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Abstract
Reservoir systems are often operated for multiple purposes. This can result conflict-
ing operational goals. To efficiently control these systems and to satisfy the differ-
ent interests as good as possible, mathematical optimization models can be used to 
support operational decisions. Common approaches for reservoir optimization apply 
linear optimization techniques. However, real-world systems often require non-lin-
ear functions to describe the relation between water level and volume in a reservoir 
or to account for the hydropower equation. When the non-linear equations form a 
non-convex optimization problem, the problem is not necessarily solved to a global 
optimum. Piecewise-linear or linear formulations of the non-linear equations are a 
common way to address non-linear non-convex optimization problems. In this paper, 
the novel homotopy method is compared with two established approaches—the 
piecewise-linear and the linear approximation—to account for non-linear compo-
nents in the optimization problem. The analysis is carried out for a cascade of three 
reservoirs under two scenarios—a flood scenario and a load balance scenario. The 
optimization software is the open source package RTC-Tools 2.4. Compared to the 
piecewise-linear and the linear approach the homotopy method shows a better accu-
racy for the analysed cases, because the method solves the flow equations within the 
optimization in a non-simplified form. Different to the piecewise-linear and the lin-
ear approach, however, the homotopy method does not guarantee a global optimum. 
The solution is still path-stable, which is a basic pre-requisite for its application in 
an operational context of hydropwer scheduling. Compared to the piecewise-linear 
approach, the homotopy method is easier to implement under the condition that the 
software supports the method.
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1 Introduction

Water resources management is an interdisciplinary field where many stakeholders 
and different interests come together, and it is not always easy to satisfy all needs at 
the same time. In many regions of the world, water reservoirs are an important ele-
ment of water management. Reservoir operations must take into account multiple 
objectives such as flood protection, drinking water supply, irrigation requirements, 
environment, recreation and hydropower production. These objectives can conflict 
with each other and are therefore sometimes hard to align.

Mathematical optimization techniques have been widely used for strategic or 
long-term planning of reservoirs management (see e. g. [1–3]). In times of climate 
change, increasing water demand and increased pressure on the environment, opti-
mization techniques can help to make better use of the available water resources. 
Also for operational reservoir management on the short-term and the mid-term time 
scale optimization techniques have been applied [4–14].

For operational reservoir management on the short-term time scale (from a few 
days up to a few weeks) it is essential that optimization models produce stable 
results. As a stable optimization we understand here that a little change in input data 
does not produce a completely different optimization result, and that two optimiza-
tion runs with the same input data produce the same result. In particular, a stable 
optimization is important within an operational context for the following reasons:

• Optimization runs are repeated frequently. This approach is commonly referred 
to as “moving horizon approach”: as soon as a new hydrological inflow forecast 
is available (e. g. once or twice a day), a new optimization run is carried out to 
determine the optimal reservoir release pattern for the near future (model predic-
tive control, García et al. [15], Morari et al. [16], Morari and Lee [17], Rötz and 
Theobald [18]). Forecasts change with time, and for operational decision making 
it is important that the optimization results from consecutive time steps are con-
sistent with each other.

• Operators carry out multiple optimization runs with different configurations 
(control options) for one forecast scenario in order to compare the effects of the 
different control options [18–20]. Stable optimization results ensure consistency 
and allow comparison for different control options for decision making.

• To address forecast uncertainty, runs for multiple potential future scenarios 
(ensemble) are carried out [4, 21]. For such ensemble runs it is important that all 
ensemble members are optimized in a consistent way. Similar scenarios (ensem-
ble members) must produce similar optimization results.

As long as only volumes and flows are the primary variables of interest, a res-
ervoir optimization problem can be formulated as a set of linear equations. The 
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solution of linear optimization problems is straightforward, and gradient-descent 
optimization algorithms can solve linear optimization problems with a guarantee 
to find a global optimum, and this means that the result is stable.

The operation of multi-purpose reservoirs, however, often includes goals and 
constraints related to hydropower generation. Typical optimization goals are the 
maximization of hydropower generation or load balance (a hydropower genera-
tion target to be met, see e. g. Schwanenberg et al. [11]). The physical equation 
for hydropower generation adds a non-linear equality constraint to the optimiza-
tion problem. This means that the optimization problem is no longer convex. A 
gradient-based optimization algorithm will not necessarily find a global optimum 
[22]. To achieve a certain generation output, multiple local optima with different 
combinations of turbine discharge and head difference are possible. This means 
that the optimization problem does not have a unique solution.

A common approach to deal with non-linear terms in reservoir optimization is 
to simplify the non-linear equations towards a linear function, which then can be 
solved towards a global optimum by a gradient-descent optimization algorithm 
[22, 23]. For the equations for hydropower generation this means assuming a con-
stant head difference [24]. The assumption of a constant head difference, however, 
is a quite severe simplification, because it neglects the dynamics of one important 
component of the power generation equation and it takes away the incentive for 
the optimization algorithm to maintain the water level in the reservoir as high as 
possible for the sake of power generation.

In this paper, we investigate two other approaches to handle the power equa-
tion in reservoir optimization: the piecewise-linear approach and the homotopy 
method. The piecewise-linear method is a widely used approach, but it comes 
with the need to apply mixed-integer-linear-programming and is still a simplifica-
tion of the desired equation. The homotopy method uses a continuous formulation 
and solves the power equation within the optimization problem without simplify-
ing the mathematical description of the system. The homotopy method is a novel 
approach [25, 26], and this study is the first where the method has been applied 
for reservoir optimization.

We limit the scope of this study to gradient-descent optimization techniques. 
Heuristic algorithms, including the group of genetic algorithms, also provide a way 
to obtain solutions to hard optimization problems. However, due to their heuristic 
nature, they are very sensitive to the inputs, which is basically not what we consider 
here as stable [27]. Because they can not sample the full solution space they also 
do not provide a guarantee for a global or local optimum (see [28]). Heuristic algo-
rithms have proven their applicability for reservoir optimizations, but we consider 
them less appropriate for operational purpose.

The following section (Sect. 2) introduces the mathematical background of res-
ervoir optimization equations. These equations form equality constraints in the 
optimization models. The basic equations for inequality constraints and goals and 
the mathematical background of the linear, the piecewise-linear and the homotopy 
method as well as the implementation into a generic modelling software are also 
presented in this section. In Sect. 3 the methods are applied to a cascade of three 
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reservoirs. Two scenarios with different operational goals are evaluated: a flood sce-
nario and a load balance scenario. The paper closes with a conclusion section.

2  The optimization problem for reservoir operations

2.1  Hydraulic model

The storage equation relates the change in the volume in the reservoir against the 
incoming and outgoing flows, Qin and Qout respectively:

The outgoing flow from the reservoir is distributed between the turbines and the 
spill flow

where spill flow accounts for the flow that is not used for power generation, i.e. flow 
through the spillway and the flow through the bottom outlet if a bottom outlet is 
present.

The volume and water level H of the reservoir lake (the reservoir storage) are related 
to each other by a strictly monotonically increasing function that accounts for the shape 
of the basin:

Such function is in practice often specified as a table or a polynomial function. Usu-
ally, the relation between H and V is not linear. A simplified, linearised relation has 
the form

where H̄ is the linearised water level in the reservoir and a and b are reservoir-
dependent parameters.

The hydropower generation P is a function of the turbine flow and the head 
difference:

with the turbine efficiency � , the density of water � and the gravity constant g . The 
head difference Δh is defined as

The tailwater level htailwater is expressed in dependence of the reservoir outflow Qout:

(1)
�V

�t
= Qin − Qout.

(2)Qout = Qturbine + Qspill

(3)H = f (V).

(4)H̄ = a ⋅ V + b

(5)P = Δh ⋅ Qturbine ⋅ � ⋅ � ⋅ g

(6)Δh = H − htailwater.

(7)htailwater = f (Qout).
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The linearised tailwater equation has the form

with � and � being reservoir-dependent parameters.
The head difference computed from linear equations Δh̄ for reservoir water level H̄ 

and htailwater becomes

Δh usually decreases as Qout increases, because the outflow from the reservoir 
decreases the water level H in the reservoir and possibly increases the tailwa-
ter htailwater . Therefore, meeting a power generation target is a non-trivial interplay 
between Δh and Qout.

We are interested in an optimal release scheme over a certain time horizon. The 
storage equation 1 is discretized in time with the help of timesteps j = 1… J and 
becomes

It is often sufficient to model the flow routing in the river section between two loca-
tions i and i + 1 with a fixed time lag li:

Here we assume that the time lag is a multiple of the time step size.

2.2  Operational goals

Reservoirs have one or more purposes and are operated to meet objectives like flood 
control, recreation, hydropower production or drinking water supply. As an opera-
tional goal we understand here the mathematical formulation of an objective that 
the operators aim to meet with the help of reservoir control. Goals are terms of the 
objective function in a mathematical optimization problem, also referred to as soft 
constraints.

Objectives can conflict with each other, and not all goals are met all the times. 
An example for conflicting goals are hydropower production and flood protection. 
From a flood protection point of view, the water level should be as low as possible, 
because this provides storage room to catch water from a flood wave in the reser-
voir and reduce the peak discharge further downstream. For hydropower production, 
however, the water level should be high at all times, because a high reservoir stage 
means more hydropower output with the same turbine flow. Optimization of reser-
voir operations means to find a reservoir release pattern such that multiple goals are 
met as good as possible. In the following we present a selection of typical objectives 
for reservoir operations and the related mathematical formulation as optimization 
goals.

(8)h̄tailwater = 𝛼 ⋅ Qout + 𝛽

(9)Δh̄ = H̄ − h̄tailwater

(10)
Vj − Vj−1

Δt
−
(
Qin,j − Qout,j

)
= 0.

(11)Qi+1,j = Qi,j−li
.
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An operational range for the reservoir water level can be translated to an opera-
tional volume range Vmin and Vmax with the help of Eq. 3. The mathematical formula-
tion of an operational volume range goal reads:

The operational range can be specified for one or multiple time steps j in the time 
horizon J. Typically, an operational range for the reservoir water level is a general 
goal that applies as a guidance for daily operations and is only exceeded in special 
situations like flood or drought conditions.

Load balance means to meet the hydropower generation target Pj for one or mul-
tiple time steps j ∈ J . Typically a generation target is prescribed for the whole time 
horizon and connected to energy demand or production commitments. The objective 
term reads:

Different to water level or volume operational range goals, the objective of load 
balance is not a general objective. Operators optimize for load balance to analyse 
if power demand or generation commitments can be fulfilled in combination with 
other objectives for given hydrological inflow.

For hydropower production it makes sense to guide all reservoir outflow through 
the turbines or to keep the water in the reservoir if it cannot be used for power gen-
eration. A goal to minimize spill at all time steps j accounts for this:

A drawdown limit limits the rate of water level change within one time step

and is applied to ensure bank stability in the reservoir lake. The mathematical for-
mulation of a drawdown limit goal reads:

Accordingly, rate of change goals are formulated for discharge quantities Q, where 
Q is either the spill flow Qspill or the turbine flow Qturbine:

(12)minimize Vj − Vj,max

(13)minimize Vj,min − Vj.

(14)minimize
|||Pj − Pj,target

|||.

(15)minimize Qj,spill.

(16)ΔHj = Hj − Hj−1

(17)minimize
|||ΔHj

||| − ΔHj,max ∀ΔHj ≤ 0.

(18)ΔQj = Qj − Qj−1

(19)minimize
|||ΔQj

||| − ΔQj,max.
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2.3  Constraints

While goals not necessarily have to be satisfied, constraints must be obeyed at all 
times. Constraints define the solution space for the optimization problem. If no solu-
tion exists that complies with all constraints, the optimization problem is infeasible. 
Constraints in this closer mathematical sense are called hard constraints to distin-
guish them from soft constraints (see Sect. 2.2).

The first group of constraints is given by the hydraulic equations in Sect.  2.1. 
Hydraulic equations are typically equality constraints.

The second group of constraints are so-called bounds. Bounds constrain the range 
of optimization variables or the range of variables derived from them. Typically, 
bounds are inequality constraints that represent physical limits with values for a spe-
cific site. Usually, the minimum and maximum volume Vmin and Vmax in a reservoir, 
the discharge capacity of a turbine Qturbine, max , the capacity of bottom outlet and the 
spillway Qspill, max , generator limits or grid capacity Pmax are implemented as bounds:

2.4  Stable optimization through convex and linear formulation 
of the optimization problem

In general, an optimization problem reads:

where f (x) is the objective function, x is the optimization variable, and g1 and g2 are 
inequality constraints and equality constraints, respectively.

(20)Vmin ≤ Vj ≤ Vmax ∀ j ∈ J

(21)Qout, min ≤ Qj,out ≤ Qout, max ∀ j ∈ J

(22)Qj,spill ≤ Qspill, max ∀ j ∈ J

(23)Qturbine, min ≤ Qj,turbine ≤ Qturbine, max ∀ j ∈ J

(24)Pj ≤ Pmax ∀ j ∈ J.

(25)minimize f (x)

(26)subject to:

(27)g1(x) ≤ 0

(28)g2(x) = 0
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If f  and g1 are convex and g2 is affine, i. e. can be formulated as g2 = ax + b (lin-
ear), the optimization problem is called convex. In convex optimization problems 
any local optimal solution is also globally optimal. As mentioned above, the global 
optimum is required for stable optimization results, which is considered an impor-
tant prerequisite for the usage of optimization within an operational water manage-
ment context.

The optimization problems of this study are composed by equality constraints 
given with the hydraulic model equations from Sect. 2.1, objective function terms 
formulated as goals as described in Sect. 2.2 and bounds according to Sect. 2.3 as 
inequality constraints.

As long as only reservoir volume and flows are concerned, the optimization prob-
lem is linear, and consequently can be set up as a convex problem. When adding 
non-linear components, the problem is no longer necessarily convex. Typically, non-
linear equality constraints are introduced with

• the relation between water level and reservoir volume (Eq. 3)
• the tailwater equation (Eq. 7)
• the hydropower equation (Eq. 5) with the product of two variables Qturbine and Δh.

To ensure stable optimization, the non-linear equations need some special treatment. 
We focus on the hydropower equation and discuss three options in this paper:

• Reduction to a linear optimization problem by setting a constant head difference 
for Δh (Eq. 6) and a linear relation between reservoir volume and reservoir water 
level (Eq. 3)

• Piecewise linearisation of the non-linear equations to multiple domains of Δh 
according to a linear relation between reservoir volume and reservoir water level 
(Eq. 3), solution with mixed-integer linear programming (MILP)

• The homotopy method, a path-stable non-linear optimization with a dynamic for-
mulation for the head difference and a non-linear relation between reservoir vol-
ume and reservoir water level.

2.5  The linear approach

The basic idea of the linear approach is to replace non-linear functions with a linear 
function. For the application to reservoir operations this means to assume a constant 
head difference for the power generation [24, 29] (Eq. 5):

The linearisation of the power equation addresses Δh and not Qturbine , because the 
head difference usually varies less than the turbine flow, and turbine flow Qturbine is a 
control variable for the reservoir operations.

(29)Δh = Δh̃ = const
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With a constant head difference Δh̃ , the power equation 5 depends only on the 
turbine flow Qturbine . The interplay between reservoir release, tailwater level and res-
ervoir volume is not accounted for. The assumption of a constant head difference 
takes away the incentive for the optimization model to keep the water level high. In 
practice, reservoir operators will aim for a high reservoir water level for reservoirs 
that are used for energy generation. Against that background, the linear approach 
can be quite a severe simplification, but will be acceptable for larger reservoirs 
where the reservoir outflow affects the reservoir water level only marginally within 
the optimization horizon.

The water level in the reservoir H is still used to apply a goal for the drawdown 
limit (Eq. 17) and is formulated with a linear relationship in dependence of the vol-
ume V (Eq. 8), but the tailwater equation 7 is not used and thus removed from the 
optimization problem. The optimization problem can now be formulated as a fully 
linear optimization problem, and a globally optimal solution can be guaranteed with 
gradient optimization techniques. The Interior Point Optimizer IPOPT [30] has been 
used to solve the linear optimization problems in this study.

2.6  The piecewise‑linear approach

The basic idea of the piecewise-linear approach is to approximate a non-linear func-
tion with multiple pieces of linear functions. Each linear function covers only a part 
of the solution space. For the current case this means using multiple values of Δh̃ for 
different situations instead of only one that applies for all situations. With the piece-
wise-linear approach a global solution can still be guaranteed, because the model is 
linear, but the interplay between reservoir outflow, tailwater level and reservoir vol-
ume can be represented in the optimization to some extent. The optimization prob-
lem thus incorporates an incentive to keep the water level in the reservoir high.

The starting point for the piecewise-linear approach is the head difference Δh̄ 
computed from linear Equations for H̄ (Eq. 4) and h̄tailwater (Eq. 8). Δh̄ changes with 
the reservoir outflow Qout . To provide a constant head difference for the power equa-
tion, for Δh̄ now multiple domains (pieces) Δh̄d are defined. A constant head differ-
ence Δh̃d is assigned to each domain Δh̄d , and Δh̃d then goes into the computation of 
the power generation with Eq. 5.

To address the different piecewise-linear domains within the optimization, 
Boolean variables must be introduced. This introduces non-continuous behaviour 
into the optimization problem. The problem can be formulated as so-called mixed-
integer linear problem (MILP). MILP tools developed in the past years have gained 
in efficiency regarding solution accuracy and computational time [29], and the 
piecewise-linear approach has been applied to short-term hydropower optimization 
problems [24, 29]. For this study, we have used the COIN Branch and Cut Solver 
CBC [31].

For each piecewise-linear domain two sets of constraints must be formulated:
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• A set of conditional constraints that connect the Boolean variables Bm to the var-
iable the domains are defined for. For the current case this is the head difference 
for power generation Δh̄ . The corresponding Boolean variable is true if the opti-
mization variable is within a domain d and false otherwise.

• Constraints with the linear function for the corresponding piecewise-linear 
domain. A constraint must be formulated such that it becomes non-trivial if the 
Boolean variable is true, i. e. the corresponding domain is active, and trivial if 
the Boolean variable is false, i. e. the domain is inactive. For the current case the 
constraints contain the power equation 5 with Δh = Δh̃d.

These constraints are formulated with the help of large numbers M (Big M method) 
associated with the variables, here Δh̄ and P. The Boolean variables are optimization 
variables and addressed within the optimization such that all constraints – including 
flow equations and the constraints for the piecewise-linear domains – are met and 
the operation goals are met as good as possible.

2.7  The homotopy approach

The basic idea of the homotopy method is a continuous (i. e., homotopic) deforma-
tion of the optimization problem from a linear problem to a non-linear one. The use 
of homotopy for addressing non-linearities in water system optimization has been 
developed by Baayen et al. [26, 32] and has been applied for different water-related 
optimization problems [13, 27]. The mathematical background for the application of 
the homotopy method, also referred to as continuation method, for the hydropower 
equation is documented in Baayen et al. [25].

The optimization starts with the linear problem, and in the end the full non-lin-
ear equations are solved for. Solving a non-linear non-convex optimization problem 
directly can lead to stability issues, because a non-linear non-convex problem can 
have multiple local solutions. Under some mild technical conditions, a non-linear 
solver guarantees to find one of such minima [25]. To solve a non-linear optimiza-
tion problem, gradient-descent algorithms need a starting point. In principle, and 
in practise, providing two even very close starting points can lead to different local 
optima. This becomes problematic in an operational context where it is important 
for the final solution to be robust to small perturbations. The homotopy method pro-
vides a way to find a stable (or ‘reliable’) starting point.

To facilitate the deformation of the optimization problem from linear to non-lin-
ear, each non-linear equation is expressed as a linear combination of its non-linear 
representation and its linear approximation, where the non-linear equation is what 
we want to solve for. A parameter Θ takes values from 0 to 1 to move from the linear 
to the non-linear formulation. The power generation equation then becomes:

The relation between water level and volume in the reservoir becomes:

(30)P = ((1 − Θ) ⋅ Δh̃ + Θ ⋅ Δh) ⋅ Qturbine ⋅ 𝜂 ⋅ 𝜌 ⋅ g.
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In Eq. 31 Hb denotes the bottom elevation of the reservoir lake and A the average 
surface area, and �0 to �4 are parameters to describe the relation between water level 
and volume as fourth order polynomial.

If Θ = 0 , the linearised power generation equation (see Sect.  2.5) and a linear 
relation between water level and volume is obtained, with Θ = 1 , one obtains the 
desired non-linear equation for the power generation with a product of Qturbine and a 
dynamic Δh that changes with the reservoir stage according to Eq. 31 and the tail-
water level according to Eq. 7.

The homotopic deformation is basically a sequence of multiple continuous non-
linear optimization problems, here solved with the Interior Point Optimizer IPOPT 
[30]. A homotopy optimization starts with a full optimization run with Θ = 0 . 
Full optimization run means here that all goals and constraints are included. With 
Θ = 0 only the linear part the homotopy formulation (Eqs. 30 and 31) is active. The 
optimization problem can be solved to a global optimum. The solution of this first 
optimization run is now set as seeding for a consecutive optimization where Θ is 
increased by an increment of ΔΘ to a value larger than zero. This second optimiza-
tion problem has now a small non-linear component, but it is still similar to the first, 
linear optimization problem. With the seeding being the result from a similar opti-
mization problem, the solution of the second optimization problem is found quickly. 
This procedure is repeated until Θ has reached 1; now the optimization problem with 
the desired non-linear equations is solved. Since the linear problem has a unique 
solution and each deformation only slightly changes the problem, this method pro-
vides a reliable way to find a ‘good’ starting point for the fully non-linear problem. 
Note that the homotopy method ensures a stable optimization result but does not 
come with a guarantee for a global optimum for the non-linear optimization prob-
lem. The solution is always connected to the global optimum of the corresponding 
linear problem, though. We refer to Baayen et al. [25] for more details on the math-
ematical background.

A typical value for ΔΘ is 0.1, this is the value that has also been used for this 
study. Larger values of ΔΘ can be chosen, too, for example ΔΘ = 0.2 or ΔΘ = 0.5 . 
With large values for ΔΘ it can happen that the optimization fails. Our implementa-
tion of the homotopy method (see Sect. 2.8) repeats the optimization run with 1

2
ΔΘ 

in this case. Beside ΔΘ the user specifies ΔΘmin to limit the automatic reduction of 
ΔΘ.

The advantage of the homotopy method is that the optimization applies the 
desired non-linear formulation, meaning that the equations are not simplified. In the 
power generation the full interplay between Δh and Qturbine is captured.

(31)
V(h) = (1 − Θ) ⋅ A ⋅ (H − Hb) + Θ ⋅ (�0 + �1 ⋅ H + �2 ⋅ H

2 + �3 ⋅ H
3 + �4 ⋅ H

4).
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2.8  Implementation in a generic modelling software

RTC-Tools 2 [11, 33] is a generic modelling software for the optimization of water 
systems. An RTC-Tools model consists of

• A hydraulic layer that contains the flow equations for the water system, related 
equations and bounds,

• A control layer with the operational goals,
• The data layer to manage input time series, model parameters and model output.

The hydraulic model is written in the Modelica modelling language. RTC-Tools pro-
vides a Modelica library with water-related equations to model reservoirs, river seg-
ments etc. Sections 2.1 and 2.3 contain the equations for reservoir modelling. The 
user can build water system models with these generic building blocks.

The control model must be scripted in Python. RTC-Tools offers two approaches 
to handle competing goals and objectives within the optimization:

• Multi-objective optimization (Pareto-optimization), where goals are traded 
off against each other. Weighting factors can be assigned to the goals in order 
to control the trade-off. Multi-objective optimization applies where different 
goals must be balanced with each other to achieve a compromise.

• Lexicographic goal programming [23], where goals are arranged in an ordered 
list. This list is then worked down step by step, making sure that when optimiz-
ing a goal, the previously optimized goals are still met. Lexicographic goal pro-
gramming is a natural fit to systems where goals have clearly defined priorities, 
such as safety concerns (e.  g. flood control) taking precedence over economic 
optimization (e. g. hydropower production).

The data layer is a set of input files in comma separated value format (CSV). 
RTC-Tools also supports the FEWS-PI file format for integration in operational 
decision support systems based on the Delft-FEWS platform [34].

The RTC-Tools computational core is written in Python and compiles the 
three layers into an optimization problem and feeds it to a solver. The interior 
point optimizer IPOPT [30] is a standard solver of RTC-Tools and has been used 
for this study. Other solvers, like the mixed integer COIN Branch and Cut Solver 
CBC [31], are also available.

3  Case study

3.1  Optimization models

To compare the different approaches, we developed RTC-Tools optimization 
models for a cascade of three reservoirs, one model for each approach. The 
three models use the equations from Sect. 2.1 as equality constraints. The three 
models differ in the approach of handling the head difference from the power 
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equation (Eq. 5) in the optimization problem, the way how the relation between 
water level and volume is expressed and the corresponding solver. The linear 
model uses one constant value for the head difference and a linear relation to 
describe the water level as a function of reservoir volume (Sect. 2.5). The piece-
wise-linear model uses three different constant values for the head difference, 
where the head difference that goes into the power equation is selected based on 
a the linearised head difference calculation (Sect. 2.6). Like in the linear model, 
the relation between reservoir water level and volume is linear. The homotopy 
approach uses a dynamic head difference Δh (Sect. 2.7) and a fourth order poly-
nomial to describe the relation between water level and volume in a reservoir 
(Eq. 31).

The reservoir system is inspired by the Grand River (Oklahoma). The Grand River 
is impounded by three reservoirs, namely the Grand Lake, Lake Hudson and Fort Gib-
son. Figure 1 shows the model schematization. Each of the three reservoir objects can 
release water either through turbines or other outlets (spillway, gates). The river sec-
tions between the reservoirs are modelled with so-called delay branches that account 
for a the travel time between the reservoirs with a fixed value. The reservoir properties 
given in Table 1 are applied as inequality constraints (bounds). Turbine efficiency � in 
Eq. 5 has been set constant, and for the relation between water level and volume in the 

Fig. 1  Schematization of the reservoir cascade in the Grand river, here shown in a Modelica editor. Flow 
direction from left to right. The three reservoir lakes are represented as blue triangles with each having 
one or two inputs (light green triangle) and one output (dark green triangle). Model inflow boundaries 
are shown as pink star, here the inflow to the reservoir system is set as time series. The model’s lower 
boundary is shown as pink box. Delay elements between the reservoirs account for travel time of water

Table 1  Constraints to account 
for physical limits

Grand Lake Lake Hudson Fort Gibson

Vmax [m3] 2,589,311,928 750,000,000 2,500,000,000

Qturbine, max [m3∕s] 400 942 300
Qspill, max [m3∕s] 14,900 17,200 25,910
Pmax [MW] 126 128 48
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reservoirs and the tailwater equation, linear relationships have been used according to 
Eqs. 4 and 8, respectively.

The head difference domains in Table 2 have been used to represent the head differ-
ence in the piecewise-linear optimization model. The definition of domains is a model-
ler’s choice. Preparatory test runs have been carried out to select the domain bounda-
ries such that the number of crossings between the domains is limited.

To activate domains, constraints according to Sect.  2.6 have been introduced for 
each reservoir. For the first domain d = 1 with Δh̄d,max as upper domain boundary the 
constraints read:

MΔh̄ and MP are large numbers associated with the variables Δh̄ and P, respectively, 
and B1 and B2 are Boolean variables. If B1 = 0 (true), domain 1 is active, if B2 = 0 , 
domain 2 is the active domain. If both Boolean variables are false ( B1 = B2 = 1 ), the 
third domain is active.

(32)

Δh̄ −MΔh̄ ⋅ B1 ≤ Δh̄d,max

Δh̄d,max ≤ Δh̄ +MΔh̄ ⋅ (1 − B1)

0 ≤ P − Δh̃d ⋅ Qturbine ⋅ 𝜂 ⋅ 𝜌 ⋅ g +MP ⋅ B1

P − Δh̃d ⋅ Qturbine ⋅ 𝜂 ⋅ 𝜌 ⋅ g −MP ⋅ B1 ≤ 0

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

for d = 1

Table 2  Head difference domains for the piecewise-linear approach

Grand Lake

 Domain d Domain boundaries (m) Δh̃ (m)

1 26.88 ≤ Δh̄ ≤ 32 29.4
2 32 < Δh̄ ≤ 37 34.5
3 37 < Δh̄ ≤ 42.7 39.9

Lake Hudson

 Domain d Domain boundaries Δh̃ (m)

1 11.32 ≤ Δh̄ ≤ 16 13.7
2 16 < Δh̄ ≤ 21 19.5
3 21 < Δh̄ ≤ 25.34 23.2

Fort Gibson

 Domain d Domain boundaries (m) Δh̃ (m)

1 17.65 ≤ Δh̄ ≤ 23 20.3 m
2 23 < Δh̄ ≤ 29 26.0 m
3 29 < Δh̄ ≤ 33.53m 31.3 m
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Let Boolean B1 be zero (true). The first constraint is met only for values of Δh̄ 
within domain 1. With a parameter MΔh̄ chosen large enough, i. e. larger than the 
upper boundary of the domain 3 h̄3,max , the second constraint is fulfilled for any 
value of Δh̄ . If B1 = 1 (false, domain 1 not active), the second constraint is met only 
for values of Δh̄ outside domain 1 and the first constraint becomes trivial for all 
values of Δh̄ . The third and the fourth constraint in Eq. 32 now compute the corre-
sponding power generation with the help of the corresponding Δh̃d . The constraints 
are formulated in such a way that they are basically trivial, except for the domain 
that is activated with the help of the Boolean variables B1 and B2.

For domain 2 and 3, the constraints are:

(33)

Δh̄ −MΔh̄ ⋅ B2 ≤ Δh̄d,max

Δh̄d,max ≤ Δh̄ +MΔh̄ ⋅ (1 − B2)

0 ≤ P − Δh̃d ⋅ Qturbine ⋅ 𝜂 ⋅ 𝜌 ⋅ g +MP ⋅ (1 − B1) +MP ⋅ B2

P − Δh̃d ⋅ Qturbine ⋅ 𝜂 ⋅ 𝜌 ⋅ g −MP ⋅ (1 − B1) −MP ⋅ B2 ≤ 0

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

for d = 2

Table 3  Goals for the dam operations, with index code GL for Grand Lake, LH for Lake Hudson and FG 
for Fort Gibson

ID Goal description Mathematical formulation Priority Weight

G1 Drawdown limit for the 
reservoir level to ensure 
bank stability for all 
reservoirs

ΔH < 0.0625m∕h 1 1.0

G2 Maximum discharge for 
flood protection

Qout,GL < 1000m3∕s 2 1.0

Qout,LH < 1000m3∕s

Qout,FG < 1500m3∕s

G3 Water level operational 
range

515 801 371m3 < VGL < 2 447 982 614m3 3 1.0
250 765 250m3 < VLH < 548 049 719m3

458 160 288m3 < VFG < 1 604 750 133m3

G4 Water level range for 
Grand Lake

1 639 356 717m3 < VGL < 1 949 341 935m3 4 1.0

G5 Load balance Ptotal = Ptarget 5 1.0
G6 Minimize spill flow Qspill = 0 6 100
G7 Minimize change in tur-

bine flow
ΔQturbine = 0 6 1.0

G8 Minimize change in spill-
way flow

ΔQspill = 0 6 1.0
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For the linear model, a constant head difference of Δh̃ = 38m , 18m and 21m have 
been used for Grand Lake, Lake Hudson and Fort Gibson, respectively.

Two scenarios were analysed: the first scenario is a flood scenario, where we 
expect the models to operate the reservoir cascade for best flood control under given 
constraints and targets. In the second scenario, the load balance scenario, the model 
must find an operational schedule for the reservoir cascade such that the system-
wide hydropower production meets a generation request as good as possible (load 
balance). With the application of operational short-term planning in mind the simu-
lation periods have a length of 11 and 7 days, respectively.

Data to set up the hydraulic model and the control model as well as scenario data 
has been obtained from openly available information from the Grand River Dam 
Authority [35] and the US Army Corps of Engineers [36]. For the upstream reser-
voir, the Grand Lake, measurement data for the water level–volume relationship has 
been taken from Hunter and Labriola [37]. For the other two reservoirs and where 
no public data is available, assumptions have been made. We only present model 
parameters that are relevant for the comparison of the different optimization models. 
For the hydraulic parameters and the related data sources and processing methods 
we refer to Haf [38].

3.2  Operational goals for dam operations

The operational protocol for the reservoir cascade is modelled as a set of goals 
(Table 3), containing a drawdown limit for the reservoir level, maximum discharges, 
water level ranges for the reservoirs, ramp rates for turbine flow and the load balance 
goal. The goals are prioritized according to their relevance under the assumption that 
goals related to dam safety and flood control have priority above hydropower genera-
tion. The priorities are a choice, a different order of goals produces a different solution. 
For goals with higher priority is optimized first, and the remaining operational space 
is then used to meet consecutive goals with lower priority [23]. Weighting factors take 
effect only if there are multiple goals with the same priority. In this case the weighting 
factor can be used to put more emphasis on a specific goal.

The minimize spill goal is applied here as incentive to direct as much water as pos-
sible through the turbines in order to use the water for power generation. We applied a 
spill zero target, but it would also be possible to formulate a non-zero spill request for 
modelling a fish protection goal. We have put the minimize spill flow goal in one prior-
ity group together with two other goals: the minimize change goals for turbine flow G7 

(34)

Δh̄ −MΔh̄ ⋅ B2 ≤ Δh̄d,max

Δh̄d,max ≤ Δh̄ +MΔh̄ ⋅ (1 − B2)
0 ≤ P − Δh̃d ⋅ Qturbine ⋅ � ⋅ � ⋅ g +MP ⋅ (1 − B2)
P − Δh̃d ⋅ Qturbine ⋅ � ⋅ � ⋅ g −MP ⋅ (1 − B2) ≤ 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

for d = 3.
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and the spillway flow G8. The rate of change goals for turbine flow and spill flow aim 
to reduce the number of changes in the operational state of the turbine and the spillway 
to limit wear of machinery. Goals 6, 7 and 8 have the same priority, the minimize spill 
flow goal has a higher weighting factor than goals G7 and G8 to give more emphasis on 
this goal.

The load balance goal forces the model to find a control scheme that generates a 
given amount of energy over time. A load balance goal is mathematically challenging 
for two reasons:

• Power generation depends on the head difference Δh (Eq. 6), which depends on the 
water level in the reservoir. Water level and volume of a reservoir are related to each 
other with a non-linear relation (see Sect. 2.1).

• A certain generation request can be achieved with multiple combinations of head 
and discharge (see Eq. 5).

Especially the latter is a major difference to a maximize power generation goal, which 
is also a common operational objective for reservoir operations. While a maximize 
power generation goal can often be formulated as a non-linear but convex function 
term, a load balance goal introduces a non-linear non-convex term into the optimiza-
tion problem. The non-convexity means that the optimization problem no longer can be 
solved to a guaranteed global optimum.
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Fig. 2  Optimization results for the flood scenario for volume and reservoir outflow for Grand Lake, Lake 
Hudson and Fort Gibson and inflow boundary condition for Grand Lake
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Another source of non-linearity is the drawdown limit that is applied for all three 
reservoirs. All other goals address volumes and flows only and can be addressed with a 
linear formulation. For the current case, also the water level goals are formulated with 
the help of the corresponding relation (Eq. 3) as volume goals to maintain a linear for-
mulation wherever possible. It has been shown that this has also an advantage in terms 
of computational speed and accuracy [38]. Being the largest reservoir, the Grand Lake 
has an additional inner water level goal that accounts for the seasonal water level target 
within the year-operation of the Grand Lake. The water level target varies over the year, 
but for the short scenarios analysed here the target is constant over time.

3.3  Flood scenario

3.3.1  Setup

The flood scenario is characterized by a flood wave as inflow boundary to the upper 
reservoir, the Grand Lake. The simulation period is 11 days. This length has been 
chosen in order to represent a typical short-term forecasting period rather than to 
cover the whole flood event in the simulation period.

The model is expected to pass the flood wave through the reservoir cascade and 
to obey the operational goals as good as possible. Not all goals can be met due to the 
flood conditions.

The load balance goal is not active in the flood scenario, but a constraint on maxi-
mum generation (generator limit). Consequently, the power equation (Eq. 5) is still 
part of the optimization problem, and together with the drawdown limit the power 
equation makes the optimization problem non-linear.

We applied a time lag of two days as travel time between the reservoirs. This 
value is much higher than the time lag in reality, but has been chosen to better illus-
trate cascading behaviour of the system model.

3.3.2  Results

Figure  2a shows the volume over time for the three reservoirs. The model draws 
down the reservoir volume in the beginning of the simulation period in order to cre-
ate flood storage volume in all three reservoirs to anticipate the flood peak. The vol-
ume increases again towards the end of the simulation period. In the Grand Lake the 
volume curve obtained with the piecewise linear and the linear approach remains 
under the maximum of the operational volume goal, the homotopy approach ends up 
with a little exceedance of the volume operational goal, but the physical maximum 
of the volume is not exceeded. For Lake Hudson the models apply a drawdown, 
too, and the operational volume maximum is exceeded in the end of the simula-
tion period also here. The homotopy model fills the reservoir faster after the draw-
down than the other two models and exceeds the operational volume earlier and to 
a higher degree than the others. In Fort Gibson the maximum volume goal is not 
violated. The homotopy model reaches the maximum volume earlier than the two 
other models. Fort Gibson has more storage capacity than the two other reservoirs, 
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so the lake can hold the inflow without exceeding neither the operational maximum 
volume nor the maximum discharge. Note that the operational maximum volume 
has a lower priority than the drawdown limit (Table 3, G1) and the maximum res-
ervoir outflow (Table  3, G2). This explains why the reservoir is not drawn down 
further and the operational volume range is exceeded in the end of the simulation 
period. According to the priorities in Table 3 the operational space is first used to 
meet the drawdown limit. All other goals are not considered in this first optimiza-
tion run. The remaining operational space is used to meet the discharge goal (G2). 
With the given inflow (Fig. 2a, top diagram), this is not possible at all times. In the 
subsequent optimization run for priority 3 the optimization model aims to obey the 
goal for the water level operational range (G3) and thereafter the water level range 
goal for Grand Lake (G4). Given the high inflow to Grand Lake it is, however, not 
possible to meet the goals at all times.

Like the results for water volume in the reservoirs the discharge results for Grand 
Lake (Fig. 2b) reflect the anticipation on the flood wave in the first third of the simu-
lation period. The drawdown of Grand Lake comes with a high reservoir outflow, 
and it is necessary to release above the operational release maximum (Table 3, G2) 
in the beginning to meet the maximum discharge in the remainder of the simulation 
period. In the beginning of the simulation period the release of Grand Lake is higher 
than the inflow, but the scenario requires to release water in addition to the incom-
ing flood wave. In the initial phase, the homotopy model produces higher discharges 
than the other two methods, but is closer to the desired maximum discharge in other 
periods.

The outflow from Grand Lake enters Lake Hudson two days later, and Lake Hud-
son’s outflow again reaches Fort Gibson reservoir with delay. Due to the time lag 
of two days the short release peak at April 4 does not reach Lake Hudson before 
the end of the simulation time. The optimization model makes use of the time lag 
and sends water travelling to have it not appear in any reservoir, where goals apply. 
This behaviour is also known as “end-of-the-world problem”: what happens after 
the simulation period does not matter for the performance of the optimization. Real-
world operators can not operate like this. For practical applications, optimization 
results can be useful though: the last part of the optimization result will be cut off 
or the operator will not use it—the forecast uncertainty is higher for this period any-
way. Furthermore, operators usually apply only the first part of the model result in 

Fig. 3  Optimization results for 
the flood scenario: water level at 
Grand Lake
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reality and repeat the optimization after a certain period, usually when new forecast 
data is available (moving horizon technique).

Figure  3 shows the optimization results for water level over time in the Grand 
Lake. The piecewise-linear and the linear approach use a simplification for the rela-
tion between water level and volume during the optimization with respect to the 
polynomial function the homotopy approach uses, so re-calculated water level com-
putations are shown as well for these two runs. The volume results obtained from 
optimization were translated with the exact relation in a post-processing step after 
the optimization. Initial volume is the same in all three runs (Fig. 2a), but the water 
level obtained with linear and piecewise-linear optimization differs from the water 
level that the homotopy run produces. The optimization result shows a similar slope 
in the water level curve for the initial phase of drawdown according to the drawdown 
limit, but the re-calculated results show a flatter slope. This corresponds with the 
volume results shown in Fig. 2a. The homotopy run makes better use of the draw-
down restrictions than the two other methods, because the exact relation between 
water level and volume is used.

With respect to the power generation, the homotopy model represents the interac-
tion between maximum turbine flow and generator limit with spill flow better than 
the piecewise-linear model. The homotopy optimization balances the turbine flow 

Δh
Domain border Δh

Δ
H
[m

Ao
D]

14

16

18

20

22

Time
Mar-25 Mar-27 Mar-29 Mar-31 Apr-02 Apr-04 Apr-06

∆h = 23.2 m

∆h = 19.5 m

∆h = 13.7 m

Qturbine, piecewise-linear

Qspill, piecewise-linear

Qturbine, maxDi
sc
ha

rg
e
[m

³/s
]

0

250

500

750

1000

1250
1500

Time
Mar-25 Mar-27 Mar-29 Mar-31 Apr-02 Apr-04 Apr-06

Ppiecewise-linear

Ppiecewise-linear, re-calculated

PmaxPo
w
er

[M
W
]

110

115

120

125

130

135

Time
Mar-25 Mar-27 Mar-29 Mar-31 Apr-02 Apr-04 Apr-06

(a) Piecewise-linear

ΔhhomotopyΔ
H
[m

Ao
D]

14

16

18

20

22

Time
Mar-25 Mar-27 Mar-29 Mar-31 Apr-02 Apr-04

Qturbine homotpy

Qspill homotopy

Qturbine max

Di
sc
ha

rg
e
[m

³/s
]

0

250

500

750

1000

1250
1500

Time
Mar-25 Mar-27 Mar-29 Mar-31 Apr-02 Apr-04

Phomotopy

Pmax
Po

w
er

[M
W
]

110

115

120

125

130

135

Time
Mar-25 Mar-27 Mar-29 Mar-31 Apr-02 Apr-04

(b) Homotopy

Fig. 4  Optimization results for the flood scenario: Turbine flow, spill flow and power generation for Lake 
Hudson



1 3

A comparison of the homotopy method with linearisation…

Grand Lake
Di
sc
ha

rg
e
[m

³/s
]

0

200

400

600

800

1000

1200

Qin, Grand Lake

Qout, piecewise-linear

Qout, homotopy

Qout, linear

Qout, max

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

Lake Hudson

Di
sc
ha

rg
e
[m

³/s
]

0

200

400

600

800

1000

1200

Qout, piecewise linear

Qout, homotopy

Qout, linear

Qout, max

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

Qout, linear

Qout, piecewise-linear

Qout, homotopy

Qout, max

Fort Gibson

Di
sc
ha

rg
e
[m

³/s
]

0

250

500

750

1000

1250

1500

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

(a) Reservoir release for Grand Lake, Lake Hudson
and Fort Gibson

Vpiecewise-linear

Vhomotopy

Vlinear

outer volume goal
inner volume goal

St
or
ag
e
Vo

lu
m
e
[m

³]

5×108

109

2×109

2.5×109

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

Qturbine, piecewise-linear

Qturbine, homotopy

Qturbine, linear

Di
sc
ha

rg
e
[m

³/s
]

300

320

340

360

380

400

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

Qin, Grand Lake

Qspill, piecewise-linear

Qspill, homotopy

Qspill, linear

Di
sc
ha

rg
e
[m

³/s
]

0

200

400

600

800

1000
1200

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

(b) Optimization result for volume, spill flow and
turbine flow for Grand Lake

Fig. 5  Optimization results from the load balance scenario for discharge from Grand Lake, Lake Hudson 
and Fort Gibson; inflow boundary condition, volume and distribution of release to turbine and spill for 
Grand Lake

Ptarget

Psystem

PFort Gibson

PLake Hudson

PGrand Lake

Homotopy

Po
w
er

[M
W
]

0
50

100
150
200
250
300

Time
Aug-06 Aug-07 Aug-08 Aug-09 Aug-10 Aug-11 Aug-12

Ptarget

Psystem, re-calculated

PFort Gibson, re-calculated

PLake Hudson, re-calculated

PGrand Lake, re-calculated

piecewise-linear (re-calculated)

Po
w
er

[M
W
]

0
50

100
150
200
250
300

Time
Aug-06 Aug-07 Aug-08 Aug-09 Aug-10 Aug-11 Aug-12

Ptarget

Psystem, re-calculated

PFort Gibson, re-calculated

PLake Hudson, re-calculated

PGrand Lake, re-calculated
linear (re-calculated)

Po
w
er

[M
W
]

0
50

100
150
200
250
300

Time
Aug-06 Aug-07 Aug-08 Aug-11 Aug-12

(a) System-wide power generation

Δ hpiecewise linear

Δ hhomotopy

Δ hlinear

Domain border Δh (piecewise-linear)

Δ
H
[m

Ao
D]

15
16
17
18
19
20
21
22
23

Time
Aug-06 Aug-07 Aug-08 Aug-09 Aug-10 Aug-11 Aug-12 Aug-13

Qturbine, piecewise-linear Qturbine, homotopy Qturbine, linear

Di
sc
ha

rg
e
[m

³/s
]

0
200
400
600
800

1000
1200

Time
Aug-06 Aug-07 Aug-08 Aug-09 Aug-10 Aug-11 Aug-12 Aug-13

Power genera on, re-calculated
Phomotopy

Ppiecewise linear

Plinear

PmaxPo
w
er

[M
W
]

0
25
50
75

100
125
150

Time
Aug-06 Aug-07 Aug-08 Aug-09 Aug-10 Aug-11 Aug-12 Aug-13

(b) Re-calculated power generation, optimized head
difference (∆h̃ = const for the linear model, ∆h̄
and the borders of the head difference domains for
the piecewise-linear model and ∆h for the homotopy
model) and optimized turbine flow for Lake Hudson

Fig. 6  Optimization results for Grand Lake and Lake Hudson



 B. Becker et al.

1 3

with head difference (not shown) such that the maximum generation is not exceeded 
(Fig.  4b). At March 26, 06:00  h the generator limit is no longer limiting due to 
the water level drawdown (Fig. 2), and now the maximum turbine flow is the lim-
iting factor. The power generation drops below its physical maximum for a short 
period. Excess water is spilled. The piecewise-linear result is more driven by the 
maximum turbine flow. The optimization takes the maximum generation constraint 
into account, but the re-calculated generation exceeds the generator limit. The effect 
of the head difference domain borders can be seen in Fig. 4a: Between March 25, 
06:00 h, and March 31, 00:00 h the head difference is kept under 16 m, and after 
March 31 the results show two jumps in the power generation as well as turbine flow 
and spill flow due to entering a different head difference domain. At April 4, 15:00 h 
the head difference reaches the domain for Δh̃ = 23.2m , the consequence is a jump 
in turbine flow.

Note that the set-up of the models contains modeller’s choices: priorities and 
weights could have been chosen differently. In the setup shown here the drawdown 
goal has highest priority and dominates the reservoir release. Although the maximum 
release goals are often not obeyed, the release goals still have priority above the opera-
tional volume goals, which explains why the operational volume goal is violated in the 
end of the simulation period in Lake Hudson and Grand Lake, which is acceptable for 
a flood event. Compared to the spillway’s capacity the spill flow looks still moderate.

3.4  Load balance scenario

3.4.1  Setup

In the load balance scenario the inflow is much smaller (Fig. 5a) than in the flood sce-
nario. The governing goal is a time-variant generation request (load) to be answered 
with system-wide power generation by the three reservoirs (Fig. 6a). Heavy load hours 
alternate with light load hours: during the day, the power demand of 302 MW is to be 
generated by the three reservoirs together. During night time the power request is lower 
(151 MW). If the system-wide hydropower generation meets the load, load balance has 
been achieved.

For this scenario the travel time of water between the reservoirs has been set to four 
hours. This value is closer to the real travel time. Time resolution of the base data is one 
hour. For the sake of computational speed, the time resolution has been reduced from 
hourly time steps to three-hour time steps.

3.4.2  Results

Figure 5a shows the total reservoir release for the three reservoirs Grand Lake, Lake 
Hudson and Fort Gibson. Different to the flood scenario (Sect. 3.3), the models are 
able to obey the maximum discharge goals (G2 in Table 3) for all three reservoirs at 
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all times, because the inflow to the Grand Lake is much smaller. Grand Lake releases 
water in the beginning of the simulation period in order to anticipate on the increase 
of inflow starting with August 8th. The pre-release becomes visible as drawdown 
in the volume of Grand lake (Fig. 5b, top). All three models start with a moderate 
drawdown in order to not exceed the upper operational level (G3 in Table 3) by the 
end of the simulation period.

Grand Lake’s turbine discharge capacity of 400m3∕s (Table 1) is not fully used 
by the homotopy and the linear model, only the piecewise-linear model guides flow 
through the turbines up to the maximum turbine flow during heavy load hours in 
the first part of the simulation period (Fig. 5b, middle). The remainder of the total 
outflow is guided through other outlets than the turbines, here summarized as Qspill.

Discharge results from all models for Lake Hudson and Fort Gibson reflect the 
energy load pattern with its change between heavy load hours and light load hours 
(Fig. 5a). The linear model and the piecewise-linear model address the turbines of 
Lake Hudson during light load hours, while the homotopy model addresses the tur-
bines of Fort Gibson during light load hours instead. Fort Gibson releases less water 
than it receives from Lake Hudson as inflow. The reservoir release is guided through 
the turbines, and the reservoir volume increases (not shown). With its main purpose 
of flood control the Fort Gibson lake has a comparatively large storage capacity (see 
Table 1) which is used by the optimization models to avoid spilling.

The re-calculated system-wide generation of the reservoir cascade and the gen-
eration request (load) are shown in Fig. 6a. The optimization results from the piece-
wise-linear and the linear model show deviations from the generation request due 
to the simplified representation of the head difference during the optimization as 
explained above. The piecewise-linear model generates too much power during dur-
ing light load hours and too little during heavy load hours; the linear model gener-
ates too little hydropower during the heavy load hours, but shows a good match to 
the light load hours. The three models distribute the power generation on the three 
reservoirs in slightly different ways. Basically all three models assign base load gen-
eration to Grand Lake and use the other two reservoirs for the variation in the load 
during the day. Only the piecewise-linear model shows some daily variation in the 
generation curve of Grand Lake, which is also visible in the reservoir release curve 
(Fig. 5b), as already mentioned above.

Figure  6b shows power generation, head difference and turbine flow for Lake 
Hudson. The linear optimization uses the same head difference Δh̃ for all time steps. 
For the piecewise-linear approach the head difference Δh̄ is shown, which is later 
translated for the calculation of power generation to Δh̃ with the help of the domains 
from Table 2. The domain borders are also shown in the graph. The piecewise-lin-
ear model manages to keep the head difference Δh̄ such that the domain borders 
are not crossed during the simulation period in order to avoid a jump: during the 
first light-load hour, Δh̄ does not fall below 16  m. Consequently, both piecewise-
linear and linear optimization use a constant head difference in the power generation 
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equality constraint (Eq.  5). With this simplification, the power generation that is 
computed internally for the optimization is equal to the generator limit Pmax (not 
shown in Fig. 6b) for all three methods. The bottom diagram in Fig. 6b shows the 
re-calculated power generation with the discharge Q and head difference Δh (not 
Δh̃ ) obtained within the optimization for the three methods. The linear approach and 
the piecewise-linear approach show power generation below the generator limit due 
to the use of Δh̃ , while the re-calculated power generation of the homotopy method 
makes full use of generator limit during heavy load hours. For the power generation 
the homotopy method shows the interplay between head difference and turbine flow 
with more accuracy: during heavy load hours the turbine flow reduces the reservoir 
volume and consequently the reservoir stage, which comes along with a decreasing 
head difference. In order to keep the power generation constant to meet the load 
request, the turbine flow is increased accordingly, such that the decrease in head dif-
ference is compensated. Homotopy is the only one of the three methods that repre-
sents this interplay. However, the fact that the piecewise-linear result does not drop 
below the domain border of 16 m during the first heavy load hour from August 6, 
09:00 to 21:00 h shows that the model aims to control the reservoir system towards 
a high head difference at least to some extent. The linear model has no incentive 
at all to keep the reservoir water level high. Note that the domain borders for the 
piecewise-linear model are a modeller’s choice, here they have been set just to avoid 
a switch between domains, the effect of such a switch between domains has already 
been shown in the previous Sect. 3.3.

4  Discussion and concluding remarks

For an application case of a reservoir cascade, three different optimization models 
have been developed. With the equation for power generation, non-linear equations 
for the relation between reservoir volume and reservoir stage, constraints for genera-
tion limits and a load balance goal, the optimization problem is non-linear and non-
convex. Each of the three optimization models uses a different approach to account 
for non-linear equations in the optimization problem. For the two scenarios ana-
lysed, all three methods—linear, piecewise-linear, and homotopy—produce plausi-
ble results. The interplay between the reservoirs in the cascade is well represented 
in all of the three models, and all three models show the expected behaviour for the 
scenarios, which is the anticipation on the upcoming flood wave by applying a pre-
release in the flood wave scenario and the load balance for the load balance scenario.

Reservoir operators usually aim to keep the reservoir water level high in order 
to increase hydropower generation. From the three analysed methods, the homot-
opy method is the one that best includes this incentive into the optimization model, 
because a continuous formulation of the head difference is incorporated in the opti-
mization problem. With the three piecewise-linear domains at least some incentive 
to keep the reservoir level has been achieved for the piecewise-linear model, while 
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in the linear approach the power generation only depends on the discharge without 
any incentive to keep reservoir levels high for the sake of hydropower generation.

The homotopy method proves its strength in compensating the decreasing head 
difference with increased turbine flow for a constant power generation request in 
the load balance scenario. The linear approach with a constant head difference can 
not represent this behaviour at all, while the piecewise-linear approach is able to 
represent the interplay between turbine flow and head difference for power genera-
tion at least to some extent: larger variations in head difference, as for the flood sce-
nario shown here, can be accounted for with changing the head difference domain. 
Crossing a domain border, however, creates jumps in turbine flow. By adding more 
domains, the piecewise-linear result can be improved in terms of accuracy.

The added value of the homotopy comes to bear only for application cases where a 
generation request has to be fulfilled or generation limits apply. Optimization problems 
where the power output or the revenue is to be maximized (“use the water in the best 
way”) can be formulated as a convex non-linear optimization problem. Convex non-lin-
ear optimization problems do not necessarily require the homotopy method.

With respect to usability from a modeller’s perspective, our experience is that the 
piecewise-linear approach comes with more configuration effort than the homotopy 
method, because constraints with Boolean logic for the piecewise-linear domains must 
be configured (Sect. 2.6). Furthermore, the homotopy method needs less user choices 
than the piecewise-linear method, where the boundaries of the domains, in the current 
case the domains for the head difference Δh , must be defined and adjusted such that 
the optimization model produces meaningful results. It can make sense to carry out a 
sensitivity analysis to support the process of adjusting the domain boundaries. Different 
scenarios will require different domain settings. For the application within operational 
decision support systems under varying conditions during the year (wet season, dry sea-
son) this means that different set-ups for different seasons or situations can be necessary. 
Against this background we found it much easier to build the optimization model with 
the homotopy method than with the piecewise-linear optimization models.

RTC-Tools supports both the homotopy method and the optimization with piece-
wise-linear and linear equations. From a software development perspective, the techni-
cal implementation of the homotopy method is considered more complex than imple-
menting a linear or a piecewise-linear optimization. Furthermore, the piecewise-linear 
method and certainly linear optimization have already been widely used and undergone 
a lot of testing. These methods therefore come with a certain level of trust and maturity, 
while the homotopy method is a relatively new method in the field of reservoir optimiza-
tion. As far as we know, this study is the first application of the homotopy method for a 
reservoir cascade with power generation. Applications for other flow equations in water 
domain are possible [25–27]. When applying the homotopy for hydraulic systems that 
require other equations than the equations that have been used here, the suitability should 
be proven first.

The piecewise-linear method and the linear method approximate a non-linear optimi-
zation problem with a linear one, which can be solved towards a global optimum. The 
homotopy method, however, does not necessarily produce a result with a guarantee for 
global optimality, but the solution is connected to the global optimum of the correspond-
ing linear problem. We call such a solution path-stable solution. So all three methods 
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end up with a stable optimization result and meet an important requirement for opera-
tional use. In case of the homotopy method, this solution is physically more accurate, but 
not necessarily global optimal, while the piecewise-linear and the linear method guaran-
tee a global optimum, but are less accurate in terms of physics.

As mentioned above, the accuracy of the piecewise-linear approach can be increased 
by introducing more domains, or, in other words, by introducing more linear pieces. The 
gain in accuracy by more domains is to the cost of higher computational time. We have 
not analysed the computational performance in detail for the models presented here. The 
computing time for the examples shown is for all three approaches in the order of min-
utes on a standard computer and thus suitable for operational use. With a different case, 
advantages in terms of computational performance have been observed for the homot-
opy method with respect to the piecewise-linear approach: computational time for the 
homotopy method increases linearly with a growing number of timesteps. For the piece-
wise-linear approach an exponential increase has been observed [38]. This indicates an 
advantage of the homotopy method with respect to the piecewise-linear approach for 
larger problems.

In this study the homotopy method has been applied to optimize the operation 
of a reservoir cascade under multiple conflicting goals—to the knowledge of the 
authors for the first time. The advantages in accuracy, usability (model set up, model 
tuning) and computational performance (not shown here) makes the homotopy 
method the method of choice for the analysed case. Other application fields should 
be investigated.
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