studied.

In terms of microgrid operations, several investigations have employed chance-
constraints to define optimal regulation reserve levels. These reserves allow the 
microgrid to have enough available energy to deal with random generation-demand 
balance fluctuations due to forecast errors or intermittency in renewable generation. 
For instance, the authors of [20] present a probabilistic approach to estimate regu-
lation reserves based on the forecast error distribution of the PV and WT system 
outputs and demand. Reserves are estimated to deal with random events as genera-
tion intermittency, forecasting errors, and generation outages, while minimizing the 
expected energy not supplied of the microgrid. This study assumes the microgrid is 
already designed. In [21] authors present the concept of probability of successful 
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islanding as the probability to cover a sudden islanding with microgrid scheduled 
reserves. Chance constraints based on the three-sigma rule impose conditions to 
estimate an amount of reserves that cover at least 99% of possible forecast devia-
tions. A normal probability distribution of forecast errors of wind, PV and load is 
modeled; however, the optimization model does not find optimal microgrid sizing, 
but it does optimize the operation without considering the N − 1 security criterion. 
In [22], an operational scheduling model using probabilistic chance constraints is 
proposed to cover the uncertainty of demand and renewable resources. A method for 
allocating reserves to a microgrid is presented in order to deal with prediction errors 
and potential failures in both distributed generation and battery systems, maintain-
ing power balance with a high probability depending on the parameter Lreq . Esti-
mated reserves are allocated to avoid load shedding when events such as materiali-
zation of forecast errors, BESS outages or unexpected islanding occur. Given that 
microgrid sizing is not considered, the availability of reserves is fixed. This in turn 
makes difficult to maintain power balance with high probabilities. In contrast, our 
work focuses on properly sizing the microgrid as a function of the probability of 
maintaining power balance.

The work presented in [23] is similar to the work [22] in the sense that it assumes 
that the microgrid has already been sized. This constitutes the first key differ-
ence w.r.t our work. Second, the work [23] does not allocate reserves to deal with 
potential generator or storage system outages. And third, authors [23] did not take 
into account the amount of energy available in the storage system when defining 
reserves. This could lead the storage system being allocated with upward (down-
ward) reserves that could not be implemented if its current state of charge is low 
(high).

A variety of investigations on microgrid sizing guaranteeing N − 1 security cri-
teria have also been reported. Generator outages are modeled to avoid power not 
served during post-contingency states. Remaining online generators are forced to 
adjust their output to support the power of the faulted generator. This can be done 
only if reserves have been properly scheduled. Authors in [24] developed a mixed-
integer quadratically constrained quadratic programming to jointly optimize sizing 
and operation of an isolated microgrid introducing N − 1 security constraints; how-
ever, they do not schedule regulation reserves to handle renewable intermittencies 
and demand uncertainties. The work [25] is an extension of the work from [18] and 
their results ensure a secure optimal microgrid design. The generator contingencies 
modeled in [24] and [25] consider the loss of a single generating unit within a power 
plant. But, in order to consider a more extreme situation and thus achieve a robust 
operation, this work has modeled the outage of the entire generation plant. Also, 
none of these investigations have addressed the challenge of random fluctuations in 
demand and renewable generation in short time frame during microgrid operations.
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Table 1 shows a summary of the discussed approaches in the scientific literature 
in the microgrids field. The table focuses on highlighting the key differences among 
them and displays the research gaps addressed in this manuscript.

1.3  Contribution

To the best of our understanding, the existing literature does not provide a compre-
hensive optimization model for both sizing and operating a multi-energy microgrid 
that, at the same time, addresses the reserves provisions against both (demand and 
solar PV) forecast deviations and sudden outage of any generation resource in iso-
lated microgrids. To fill these research gaps, this paper presents a methodology to 
optimally design a hybrid multi-energy microgrid (with thermal and electric loads) 
that considers both N − 1 and regulation reserves and minimizes the net present 
CAPEX and OPEX. The N − 1 criterion, traditionally employed to guarantee that 
demand is always met, even under the outage of any generation resource, is mod-
eled to determine enough reserves to avoid load shedding under sudden generator 
outages. Up and down regulation reserves are estimated using chance constraints to 
cover joint random fluctuations of demand and solar PV with respect to their fore-
casted values.

The main contributions from this work are as follows:

Table 1  Summary of the most relevant formulation in the literature

*Leader and Follower Method

Ref Oper. 
strategy

Solution 
method

Design approach Energy Reserves con-
straints

Sizing Operation Electric Cooling Heating N − 1 Regulation

[9] Opt-based Optimal ✓ ✓ ✓ ✓ ✓

[10] Opt-based Iterative ✓ ✓ ✓ ✓

[11] Opt-based Optimal ✓ ✓ ✓ ✓

[12] Both Both ✓ ✓ ✓

[14] Opt-based L & F* ✓ ✓ ✓ ✓ ✓

[15–17] Both Heuristic ✓ ✓ ✓ ✓

[18] Opt-based Optimal ✓ ✓ ✓ ✓ ✓

[19] Rule-
based

Heuristic ✓ ✓ ✓

[20] Opt-based Optimal ✓ ✓ ✓ ✓

[21] Opt-based Optimal ✓ ✓ ✓

[22] Opt-based Optimal ✓ ✓ ✓ ✓

[23] Opt-based Optimal ✓ ✓ ✓

[24] Opt-based Optimal ✓ ✓ ✓ ✓ ✓ ✓

[25] Opt-based Optimal ✓ ✓ ✓ ✓ ✓ ✓

This 
Work

Opt-based Optimal ✓ ✓ ✓ ✓ ✓ ✓ ✓
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• The proposal of a MISOCP model to jointly optimize reliability-based design, 
sizing and operation of an islanded multi-energy microgrid with both thermal 
and electric load.

• The design and inclusion of a set of constraints to ensure a reliable thermal-
electric microgrid operation by optimally combining two types of reserves. One 
type of reserves is in charge of maintaining continuous enough energy supply 
against N − 1 electric generator contingencies. And the regulation reserves are 
computed by employing a set of hourly probabilistic chance constraints to guar-
antee enough asymmetric power and energy reserves to deal with nonzero-mean 
random forecast errors of both demand and solar PV generation. Positive and 
negative errors are rigorously differentiated to schedule asymmetric up and down 
regulation reserves respectively.

The remainder of this work is organized as follows: Sect. 2 presents the mathematical 
proposed model for reliability-constrained design and operation of microgrid. Section 3 
presents the case study and its results are discussed in Sect. 4. Finally, Sect. 5 presents 
conclusions for this paper.

2  Proposed model

In this section we introduce the proposed mathematical model for selecting, sizing and 
operating the microgrid architecture displayed in Fig. 1, which is supposed to satisfy 
both electricity and thermal demands. To achieve this, we have considered a generic 
architecture in which relations between thermal and electrical systems is also mod-
eled. The proposed sizing model is in charge of determining the required components 
and its size that guarantee demands satisfaction in a secure manner at minimum cost. 
Additionally, a set of reserve requirements is considered. The resulting problem is a 
MISOCP.

Fig. 1  Base microgrid architecture
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2.1  Objective function

The proposed microgrid sizing model is aimed to minimize the total investment cost 
(CAPEX) of components and discounted operational cost (OPEX) as represented in 
Eq. (1).

where factor � is the ratio of the number of hours per year (8760) to the number of 
hours employed to represent the operations of the microgrid |T| , i.e., � =

8760

|T|
.

2.1.1  Capital expenditures

Capital costs are considered at year zero. The capital cost of generation technologies 
is computed as the product of generator size pnom

j
 (in kW) and the corresponding 

unit investment Igen
j

 (in $/kW). Likewise, investment cost of chillers is determined as 
the product between nominal capacity qnom

n
 (in kW) and unit cost Ichi

n
 in ($/kW). 

Investment cost of energy storage systems depends on both rated power output pnom
s

 
(in kW) and nominal storage capacity enom

s
 (in kWh). Total CAPEX is presented in 

Eq. (2):

2.1.2  Operating expenditures

Total operational microgrid expenditures are presented in Eq. (3):

where Fg,t represents fuel cost (Eq. (4)). Fuel price �g of fuel-fired technology g is 

given in 
[

$

MBTU

]

 . Thus, the affine function agpg,t + bgzg,t denotes fuel consumption. 

Parameters ag and bg in 
[

MBTU

kWh

]

 and 
[

MBTU

h

]

 , respectively are employed to estimate 
fuel consumption from the fuel rate curve for fuel-fired power plants with power 
output pg,t and scheduled operation defined by variable zg,t . Operation and mainte-
nance cost OMk,t is shown in Eq.  (5). OMvar

k
 and OMfix

k
 are the variable and fixed 

operational cost rates, respectively, scaled by power output ( pj,t or pdis
s,t

).

(1)minimize

(

CAPEX +

∑

y∈Y

� OPEX

(1 + r)y

)

(2)

CAPEX =

∑

j∈J

I
gen

j
pnom
j

+

∑

n∈N

Ichi
n
qnom
n

+

∑

s∈S

(

Isto,P
s

pnom
s

+ Isto,E
s

enom
s

)

(3)OPEX =

∑

t∈T ,g∈G

Fg,t +

∑

t∈T ,k∈K

[

OMk,t + COk,t

]

+

∑

t∈T

[

wBESS,t + RCt

]
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Carbon emissions tax COg,t , displayed in Eq.  (6), require emissions tax rate �g 
imposed by the market. Parameter ERCO2

g
 in 

[

kg

kWh

]

 represents the emissions factor for 
each technology [18, 26, 27]. Electric battery degradation cost, denoted by wBESS,t , 
is computed according to Eq. (7). The operational cost is considered to account for 
its degradation in storage capacity. It is assumed that the BESS will be replaced 
once its overall energy throughput Elt

BESS
 is reached [28, 29]. Energy throughput can 

be parameterized as a number of average“effective” cycles to failure, i.e., 
Elt
BESS

= N lt
BESS

enom
s

 . Reference [29] shows that N lt
BESS

 depends on the average prod-
uct between depth of discharge and cycles to failure. Then, degradation cost per unit 
of cycled energy, computed as Isto,Eenom

s
∕Elt

BESS
 needs to be multiplied by BESS dis-

charge power pdis
BESS,t

 (affected by efficiency) to obtain the dollar amount of total 
degradation cost wBESS,t as in Eq. (7). Reserve cost RCt is computed as the product 
of the sum of all reserves each time-step —down regulation reserves, up regulation 
reserves and N − 1 reserves— by the reserve price �R as shown in (8).

2.2  Components modeling

2.2.1  Photovoltaic (PV) system

The model that captures dependence of solar PV output power on both solar irradi-
ance and ambient temperature is adapted from [30]. It also affects available power as 
long as cell temperature increases. Available solar photovoltaic power production is 
computed using the global horizontal irradiance (GHI) and assummed to be totally 
dispatched as PV power output as in Eq. (9) and cell temperature is computed with 
Eq. (10):

(4)Fg,t = 𝜋g
(

agpg,t + bgzg,t
)

Δt, ∀g ∈ G ∶ G ⊆ J, t ∈ T

(5)OMk,t = OMvar
k
pk,t + OMfix

k
pnom
k

, ∀k ∈ K, t ∈ T

(6)COg,t = �k ER
CO2

g
pg,t Δt, ∀g ∈ G, t ∈ T

(7)wBESS,t =

Isto,Eenom
s

pdis
BESS,t

Elt
BESS

√

�rt
BESS

=

Isto,Epdis
BESS,t

N lt
BESS

√

�rt
BESS

, ∀t ∈ T

(8)

RCt = �R
[

∑

j∈J,j≠pv

(

ΔpSR+
j,t

+ ΔpSR-
j,t

+ ΔpS
j,t

)

+ ΔpSR+
BESS,t

+ ΔpSR-
BESS,t

+ ΔpS
BESS,t

]

, ∀t ∈ T
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where Gt represents global horizontal irradiance (GHI); and Gstc and Tstc describe 
irradiance and temperature under standard conditions respectively. CT < 0 is the PV 
temperature coefficient.

2.2.2  Chillers

Both absorption and electric chillers require an input energy source to generate cool-
ing. An absorption chiller converts heat into cooling whereas an electric chiller turns 
electric power into cooling. Both cases are modeled in (11) and (12) respectively 
through performance coefficients as suggested in [31–33].

2.2.3  Energy storage systems

The state of charge (SOC) accounts for the amount of energy stored (kWh) in the 
system at time t. It is the result of continuous charging and discharging processes. 
SOC is shown in (13):

where �rt
s
 is round-trip efficiency for storage system s. Also, pdis

s,t
, pch

s,t
 is the discharge 

and charge power (in kW) for storage system s at time t, respectively. Parameter �s is 
the self-discharge rate and represents stored energy losses. The model presented in 
Eq. (13) applies for battery and thermal energy storage systems.

2.3  Operational constraints

2.3.1  Power balances

In each time step, electric power generated by generators needs to be either con-
sumed by microgrid load or stored. The electric power balance is shown in con-
straint (14).

(9)ppv,t = �pv
Gt

Gstc

[

1 +
(

Tmod
t

− Tstc
)

CT

]

pnom
pv

, ∀t ∈ T

(10)Tmod
t

= Tamb
t

+ Gt

(

TOpNom
− 20

800

)

, ∀t ∈ T

(11)qac,t = �acq
ac,in
t

, ∀t ∈ T

(12)qec,t = �ecq
ec,in
t

, ∀t ∈ T

(13)eSOC
s,t

= (1 − �s)e
SOC
s,t−1

+

�

�

�rt
s
pch
s,t
−

pdis
s,t

√

�rt
s

�

Δt,∀S ∈ S,∀t ∈ T
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Likewise, thermal energy produced by chillers needs to balance thermal load as 
shown in (15):

The heat required by the heat load and the absorption chiller needs to be balanced by 
heat coming from TESS and thermal power plants as described in constraint (16). If 
any heat excess is generated, it might be wasted.

2.3.2  Generation output constraints

Equations (17) and (18) ensure generation dispatch does not exceeds its nominal or 
minimum capacity. Binary variable zj,t decides whether or not to dispatch the power 
plant j at time t. Parameter M is a large scalar and guarantees that power plant j is 
limited by its nominal output only when it is dispatched, i.e., when zj,t = 1.

2.3.3  Chillers output constraints

Constraints (19)-(20) ensure that chiller output is always between minimum and 
maximum operation point. Binary variable zn,t and M limit power output to its nomi-
nal value or zero if cooling resource is dispatched or not, respectively:

2.3.4  Storage constraints

Constraint (21) forces electricity and heat storage to be within specified minimum 
and maximum state-of-charge percentages. Constraints (22) and (23) bound instan-
taneous charge and discharge power output to nominal power output when sched-
uled; otherwise, charge/discharge is forced to be zero. Since pnom

s
 is a decision 

(14)
∑

j∈J

pj,t + pdis
BESS,t

− Del
t
− pch

BESS,t
−

qec,t

�ec
= 0,∀t ∈ T .

(15)qAC,t + qe,t − Qload
t

= 0, ∀t ∈ T .

(16)
∑

j∈J

�jpj,t + pdis
TESS,t

− pch
TESS,t

−

qac,t

�AC
− QH−load

t
≥ 0, ∀t ∈ T .

(17)pj,t ≥ �
j
pnom
j

−

(

1 − zj,t
)

M, ∀j ∈ J, t ∈ T

(18)pj,t ≤ min
(

pnom
j

, zj,t M
)

, ∀j ∈ J, t ∈ T

(19)�
n
qnom
n

− (1 − zn,t)M ≤ qn,t, ∀n ∈ N, t ∈ T

(20)min
(

qnom
n

, zn,t M
)

≥ qn,t, ∀n ∈ N, t ∈ T
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variable, Big-M constraint with binary decision is used. Binary decisions zch
s,t

 and 
zdis
s,t

 prevent storage systems to charge and discharge simultaneously as constrained 
in Eq. (24):

2.3.5  Ramp constraints

While some thermal generators, such as diesel generators, can respond from zero to 
full load in a much shorter time, ramp constraints may still apply to other types of 
generators with slower dynamics. In general, the proposed formulation allows for 
the possibility of including ramp constraints for any fuel-based generator. However, 
each case study will determine whether or not it is necessary to implement ramp 
constraints, which can be skipped setting the parameters rup

j
 and rdown

j
 to 1. In the 

case of generators subject to ramp constraints, these constraints also limit the 
reserves allocation, ensuring that committed reserves can be depleted in the given 
time frame Δt . Rate of change of power output from fuel-fired generators is limited 
by maximum ramp to be loaded or downloaded. Equation  (25) limits the rate of 
change from previous time-step to be within down and up ramp rates rdown

j
 , rup

j
 , 

respectively [34]:

2.4  Reliability constraints

Our approach guarantees reliable operation of the microgrid, i.e., microgrid compo-
nents can “react” immediately to avoid load shedding once a contingency occurs. In 
this work, only electrical contingencies are taken into account. Thermal contingen-
cies are not considered. To generalize the presentation of the model equations, all 
storage systems, including electric and thermal, were grouped together in a set 
called S . The main operational constraints that limit stored energy and power output 
apply to every storage s, in these cases the general representation using the subscript 
s (e.g., pdis

s,t
 ) was used; however for exclusively electrical issues such as outages, only 

(21)𝜇SOC

s
enom
s

≤ eSOC
s,t

≤ �̄�SOC
s

⋅ enom
s

, ∀s ∈ S, t ∈ T

(22)0 ≤ pch
s,t
≤ min

(

pnom
s

, zch
s,t
M
)

, ∀s ∈ S, t ∈ T

(23)0 ≤ pdis
s,t

≤ min
(

pnom
s

, zdis
s,t
M
)

, ∀s ∈ S, t ∈ T

(24)zch
s,t
+ zdis

s,t
≤ 1, ∀s ∈ S, t ∈ T

(25)−rdown
j

pnom
j

≤
pj,t − pj,t−1

Δt
≤ r

up

j
pnom
j

∀j ∈ J, t ∈ T
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electrical storage (i.e., BESS) is considered. Therefore, the subscript (⋅)BESS,… for 
such constraints was used 

(

e.g.,Δps
BESS,t

)

 considering that BESS ∈ S.

2.4.1  N − 1 reliability constraints

The proposed model forces a reliable operation under electric generation N − 1 con-
tingencies. When the contingency of the i-th element occurs, its power injection pi,t 
(or pdis

BESS,t
 when the BESS fails) is lost. Except for the solar PV system, the remain-

ing online generation must take over of lost power with the scheduled N − 1 security 
reserve ΔpS

j,t
 - ΔpS

BESS,t
 for BESS- supplying power to meet the demand and avoid 

load shedding. Therefore, generators and/or BESS power output should be ramped-
up. For each time-step, a potential outage in each generator and electric storage is 
considered (i.e., a total of five different outages per hour are considered) and relia-
bility reserves are scheduled. Each outage compromises both current power output 
and scheduled regulation reserve ΔpSR+

i,t
 , which need to be considered in the schedul-

ing of reliability reserves. All of these aspects are carefully considered in constraints 
(26) and (27):

where ΔpS
j,t

 and ΔpS
BESS,t

 are the allocated power reliability reserves in time-step t for 
generator j and BESS, respectively. pi,t and ΔpSR+

i,t
 are lost power output from the 

outaged generator i and its allocated regulation reserve, respectively, that need to be 
supplied by all the remaining generators j-th.

2.4.2  Regulation reserves

Cloud cover, changes on irradiance patterns, and power demand fluctuations encour-
age the use of forecasting techniques for microgrid management. In addition to esti-
mated N − 1 reserves to face generation outages under N − 1 criterion, the microgrid 
still needs to deal with both, solar PV and demand forecasting errors. The inherent 
random nature of these errors increase system regulation reserve requirements in 
order to balance generation and demand. Regulation reserves and (i.e., spinning and 
non spinning reserves) are in charge to balance the system by adjusting the power 
output of generating units [35, 36]. In this work, a chance-constraint approach is 
proposed to allocate the regulation reserve to each generation based in the estimated 
regulation reserve requirements.

(26)
∑

j∈J∶j≠i,j≠pv

ΔpS
j,t
+ ΔpS

BESS,t
≥pi,t + ΔpSR+

i,t
, ∀t ∈ T , i ∈ J

(27)
∑

j∈J∶j≠pv

ΔpS
j,t
≥pdis

BESS,t
+ ΔpSR+

BESS,t
, ∀t ∈ T
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Several authors have explored the concept of defining a constraint to be met 
with a high probability, rather than as a conventional “hard” constraint with 100% 
certainty of satisfaction. However, our work adapts the foundations of chance-con-
strained optimization to the microgrid operational model. This adaptation is driven 
by the inherent uncertainties associated with solar generation and demand fluctua-
tions in maintaining power balance. This has motivated us to propose a probability-
based reserves allocation on top of the microgrid dispatch to maintain the genera-
tion-demand balance with a high probability. The interested reader can refer to [37] 
and [38] for additional material on chance constrained optimization.

Assuming the existence of hourly forecasts for electric power demand, Del
t
 and 

solar PV generation, pav
pv,t

 , both actual random demand D̃el
t
 and random solar genera-

tion schedule p̃pv,t can be expressed as (28) and (29) respectively:

where �D,t and �pv,t represent hourly demand and solar PV estimation and forecast 
errors respectively, which are considered as independent random variables. The 
model so far has assumed that expected (or forecasted) demand can be met by both, 
forecasted solar PV and fuel-fired generation. However, random fluctuations in 
either demand or solar PV generation are not properly balanced in the model. Thus, 
it is essential to consider such random fluctuations on an hourly basis to properly 
scheduling regulation reserves.

Our approach is based on the idea of guaranteeing that electric demand can be 
satisfied with high probability. To do so, an amount of reserve is necessary to cover 
fluctuations of the net forecasting error �t defined as:

Net forecasting error can be either positive or negative, depending on the quality 
of forecasts. Net positive error requires additional generation; whereas net negative 
error requires a decrease in the generation to maintain demand-generation balance. 
As a result, in this approach, we distinguish the positive and negative parts of �t in 
order to schedule positive and negative regulation reserves. That is,

where �+
t
= max

(

�t, 0
)

 and �−
t
= max

(

−�t, 0
)

 . Therefore, we need to compute posi-
tive reserves SR+

t
 and negative reserves SR−

t
 such that:

(28)D̃el
t
= Del

t
+ 𝜀D,t, ∀t ∈ T

(29)p̃av
pv,t

= ppv,t + 𝜀pv,t, ∀t ∈ T

�t = �D,t − �pv,t.

�t = �+
t
− �−

t

(30)ℙ(�+
t
≤ SR+

t
) ≥ 1 − �+

t
, ∀t ∈ T

(31)ℙ(�−
t
≤ SR−

t
) ≥ 1 − �−

t
, ∀t ∈ T



1 3

Reliability‑based sizing of islanded multi‑energy microgrid:…

According to the probabilistic criteria exposed in (30) and (31), deterministic regu-
lation reserves SR+

t
 and SR−

t
 guarantee that both, positive and negative imbalances 

will be covered with probability 1 − �+ and 1 − �− or higher, respectively. In this 
sense, reserve amounts SR+

t
 need to be at least the 

(

1 − �+
t

)

-th quantile q+
t,1−�+

 of the 
probability distribution of �+

t
 . Likewise, and SR−

t
 should be at least the 

(

1 − �−
t

)

-th 
quantile q−

t,1−�−
 of the probability distribution of �−

t
:

Both quantiles, in general, can be computed from

where q�
n
= F−1

�
(n), n ∈ [0, 1] refers to the n-th quantile of the distribution of the net 

forecast error � ; and F−1
�
(⋅) is its corresponding inverse cumulative distribution func-

tion. An important feature of this formulation is that it can be employ with any prob-
ability distribution. Both q+

t,1−�+
 and q−

t,1−�−
 result in non-negative quantities.

When both errors are independent and normally distributed, i.e., 
�pv,t ∼ N

(

�pv,t, �
2
pv,t

)

 and �D,t ∼ N
(

�D,t, �
2
D,t

)

 , it is known for a fact that net error is 
also normally distributed. That is,

therefore, n-th quantile can be computed using (34), where erf−1(n) is the inverse 
error function:

In the proposed approach, we assume that solar forecast error uncertainty is larger 
as long as solar production increases. In this sense, the hourly power output of the 
solar PV system ends up affecting parameters of the solar forecast error probabil-
ity distribution. Solar PV mean forecast error �pv,t and standard deviation �pv,t are 
parameterized as percentages �pv and �pv respectively of hourly scheduled PV power 
output ppv,t . That is,

Quantiles q+
t,1−�+

 and q−
t,1−�−

 that define the amount of positive and negative regula-
tion reserves respectively are computed as follows:

SR+

t
≥ q+

t,1−�+
, ∀t ∈ T

SR−

t
≥ q−

t,1−�−
, ∀t ∈ T .

(32)q+
t,1−𝜂+

=

{

q𝜀
t,1−𝜂+

, if 1 − 𝜂+ ≥ ℙ(𝜀t < 0)

0, otherwise,

(33)q−
t,1−𝜂−

=

{

−q𝜀
t,𝜂−

, if 1 − 𝜂− ≥ ℙ(𝜀t > 0)

0, otherwise.

�t ∼ N
(

�D,t − �pv,t, �
2
pv,t

+ �2
D,t

)

, ∀t ∈ T ,

(34)q�
n
= �D,t − �pv,t + erf−1(n)

√

�2
pv,t + �2

D,t
.

�pv,t = �pvppv,t, ∀t ∈ T

�pv,t = �pvppv,t, ∀t ∈ T
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Quantiles defined by Eqs. (35) and (36) represent the minimum amount of regula-
tion reserves to schedule on an hourly basis. This formulation leads to the second-
order cone nature of the proposed model. Additionally we do not impose that 
q+
t,1−�+

, q−
t,1−�−

≥ 0 in the model given the non-convexity of such constraints. Rather 
we verify that the optimal solution satisfies the non-negativity constraints on both 
quantiles. Finally, the positive and negative regulation reserve requirements are 
shown in (37) and (38) respectively, resulting in a set of conic constraints:

Both N − 1 and positive regulation reserve requirements need to be high enough so 
as to meet the reliability constraints. However, reserves need to be tuned such that 
power output cannot exceed the nominal power of any generator as in (39); and are 
also bounded by maximum ramp-up power as in (40). For BESS, N − 1 security 
reserve and up regulation reserves are limited by the current available energy stored 
and by its nominal power output as in (41).

where ΔpSR+
j,t

≥ 0 , ΔpS
j,t
≥ 0 , ΔpSR+

BESS,t
≥ 0 , and ΔpS

BESS,t
≥ 0 correspond to positive 

generator regulation reserve, generators N − 1 security reserve, BESS up regulation 
reserves, and BESS N − 1 security reserve, respectively.

Likewise regulation reserve constraints of power generation and BESS 
required to balance negative shifts in net forecasting error �t are shown in con-
straints (42)–(44):

(35)q+
t,1−�+

= �D,t − �pvppv,t + erf−1(1 − �+)

√

�2
D,t

+ �2
pv
p2pv,t, ∀t ∈ T

(36)q−
t,1−�−

= �pvppv,t − �D,t − erf−1(�−)

√

�2
D,t

+ �2
pv
p2pv,t, ∀t ∈ T

(37)
∑

j∈J∶j≠pv

ΔpSR+
j,t

+ ΔpSR+
BESS,t

≥ q+
1−�+t

, ∀t ∈ T ,

(38)
∑

j∈J∶j≠pv

ΔpSR−
j,t

+ ΔpSR-
BESS,t

≥ q−
1−�−t

, ∀t ∈ T .

(39)pj,t + ΔpSR+
j,t

+ ΔpS
j,t
≤ pnom

j
,∀j ∈ J ∶ j ≠ pv, t ∈ T

(40)
ΔpSR+

j,t
+ ΔpS

j,t
+ pj,t − pj,t−1

Δt
≤ r

up

j
pnom
j

,∀j ∈ J ∶ j ≠ pv, t ∈ T .

(41)

min

(

eSOC
BESS,t

− �SOC

BESS
enom
BESS

Δt
, pnom

BESS
− pdis

BESS,t

)

≥ ΔpSR+
BESS,t

+ ΔpS
BESS,t

,∀t ∈ T

(42)pj,t − ΔpSR−
j,t

≥ �
j
pnom
j

,∀j ∈ J ∶ j ≠ pv, t ∈ T
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where ΔpSR−
j,t

≥ 0 and ΔpSR−
BESS,t

≥ 0 correspond to negative generator and BESS reg-
ulation reserves, respectively. Down regulation reserves are bounded by both the 
minimum operational limit and the ramp-down limit for the generators. For the 
BESS, down regulation reserves are bounded by the available storage capacity with-
out exceeding its maximum SOC limit, and by its nominal power input.

This regulation reserve approach allows to differentiate probabilities according 
to the needs of the microgrid. Violation probabilities �+ and �− must be small but 
can be different. Thus, it is possible to assign different small violation probabilities 
to either positive or negative imbalances. Additionally, probabilities can be different 
throughout the day. Also, any resulting probability distribution of forecast errors can 
be employed. In fact, even dependent random errors can be easily adapted to this 
formulation. Mitigating the proposed model conservativeness can be done by adjust-
ing the maximum constraint violation probability �(⋅)t  . The larger this probability, the 
less conservative the solution. Constraints (37) and (38) allow to scheduling enough 
generation to face potential fluctuations (forecast errors) in demand and renewable 
generation as a function of the probability �(⋅)t .

When implementing the explicit formulation of the scenarios, i.e. discretization 
of the model uncertainties, it results in a large-scale optimization problem with a 
reasonable number (maybe hundreds) of scenarios [38, 39]. Instead, the proposed 
computationally tractable chance-constrained has allowed to consider the continuous 
probability distribution of the combined (solar and demand) forecast error, which in 
turn permits the model user to set her/his own level of operational risk through the 
constraint violation probability. Also, despite the fact that the resulting second-order 
cone model is nonlinear (as opposed to the linear stochastic optimization version), it 

(43)
pj,t−1 − pj,t − ΔpSR−

j,t

Δt
≤ rdown

j
pnom
j

,∀j ∈ J ∶ j ≠ pv, t ∈ T

(44)ΔpSR−
BESS,t

≤ min

(

�̄�SOC
BESS

enom
BESS

− eSOC
BESS,t

Δt
, pnom

BESS
− pch

BESS,t

)

,∀t ∈ T

Fig. 2  Electric and thermal load patterns
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is still convex. Furthermore, commercial solvers achieve global optimality as long as 
convexity is maintained in the model.

3  Case study

This section shows a case study to test the performance of the proposed model. We 
assume the resulting islanded microgrid will serve the facilities of a hotel in Carta-
gena, Colombia. The daily electric and thermal load profiles, on an hourly basis, are 
obtained from a large hotel facility in DER-CAM software [40] and are shown in 
Fig. 2. These patterns are split in weekdays and weekends. Peak electric demand is 
around 630 kW, whereas thermal demand is around 216 kW. Daily electric and ther-
mal demands are 8900 kWh and 1700 kWh respectively. Since the hotel facility is 

Table 2  Microgrid component parameters

*Values in 1e−3

PV ICE DSL MT EC AC BESS TESS

I
gen

j

[

$

kW

]

1910 600 900 897 1350 1706 100 20

Isto,E
s

[

$

kWh

]

0 0 0 0 0 0 580 75

�g

[

$

MBTU

]

0 5.3 2.1 4.8 0 0 0 0

ag

[

MBTU

kWh

]

0 0.021 0.021 0.016 0 0 0 0

bg

[

MBTU

h

]

0 0 0 0 0 0 0 0

OMvar
k

[

$

kW

]

∗ 0 6 0 5.8 1 0 0 0

OMfix
k

[

$

kW

]

∗ 1.47 0 0 0 0 0 1.6 0

ER
CO2

k

[

kg

kWh

]

0.04 0.18 0.25 0.18 0 0 0 0

Fig. 3  Temperature and solar irradiance for the hotel
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not expected to expand, energy demand levels are assumed as constant in the long 
term. Investment costs and emission rates are shown in Table 2. Emission rates for 
each technology are taken from [41] and [42]. The proposed formulation allows to 
account for the GHG emission for each kwh provided by the sized technology 
through the parameters ERCO2

k
 and the emission tax cost �k . We have decided to 

account for the emissions of several technologies. Emissions from solar PV are also 
considered as indicated in [42], in which authors account for the life cycle emissions 
from the manufacture of solar cells. The CO2 tax rate is 0.07 

[

$

kg

]

 as suggested in 
[27].

The project lifespan is 15 years. This case study considers |T| = 8760 hourly peri-
ods in order to represent the entire microgrid operations in the sizing problem. This 
implies � = 1 . An interest rate of 6% is employed to discount future cash flows. Up 
and down regulation reserve cost �R is set as 40% of the degradation cost of battery 
storage as in [21]. The average cycles to failure N lt

BESS
 is set to 995 (computed using 

data from [28]). Solar and electric load estimation error �̃�pv,t , �̃�D,t are assumed to be 

Table 3  Base case optimal 
microgrid sizing

Tech Size [kW/kWh] CAPEX [k$] OPEX 
[

k$

year

]

CO2 [Ton]

PV 338.75 647.01 5.24 22.18
ICE 0.00 0.00 0.00 0.00
DSL 515.85 522.56 769.17 697.36
MT 0.00 0.00 0.00 0.00
BESS 150.24/654.50 394.63 22.37 0.00
TESS 0.00/0.00 0.00 0.00 0.00
HAC 0.00 0.00 0.00 0.00
EC 216.81 292.69 1.35 0.00
Total 1856.89 798.13 719.54

Fig. 4  Power output for microgrid technologies in base case
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normally distributed N�pv

(

�pv,t = �pvppv,t, �pv,t = �pvppv,t
)

 , with �pv = 0 and 
�pv = 0.1 and N�D

(

�D,t = 0, �D,t = 0.02Del
t

)

 , respectively. The allowable violation 
probabilities of regulation reserves are set as �− = �+ = 0.05 . Meteorological 
parameters of Cartagena are displayed in Fig. 3. Temperature data have been taken 
from IDEAM [43] and solar irradiance from Solcast [44]. The model is imple-
mented in Pyomo 5.7.3 [45] and solved using Gurobi 9.5.0 [46] executed 
on an intel Core i7-8700 with 16GB RAM.

4  Results

4.1  Base case

In the base case, only up and down regulation reserves are considered. Security 
reserves due to sudden outages are ignored in this case. The optimal sizing, CAPEX, 

Fig. 5  State-of-charge for ESS in base case

Fig. 6  Up and down reserves requirements due intermittency in basecase
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annual OPEX and annual CO2 emissions for each technology in the base case are 
shown in Table 3. Diesel-generator, PV and BESS are selected for supplying elec-
tric power, while an electric chiller (EC) supplies the thermal energy demand. The 
objective function adds up to $10.3 million. Although the operational commitment is 
considered during 8760 hly periods, only the first four days are displayed in Fig. 4. 
Despite the relative high OPEX of diesel generation, it is heavily scheduled as the 
main generator to meet electric load. During peak sunlight hours, PV supplies a sig-
nificant share of load and BESS charge. The remaining load is supplied mainly by 
the diesel generator. BESS discharge also provides support during the peak-hours.

The state-of-charge (SOC) of BESS is shown in Fig.  5. BESS is scheduled to 
be charged (upward SOC) mainly during peak sunlight hours with PV system. Dis-
charge (downward SOC) is scheduled during both, the mornings and peak load 
hours under absence of solar PV production.

Base case optimal up and down regulation reserves allocation and requirements 
on the base case are depicted in Fig. 6. This case ignores N − 1 reserves and only 
regulation reserves are imposed. The size of the requirements depends on the proba-
bility distribution of net forecast error (difference between both electric load and PV 
system forecast errors). For the PV system, the larger the scheduled PV output, the 
larger reserve would be needed. DSL and BESS are the only dispatchable resources 
installed in this case (MT and ICE are not installed). As a result, regulation reserve 
requirements are covered mainly by BESS. That is, BESS would face potential 
intermittencies given the non-dispatchability and potential high forecast error of the 
PV-system production. Stored energy acts as an up-regulation reserve to cover sud-
den net load increments or any potential renewable intermittency; down-regulation 
reserve is employed to store a sudden surge of energy. Considering degradation wear 
costs leads to the use of BESS mainly as a reserve provider. Scheduling BESS for 
energy provision accelerates discharge cycles, which is represented in capacity loss 
and higher replacement costs.

In this case, thermal load is always supplied by EC. MT and ICE, providers of 
recovered heat, are of no interest to the model given their high operational and 
investment cost. This, in turn, yields the model to not install any AC. As a result, 
TESS is not necessary in the optimal microgrid design.

Table 4  Sizing results for 
reliability-based design

Tech Size [kW/kWh] CAPEX [k$] OPEX 
[

k$

year

]

CO2 [Ton]

PV 325.75 622.18 5.04 21.33
ICE 18.63 11.18 47.30 8.92
DSL 320.14 324.31 492.99 454.54
MT 320.14 287.17 659.72 163.09
BESS 318.02/489.55 315.74 36.84 0.00
TESS 40.29/226.12 17.76 0.00 0.00
HAC 63.20 107.82 0.00 0.00
EC 153.61 207.37 0.89 0.00
Total 1893.53 1242.76 647.88
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4.2  Reliability‑based microgrid design

4.2.1  Numerical results

The Reliability-based design includes all constraints presented in the proposed 
model in Sect. 2. Sizing, CAPEX, annual OPEX, and annual CO2 emissions for each 
technology in the microgrid are shown in Table 4. The total objective function is 
$16.5 millions. The energy mix is more diversified than the base case to avoid high 
dependency on a specific technology. PV system is the largest generator, closely 
followed by DSL, MT and ICE. The BESS capacity is sized to be discharged in 
approximately an hour and a half at its nominal power output. Although conven-
tional fuel-fired generation represents a larger share than renewable resources, CO2 
emissions are reduced compared to the base case.

Fig. 7  Reserve schedules for N − 1 contingencies in the reliability-based case

Fig. 8  Power output for microgrid technologies with reliability-based design
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The provision reserves against N − 1 contingencies on for the reliability-based 
design case are shown in Fig. 7. N − 1 reserves requirements avoid any generator 
to supply the entire electric load; rather, all generators are scheduled to a moderate 
power output. The model allocates reserves for each dispatchable technology such 
that, for any sudden generator loss at any hour, the microgrid has enough mix of 
N − 1 reserves. Once a generator is faulted, N − 1 reserves, provided by remaining 
generators, should be enough to continuously satisfy electric demand. The proposed 
approach in this work diversifies both energy provision and reserve allocation by 
avoiding a single generator providing all of the reserve and energy requirements. 
Required reserves are determined by the largest generator’s output plus the larg-
est allocated regulation reserve per period. Thus, this balance between operating 
efficiency and reserve capacity entails a trade-off: increasing generation capacity 

Fig. 9  Thermal load and chillers output

Fig. 10  State-of-charge for ESS in reliability-based design
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enhances efficiency; however, it also increases the need for N − 1 reserve, which in 
turn imposes generators to operate at lower power output levels

As shown in the operational scheduling in Fig.  8, MT and ICE are continu-
ously dispatched at its minimum operative output, whereas DSL supplies the 
remaining load. During sunlight hours, solar PV power is employed to charge the 
BESS and supply a fraction of load, which eventually reduces DSL production. 
Thus, MT and BESS are the main reserve providers against contingencies. When 
PV production is high, DSL is enabled to provide reserves in case of an outage. 
As a result of the reliable operation of the microgrid, operational cost tends to be 
high given the significant use of conventional fuel-fired generation.

Figure 9 displays the schedule of thermal systems. Unlike the base case results, 
the AC takes advantage of the heat recovered from the burnt fuel of MT and ICE 
to provide cooling. Remaining thermal demand is supplied by the EC, which in 
turn imposes an additional electric load to the microgrid. Several hours before the 
peak-cooling load condition, recovered heat from MT and ICE is not employed by 
the AC, but stored in the TESS. Once in peak-cooling load condition, the TESS 
provides heat to the AC, which delivers energy to thermal loads in order to reduce 
the EC participation.

The state-of-charge for each storage system is shown in Fig.  10. BESS is 
charged by the PV-system and by the fuel-fired generator when solar production 
vanishes and electric load is the lowest. BESS is discharged during peak-load 

Fig. 11  Up and down regulation reserves requirements in reliability-based design

Table 5  Optimization problem 
characteristics

Base case Reliability-based case

Time [min] 25.98 42.6
Constraints 623,666 676,370
Conic constraints 17,568 17,568
Variables 351,372 351,372
Binary Vars 87,840 87,840
Obj. Func. [$] 10,303,246 16,556,278
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hours and during the night-hours when PV is zero. Since BESS is also scheduled 
as reserve provider, it is rarely fully discharged.

Reserves for intermittency are splitted in up/down regulation reserves as dis-
played by dashed lines in Fig. 11. Up regulation reserves are covered by almost all 
technologies online, which are available to be ramped-up to deal with either ran-
dom intermittencies in PV output or changes in electric load. Down reserves are 
intended to decrease power production (or store any energy surplus in the BESS) 
given an increase in PV-power output or decrease in load demand. Down regulation 
reserve requirements are covered mainly by DSL, which is scheduled close to its 
rated power. BESS also provides down reserves when its SOC is low. MT and ICE 
do not offer down reserves since they are scheduled at their minimum levels.

For both the base case and the reliability-based case, the info of CPU time, num-
ber of constraints, number of conic constraints, number of variables, number of 
binary variables and objective function values are shown in Table 5. The CPU time 
for the full reliability-based case is close to 42 min.

Fig. 12  Diesel generator scheduled output and reserves

Fig. 13  BESS Stored energy and scheduled reserves
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4.2.2  Reserve requirements

Regulation and N − 1 security reserves, impose requirements to power output in 
generators and BESS. N − 1 and up regulation reserve require the generator power 
output and BESS discharging to be ready to increase if needed; on the other hand, 
down regulation reserves require the generator and BESS discharging to be reduce 
if needed. For the BESS, reserves are scheduled to take advantage of its ability to 
absorb energy in the charging mode. Figures 12 and 13 depict the scheduled power 
output, up/down regulation reserves allocation and N − 1 security reserves for DSL 
and BESS respectively. Both allocated reserves are scheduled based on the excess 
generator capacity, without exceeding their nominal or ramp limits. In the case of 
DSL, the output limits are imposed by the nominal power output and maximum up/
down ramps. DSL schedules down regulation reserves without exceeding the mini-
mum operational value. Likewise, N − 1 and up regulation reserves are rigorously 
scheduled avoiding producing power above nominal values of generation resources.

Despite the fact that BESS reserves are limited by available stored energy and 
nominal charge/discharge power output, the optimal sizing shows that BESS is a 
significant reserve provider. For N − 1 reserves, BESS is scheduled to increase its 
power output (discharging mode). The N − 1 reserve provision is high when either 
its SOC is at medium/high levels or BESS is already discharging due to the absence 
of sunlight and PV output. For down regulation reserves, BESS reserves are sched-
uled when sunlight is at peak. If any deviation occurs, the BESS may reduce its 
power output and even absorb any energy excess (charging mode) to cover the 
demand/PV forecasting deviation. Equation (8) offers a general formulation that 
allows reserve costs to be allocated as proposed in the literature [21]. However, the 
reserve cost could be set to zero if needed. After running the model setting reserve 
cost to zero, the impact on the optimal microgrid sizing is negligible; but, the sched-
uling of regulation reserves increases. The model schedules up(down) regulation 
reserves beyond the computed requirements due to lack of reserve cost. Remain-
ing available power (scheduled output above minimum) is allocated as up(down) 

Fig. 14  Optimal microgrid sizing vs BESS investment cost
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regulation reserves. This in turn implies additional N − 1 reserves that need to be 
provided to deal with potential outages

4.3  Sensitivity analysis

4.3.1  Sensitivity analysis for investment cost

To comprehensively evaluate the performance of the proposed model under differ-
ent circumstances, a sensitivity analysis in BESS capacity investment cost is carried 
out. To analyze the impact of BESS investment cost 

(

I
sto,E

BESS

)

 on technology sizing, 
variations between 70% and 130% of the its nominal value (580 $/kWh) were con-
sidered. Figure  14 shows that higher investment cost per kW does not cause sig-
nificant changes in the BESS installed capacity. The main change in the analysis is 
the amount of energy discharged from the BESS. For the lowest value (319 $/kWh) 
996,961 kWh are discharged; whereas the case with the highest value (841 $/kWh), 

Fig. 15  Up and down regulation reserve requirements under changes in �
pv

Fig. 16  Optimal microgrid sizing vs changes in the the solar mean forecast error �
pv
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only 423,975 kWh are discharged annually from the BESS. This condition stems 
from the BESS investment cost, which heavily affects the wear cost. If it is low, 
then BESS participation is high. On the contrary, the wear cost tends to be exces-
sively high and the BESS only participates as reserve provider. Also, MT and DSL 
nominal capacities barely change; but are constantly scheduled to operate, which 
would recover additional heat. As a result, the sizing of AC and TESS is such that it 
can take advantage of the increased heat and thus reduce the EC participation. The 
simultaneous occurrence of peaks in both electric and thermal load forces the model 
to employ more AC (which is fed by heat stored in the TESS and recovered heat 
from MT and ICE) than EC. The objective function ranges from $16.5 millions (319 
$/kWh) to $16.8 millions (841 $/kWh).

4.3.2  Sensitivity analysis with respect to solar forecast error

The net error distribution of solar production and electric load directly affects the 
regulation reserve requirements. Figure 15 depicts the reserve requirements for up 
and down regulation reserves under changes in the error mean of the solar produc-
tion forecast �pv,t , while Fig. 16 shows the optimal microgrid sizing in each case. 
Negative solar mean forecast error (forecast overestimates actual production) 
increases the up regulation reserves and reduce down reserves. For large negative 
mean errors, PV system size increases and fuel-fired production decreases, which 
causes a decrease in the objective function. Large positive mean error forecast 
decreases up regulation reserves and increases down regulation reserve require-
ments. Unlike up regulation reserves, down reserves are supported mainly by BESS 

Fig. 17  Up and down regulation reserve requirements under changes in �
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and DSL (MT and ICE are dispatched at their operational minimum.) To face 
increasing down regulation reserve requirements, the model reduces the PV system 
size and increases DSL schedule to extend the amount of down regulation reserve 
available in DSL. Non-negativity conditions for quantiles in Eqs. (35) and (36) are 
verified on an hourly basis. Even for extreme values, �pv = ±10% quantiles are still 
non negative.

4.3.3  Sensitivity analysis with respect to regulation reserve violation probabilities

According to the probabilistic criteria exposed in Eqs.  (30) and (31), the model 
imposes that scheduled regulation reserve requirements should cover positive and 
negative imbalances in demand-generation with probabilities at least 1 − �+ and 
1 − �− respectively. The reserve commitment of the proposed model and its implica-
tions is analyzed in this part via the following three cases:

• Reference case: �+ = �− = 0.05.
• High probability case: �+ = �− = 0.10.
• Low probability case: �+ = �− = 0.01.

Figure 17 shows variation of up and down regulation reserve requirements in a short 
time span when forecast mean errors are zero ( �D,t = �pv,t = 0 ). And Fig. 18 shows 
the optimal microgrid design in each case. As expected, the lower probabilities �+ 
and �− , the higher up and down regulation reserve requirements. To schedule high 
regulation reserves, conventional fuel-fired generators and BESS are high-sized. As 
the probabilities �+ and �− increase, solar PV participation increases, which reduces 
operational expenditures. Also, non-negativity conditions stated in Eqs.  (35) and 
(36) always hold.

Fig. 18  Optimal microgrid sizing vs probabilities �+ and �−
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Fig. 19  Linear approximation of fuel consumption

Table 6  Sizing results for 
industrial parameters ag and bg

Tech Size [kW/kWh] CAPEX [k$] OPEX 
[

k$

year

]

CO2 [Ton]

PV 199.38 380.81 3.08 13.05
ICE 267.63 160.58 258.09 139.39
DSL 0.00 0.00 0.00 0.00
MT 386.87 347.02 141.73 386.81
BESS 386.87/595.55 384.11 13.73 0.00
TESS 27.69/130.80 10.36 0.00 0.00
HAC 104.94 179.04 0.00 0.00
EC 111.87 151.02 0.32 0.00
Total 1612.94 416.95 539.25

Fig. 20  BESS schedule Output, N − 1 reserves, regulation reserves with modified fuel-consumption 
parameters
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4.3.4  Fuel‑consumption curve parameters

In this section, we present a comprehensive analysis of the fuel-consumption param-
eters ag and bg in the proposed formulation and their impact on both the sizing and 
operational aspects of the reliability-based study case under consideration. A new 
case based in the reliability case in Sect. 4.2 is proposed, where parameters ag and bg 
for each generator type were approximated from industrial data. Parameters ag and 
bg for each generator type were approximated from industrial data. Specifically, for 
Diesel Fuel Consumption [47], Natural Gas Consumption [48] and, ICE fuel con-
sumption [12]. the data was fitted to a straight line as shown in Fig. 19 and converted 
to MBTU using average heat content from [49]. Results are presented in Table 6. 

The DSL generator is not selected as part of the energy mix due to its high oper-
ating costs. Fuel consumption and the high price of diesel make it uneconomical 
to use the generator. To replace the power supplied by DSL, both ICE and the MT 
increase their rated power and are scheduled with a higher output at each timestep. 
Due to the amount of heat available to be recovered from the ICE and MT, the HAC 
increases its capacity while the participation of the EC decreases. Because now only 

Table 7  Sizing results for 
reliability-based study with no 
wear cost

Tech Size [kW/kWh] CAPEX [k$] OPEX 
[

k$

year

]

CO2 [Ton]

PV 316.97 605.42 4.90 20.75
ICE 0.00 0.00 0.00 0.00
DSL 350.26 354.81 517.08 466.30
MT 344.09 308.65 676.29 167.19
BESS 317.35/493.71 7.18 86.14 0.00
TESS 8.52/35.17 2.81 0.00 0.00
HAC 34.82 59.40 0.00 0.00
EC 181.99 245.69 10.78 0.00
Total 1894.87 1206.36 654.23

Fig. 21  Power output for technologies in the reliability-based case with no BESS wear cost
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two fuel-fired generators provide most of the required power with a higher output, 
the N − 1 reserve requirements are higher and provided mainly by the BESS. BESS 
cycling policy is now set as reserve provider to allows the reserve requirement to be 
met and avoid MT to run at low power output. This behaviour is depicted in Fig. 20. 
In contrast to the reliability-based case, in this case the consumption and cost of die-
sel fuel is much higher. Therefore, the model decided not to use the DSL generator, 
not even as reserves provider, as it is very expensive to keep it running to provide 
reserves due to fuel consumption.

4.3.5  BESS wear cost

This section presents an analysis of the BESS wear cost �BESS,t related to micro-
grid sizing. This cost of accounts for the BESS degradation due to cycling energy 
through the storage system. It quantifies the cumulative degradation incurred by 
each kWh provided by the battery until its lifetime energy throughput is depleted. 
Equation (7) incorporates the BESS wear cost approach in the objective function, 
which affects BESS cycling. As a result, the optimal cycling policy is based on 
a trade-off among generator fuel cost, generators fuel consumption, battery wear 
cost and reserve requirements. A full reliability-based case without BESS wear 
cost is performed and the corresponding results are presented in Table 7.

The main changes comparing this case with respect to the reliability-based 
case presented in Sect. 4.2 is the lack of ICE generator in the sized mix. The ICE 
power is replaced with a higher rated power to DSL, MT and BESS. Since no 
heat is recovered from ICE, HAC and TESS are significantly reduced. The power 
scheduling is depicted in Fig. 21. In this case, BESS is cycled more often at low-
est SOC w.r.t. the reference case. The BESS power output is higher and more 
recurrent while still providing regulation and N − 1 reserves because no degra-
dation is considered. Since the remaining generators provide higher power out-
put and regulation reserves to replace the ICE, the N − 1 reserve requirement are 
increased to cover any potential outage in the sized generators.

5  Conclusions

This paper presents a novel reliability-based methodology to optimally design an 
isolated microgrid with both electric and thermal demands. The optimal design cov-
ers technology selection and sizing from a distributed energy resources portfolio. 
The interplay between thermal and electricity flows with the microgrid were effec-
tively considered via linear constraints. To provide a reliable design and operation, 
a set of constraints against sudden N − 1 generation contingencies was proposed. 
Also, a high percentage of random fluctuations of demand and/or intermittent gener-
ation were handled by a set of probabilistic chance-constraints that determine mini-
mum amounts of hourly regulation reserves. This type of constraints determined the 
second-order conic nature of the mathematical model.
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When reliability constraints are included in the model, the participation of dis-
patchable resources in the optimal design of the microgrid increases as a result of 
higher reserve requirements; but, renewable technologies participation decreases. 
As a result, not only larger nominal power capacities are installed, but also higher 
operational expenditures are observed given the significant costly production of 
fuel-fired technologies.

Reliance on few generation projects leads to high N − 1 reserve requirements to 
mitigate the risk of generator outages. Meeting these reserve requirements with con-
ventional generators increases fuel costs as the generators must reduce their power 
output to provide reserves, which leads to partially loaded fuel-fired generator and 
increased fuel consumption

BESS-capacity investment cost is a key parameter in the BESS operations. As 
long as such a cost is reduced, BESS is heavily scheduled; otherwise, BESS capacity 
barely changes and is mainly employed for reserves provision. This in turn increases 
the participation of the fuel-fired technologies, absorption chiller, and thermal stor-
age system.

The wear cost �BESS,t , accounting for energy cycling through the BESS is used 
to effectively assess battery capacity degradation. The BESS cycling policy is opti-
mally determined based on a trade-off between fuel costs and wear cost in order to 
reduce CAPEX and OPEX.

Finally, in order to avoid the typical zero-mean assumptions of random forecast 
errors, our chance-constraints carefully differentiate positive from negative errors. 
Forecast errors are not necessarily unbiased, as in real life. While a positive error 
mean increases down-regulation reserves (and reduces up reserves), a negative error 
mean increases up-regulation reserves (and reduces down reserves). However, the 
effect of imposing low violation probability of handling random forecast errors 
always translates into high up- and down-regulation reserves.

Acknowledgements This research was funded by Celsia Colombia S.A. E.S.P. and was awarded by Min-
ciencias under Grant 786-2019 (code 8101-786-65958).

Author Contributions Juan C. Camargo-Berrueco: investigation, validation, writing—original draft, 
writing—review and editing, software. Diego Mejía-Giraldo: conceptualization, formal analysis, valida-
tion, writing—review and editing, methodology. Santiago Lemos-Cano: conceptualization, supervision, 
resources, funding acquisition.

Funding Open Access funding provided by Colombia Consortium.

Data availability Datasets related to this article can be found at https:// github. com/ pybeg giner/ micro 
grid_ sizing hosted at Github.

Declarations 

Conflict of interest The authors declare that they have no known competing financial or personal relation-
ships that could have appeared to the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 

https://github.com/pybegginer/microgrid_sizing
https://github.com/pybegginer/microgrid_sizing
https://github.com


 J. C. Camargo-Berrueco et al.

1 3

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Hossain, E., Kabalci, E., Bayindir, R., Perez, R.: Microgrid testbeds around the world: state of art. 
Energy Convers. Manag. 86, 132–153 (2014). https:// doi. org/ 10. 1016/j. encon man. 2014. 05. 012

 2. IRENA: Renewable power generation cost in 2019. Technical report, IRENA, Abu Dhabi (2020)
 3. IRENA: Innovation Outlook: Renewable Mini-Grids. Technical report, IRENA, Abu Dhabi (2016)
 4. Scioletti, M.S., Newman, A.M., Goodman, J.K., Zolan, A.J., Leyffer, S.: Optimal design and dis-

patch of a system of diesel generators, photovoltaics and batteries for remote locations. Optim. Eng. 
18(3), 755–792 (2017). https:// doi. org/ 10. 1007/ s11081- 017- 9355-4

 5. Barry, N.G., Santoso, S.: Military diesel microgrids: design, operational challenges, energy storage 
integration. In: 2021 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2021). 
https:// doi. org/ 10. 1109/ PESGM 46819. 2021. 96379 99

 6. Menon, R.P., Paolone, M., Maréchal, F.: Study of optimal design of polygeneration systems in opti-
mal control strategies. Energy 55, 134–141 (2013). https:// doi. org/ 10. 1016/j. energy. 2013. 03. 070

 7. Nikolaidis, P., Chatzis, S., Poullikkas, A.: Optimal planning of electricity storage to minimize oper-
ating reserve requirements in an isolated island grid. Energy Syst. 11(4), 1157–1174 (2019). https:// 
doi. org/ 10. 1007/ s12667- 019- 00355-x

 8. Mishra, S., Pohl, J., Laws, N., Cutler, D., Kwasnik, T., Becker, W., Zolan, A., Anderson, K., Olis, 
D., Elgqvist, E.: Computational framework for behind-the-meter DER techno-economic mod-
eling and optimization: REopt lite. Energy Syst. 13(2), 509–537 (2021). https:// doi. org/ 10. 1007/ 
s12667- 021- 00446-8

 9. Hirwa, J., Ogunmodede, O., Zolan, A., Newman, A.M.: Optimizing design and dispatch of a renew-
able energy system with combined heat and power. Optim. Eng. 23(3), 1–31 (2022). https:// doi. org/ 
10. 1007/ s11081- 021- 09674-4. (Cited by: 9; All Open Access, Green Open Access)

 10. Petrelli, M., Fioriti, D., Berizzi, A., Poli, D.: Multi-year planning of a rural microgrid consider-
ing storage degradation. IEEE Trans. Power Syst. 36(2), 1459–1469 (2021). https:// doi. org/ 10. 1109/ 
TPWRS. 2020. 30202 19

 11. Carvallo, C., Jalil-Vega, F., Moreno, R.: A multi-energy multi-microgrid system planning model for 
decarbonisation and decontamination of isolated systems. Appl. Energy 343, 121143 (2023). https:// 
doi. org/ 10. 1016/j. apene rgy. 2023. 121143

 12. Moretti, L., Astolfi, M., Vergara, C., Macchi, E., Pérez-Arriaga, J.I., Manzolini, G.: A design and 
dispatch optimization algorithm based on mixed integer linear programming for rural electrification. 
Appl. Energy 233–234, 1104–1121 (2019). https:// doi. org/ 10. 1016/j. apene rgy. 2018. 09. 194

 13. Li, B., Roche, R., Miraoui, A.: Microgrid sizing with combined evolutionary algorithm and MILP 
unit commitment. Appl. Energy 188, 547–562 (2017). https:// doi. org/ 10. 1016/j. apene rgy. 2016. 12. 
038

 14. Li, B., Roche, R., Paire, D., Miraoui, A.: Sizing of a stand-alone microgrid considering electric 
power, cooling/heating, hydrogen loads and hydrogen storage degradation. Appl. Energy 205(Sep-
tember), 1244–1259 (2017). https:// doi. org/ 10. 1016/j. apene rgy. 2017. 08. 142

 15. Dakir, S., Boukas, I., Lemort, V., Cornélusse, B.: Sizing and operation of an isolated microgrid with 
building thermal dynamics and cold storage. In: 2019 IEEE International Conference on Environ-
ment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe 
(EEEIC/I CPS Europe), pp. 1–6 (2019). https:// doi. org/ 10. 1109/ EEEIC. 2019. 87835 14

 16. Dakir, S., Boukas, I., Lemort, V., Cornélusse, B.: Sizing and operation of an isolated microgrid with 
cold storage. In: 2019 IEEE Milan PowerTech, pp. 1–6 (2019). https:// doi. org/ 10. 1109/ PTC. 2019. 
88107 00

 17. Dakir, S., Boukas, I., Lemort, V., Cornélusse, B.: Sizing and operation of an isolated microgrid 
with building thermal dynamics and cold storage. IEEE Trans. Ind. Appl. 56(5), 5375–5384 (2020). 
https:// doi. org/ 10. 1109/ TIA. 2020. 30053 70

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.enconman.2014.05.012
https://doi.org/10.1007/s11081-017-9355-4
https://doi.org/10.1109/PESGM46819.2021.9637999
https://doi.org/10.1016/j.energy.2013.03.070
https://doi.org/10.1007/s12667-019-00355-x
https://doi.org/10.1007/s12667-019-00355-x
https://doi.org/10.1007/s12667-021-00446-8
https://doi.org/10.1007/s12667-021-00446-8
https://doi.org/10.1007/s11081-021-09674-4
https://doi.org/10.1007/s11081-021-09674-4
https://doi.org/10.1109/TPWRS.2020.3020219
https://doi.org/10.1109/TPWRS.2020.3020219
https://doi.org/10.1016/j.apenergy.2023.121143
https://doi.org/10.1016/j.apenergy.2023.121143
https://doi.org/10.1016/j.apenergy.2018.09.194
https://doi.org/10.1016/j.apenergy.2016.12.038
https://doi.org/10.1016/j.apenergy.2016.12.038
https://doi.org/10.1016/j.apenergy.2017.08.142
https://doi.org/10.1109/EEEIC.2019.8783514
https://doi.org/10.1109/PTC.2019.8810700
https://doi.org/10.1109/PTC.2019.8810700
https://doi.org/10.1109/TIA.2020.3005370


1 3

Reliability‑based sizing of islanded multi‑energy microgrid:…

 18. Mashayekh, S., Stadler, M., Cardoso, G., Heleno, M.: A mixed integer linear programming approach 
for optimal DER portfolio, sizing, and placement in multi-energy microgrids. Appl. Energy 187, 
154–168 (2017). https:// doi. org/ 10. 1016/j. apene rgy. 2016. 11. 020

 19. Micangeli, A., Fioriti, D., Cherubini, P., Duenas-Martinez, P.: Optimal design of isolated mini-
grids with deterministic methods: matching predictive operating strategies with low computational 
requirements. Energies 13(6) (2020). https:// doi. org/ 10. 3390/ en131 64214

 20. Wang, M.Q., Gooi, H.B.: Spinning reserve estimation in microgrids. IEEE Trans. Power Syst. 26(3), 
1164–1174 (2011). https:// doi. org/ 10. 1109/ TPWRS. 2010. 21004 14

 21. Liu, G., Starke, M., Xiao, B., Zhang, X., Tomsovic, K.: Microgrid optimal scheduling with chance-
constrained islanding capability. Electr. Power Syst. Res. 145, 197–206 (2017). https:// doi. org/ 10. 
1016/j. epsr. 2017. 01. 014

 22. Sefidgar-Dezfouli, A., Joorabian, M., Mashhour, E.: A multiple chance-constrained model for opti-
mal scheduling of microgrids considering normal and emergency operation. Int. J. Electr. Power 
Energy Syst. 112, 370–380 (2019). https:// doi. org/ 10. 1016/j. ijepes. 2019. 05. 026

 23. Hemmati, M., Mohammadi-Ivatloo, B., Abapour, M., Anvari-Moghaddam, A.: Optimal chance-
constrained scheduling of reconfigurable microgrids considering islanding operation constraints. 
IEEE Syst. J. 14(4), 5340–5349 (2020). https:// doi. org/ 10. 1109/ JSYST. 2020. 29646 37

 24. Chalil Madathil, S., Yamangil, E., Nagarajan, H., Barnes, A., Bent, R., Backhaus, S., Mason, S.J., 
Mashayekh, S., Stadler, M.: Resilient off-grid microgrids: capacity planning and n-1 security. IEEE 
Trans. Smart Grid 9(6), 6511–6521 (2018). https:// doi. org/ 10. 1109/ TSG. 2017. 27150 74

 25. Mashayekh, S., Stadler, M., Cardoso, G., Heleno, M., Madathil, S.C., Nagarajan, H., Bent, R., 
Mueller-Stoffels, M., Lu, X., Wang, J.: Security-constrained design of isolated multi-energy micro-
grids. IEEE Trans. Power Syst. 33(3), 2452–2462 (2018). https:// doi. org/ 10. 1109/ TPWRS. 2017. 
27480 60

 26. Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M., Wang, C.: Optimal sizing, operating strategy and 
operational experience of a stand-alone microgrid on Dongfushan Island. Appl. Energy 113, 1656–
1666 (2014). https:// doi. org/ 10. 1016/j. apene rgy. 2013. 09. 015

 27. Yurdakul, O., Sivrikaya, F., Albayrak, S.: Quantification of the impact of GHG emissions on unit 
commitment in microgrids. In: 2020 IEEE PES Transmission and Distribution Conference and 
Exhibition—Latin America (TDLA), pp. 1–6 (2020). https:// doi. org/ 10. 1109/ TDLA4 7668. 2020. 
93262 13

 28. Bordin, C., Anuta, H.O., Crossland, A., Gutierrez, I.L., Dent, C.J., Vigo, D.: A linear program-
ming approach for battery degradation analysis and optimization in offgrid power systems with solar 
energy integration. Renew. Energy 101, 417–430 (2017). https:// doi. org/ 10. 1016/j. renene. 2016. 08. 
066

 29. Marocco, P., Ferrero, D., Martelli, E., Santarelli, M., Lanzini, A.: An MILP approach for the opti-
mal design of renewable battery-hydrogen energy systems for off-grid insular communities. Energy 
Convers. Manag. 245, 114564 (2021). https:// doi. org/ 10. 1016/j. encon man. 2021. 114564

 30. Salameh, T., Ghenai, C., Merabet, A., Alkasrawi, M.: Techno-economical optimization of an inte-
grated stand-alone hybrid solar PV tracking and diesel generator power system in khorfakkan, 
united arab emirates. Energy 190, 116475 (2020). https:// doi. org/ 10. 1016/j. energy. 2019. 116475

 31. Shen, X., Han, Y., Zhu, S., Zheng, J., Li, Q., Nong, J.: Comprehensive power-supply planning for 
active distribution system considering cooling, heating and power load balance. J. Mod. Power Syst. 
Clean Energy 3(4), 485–493 (2015). https:// doi. org/ 10. 1007/ s40565- 015- 0164-5

 32. Afzali, S.F., Mahalec, V.: Optimal design, operation and analytical criteria for determining optimal 
operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller. Energy 
139, 1052–1065 (2017). https:// doi. org/ 10. 1016/j. energy. 2017. 08. 029

 33. Hampo, C.C., Akmar, A.B., Majid, M.A.A.: Life cycle assessment of an electric chiller integrated 
with a large district cooling plant. Sustainability 13(1) (2021). https:// doi. org/ 10. 3390/ su130 10389

 34. Fan, W., Liao, Y.: Microgrid operation optimization considering storage devices, electricity 
transactions and reserve. Int. J. Emerg. Electr. Power Syst. 20(5) (2019). https:// doi. org/ 10. 1515/ 
ijeeps- 2019- 0003

 35. Ghaljehei, M., Khorsand, M.: Day-ahead operational scheduling with enhanced flexible ramping 
product: design and analysis. IEEE Trans. Power Syst. 37(3), 1842–1856 (2022). https:// doi. org/ 10. 
1109/ TPWRS. 2021. 31107 12

 36. He, L., Zhang, J., Hobbs, B.: Estimation of regulation reserve requirements in California ISO: a 
data-driven method. In: 2023 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 
(2023). https:// doi. org/ 10. 1109/ PESGM 52003. 2023. 10252 917

https://doi.org/10.1016/j.apenergy.2016.11.020
https://doi.org/10.3390/en13164214
https://doi.org/10.1109/TPWRS.2010.2100414
https://doi.org/10.1016/j.epsr.2017.01.014
https://doi.org/10.1016/j.epsr.2017.01.014
https://doi.org/10.1016/j.ijepes.2019.05.026
https://doi.org/10.1109/JSYST.2020.2964637
https://doi.org/10.1109/TSG.2017.2715074
https://doi.org/10.1109/TPWRS.2017.2748060
https://doi.org/10.1109/TPWRS.2017.2748060
https://doi.org/10.1016/j.apenergy.2013.09.015
https://doi.org/10.1109/TDLA47668.2020.9326213
https://doi.org/10.1109/TDLA47668.2020.9326213
https://doi.org/10.1016/j.renene.2016.08.066
https://doi.org/10.1016/j.renene.2016.08.066
https://doi.org/10.1016/j.enconman.2021.114564
https://doi.org/10.1016/j.energy.2019.116475
https://doi.org/10.1007/s40565-015-0164-5
https://doi.org/10.1016/j.energy.2017.08.029
https://doi.org/10.3390/su13010389
https://doi.org/10.1515/ijeeps-2019-0003
https://doi.org/10.1515/ijeeps-2019-0003
https://doi.org/10.1109/TPWRS.2021.3110712
https://doi.org/10.1109/TPWRS.2021.3110712
https://doi.org/10.1109/PESGM52003.2023.10252917


 J. C. Camargo-Berrueco et al.

1 3

 37. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
 38. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Math-

ematics. Princeton University Press, Princeton (2009). https:// books. google. com. co/ books? id= DttjR 
7IpjU EC

 39. Ben-Tal, A., Nemirovski, A.: Robust optimization? Methodology and applications. Math. Program. 
92(3), 453–480 (2002). https:// doi. org/ 10. 1007/ s1010 70100 286

 40. Deforest, N., Cardoso, G., Brouhard, T., USDOE: distributed energy resources customer adoption 
model (DER-CAM) v5.9 (2018). https:// doi. org/ 10. 11578/ dc. 20181 016.2. https:// www. osti. gov/ bib-
lio/ 14778 58

 41. Jakhrani, A.Q., Rigit, A.R.H., Othman, A.-K., Samo, S.R., Kamboh, S.A.: Estimation of carbon 
footprints from diesel generator emissions. In: 2012 International Conference on Green and Ubiqui-
tous Technology, pp. 78–81 (2012). https:// doi. org/ 10. 1109/ GUT. 2012. 63441 93

 42. Chandrasekharam, D., Pathegama, G.R.: CO2 emissions from renewables: solar PV, hydrothermal 
and EGS sources. Geomech. Geophys. Geo-Energy Geo-Resour. 6(1) (2019). https:// doi. org/ 10. 
1007/ s40948- 019- 00135-y

 43. Hidrología, M.y.E.A.: Datos Hidrometeorológicos Crudos - Red de Estaciones IDEAM: Tempera-
tura (2021). http:// www. ideam. gov. co/

 44. Engerer, N.: Global Solar Irradiance Data via API. The Australian National University Data Com-
mons (2018). https:// doi. org/ 10. 25911/ 5c073 e713e 5dd. https:// resea rchda ta. edu. au/ global- solar- 
irrad iance- api. https:// solca st. com. au/ solar- data- api/ api/ terms- and- condi tions/

 45. Hart, W.E., Watson, J.-P., Woodruff, D.L.: PYOMO: modeling and solving mathematical programs 
in python. Math. Program. Comput. 3(3), 219–260 (2011)

 46. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021)
 47. Generator, S.: Approximate diesel generator fuel consumption chart. https:// www. gener ators ource. 

com/ Diesel_ Fuel_ Consu mption. aspx
 48. Generator, S.: Approximate Natural Gas Consumption Chart. https:// www. gener ators ource. com/ 

Natur al_ Gas_ Fuel_ Consu mption. aspx
 49. Units and calculators explained. https:// www. eia. gov/ energ yexpl ained/ units- and- calcu lators/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Juan Camilo Camargo‑Berrueco1  · Diego Adolfo Mejía‑Giraldo1 · 
Santiago Lemos‑Cano2

 * Juan Camilo Camargo-Berrueco 
 camilo.camargo@udea.edu.co

 * Diego Adolfo Mejía-Giraldo 
 diego.mejia@udea.edu.co

 Santiago Lemos-Cano 
 slemoscano@gmail.com

1 Department of Electrical Engineering, Universidad de Antioquia, Calle 70 No. 52-21, 
Medellín 050010, Antioquia, Colombia

2 Empresa de Energía del Pacífico S.A. E.S.P. (EPSA)-CELSIA S.A. E.S.P., Carrera 43A No. 1 
sur-143, Medellín 050021, Antioquia, Colombia

https://books.google.com.co/books?id=DttjR7IpjUEC
https://books.google.com.co/books?id=DttjR7IpjUEC
https://doi.org/10.1007/s101070100286
https://doi.org/10.11578/dc.20181016.2
https://www.osti.gov/biblio/1477858
https://www.osti.gov/biblio/1477858
https://doi.org/10.1109/GUT.2012.6344193
https://doi.org/10.1007/s40948-019-00135-y
https://doi.org/10.1007/s40948-019-00135-y
http://www.ideam.gov.co/
https://doi.org/10.25911/5c073e713e5dd
https://researchdata.edu.au/global-solar-irradiance-api
https://researchdata.edu.au/global-solar-irradiance-api
https://solcast.com.au/solar-data-api/api/terms-and-conditions/
https://www.generatorsource.com/Diesel_Fuel_Consumption.aspx
https://www.generatorsource.com/Diesel_Fuel_Consumption.aspx
https://www.generatorsource.com/Natural_Gas_Fuel_Consumption.aspx
https://www.generatorsource.com/Natural_Gas_Fuel_Consumption.aspx
https://www.eia.gov/energyexplained/units-and-calculators/
http://orcid.org/0000-0001-7639-6468

	Reliability-based sizing of islanded multi-energy microgrid: a conic chance-constrained optimization approach
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Contribution

	2 Proposed model
	2.1 Objective function
	2.1.1 Capital expenditures
	2.1.2 Operating expenditures

	2.2 Components modeling
	2.2.1 Photovoltaic (PV) system
	2.2.2 Chillers
	2.2.3 Energy storage systems

	2.3 Operational constraints
	2.3.1 Power balances
	2.3.2 Generation output constraints
	2.3.3 Chillers output constraints
	2.3.4 Storage constraints
	2.3.5 Ramp constraints

	2.4 Reliability constraints
	2.4.1  reliability constraints
	2.4.2 Regulation reserves


	3 Case study
	4 Results
	4.1 Base case
	4.2 Reliability-based microgrid design
	4.2.1 Numerical results
	4.2.2 Reserve requirements

	4.3 Sensitivity analysis
	4.3.1 Sensitivity analysis for investment cost
	4.3.2 Sensitivity analysis with respect to solar forecast error
	4.3.3 Sensitivity analysis with respect to regulation reserve violation probabilities
	4.3.4 Fuel-consumption curve parameters
	4.3.5 BESS wear cost


	5 Conclusions
	Acknowledgements 
	References


