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Abstract
Hydropower producers estimate the opportunity value of their water, known as a 
water value, by comparing current prices to future opportunities. When hydropower 
dominates the energy mix, the system’s hydrological state predominantly governs 
supply and thus prices. Despite this intuitive relationship, industry practice is to 
assume that inflow to reservoirs and prices are independent when they establish 
operational policies 1–2 years ahead. To investigate the impact of this assumption, 
we formulate the hydropower scheduling problem as a Markov decision process and 
develop a novel price model that considers the joint dynamics of forward prices and 
inflows. We find that producers underestimate their water value when they ignore 
co-movements between price and inflow. The dependency makes producers more 
willing to postpone generation and tolerate slightly higher spillage risk. This is 
because high inflow periods tend to observe low prices and the reservoir capacity 
is limited. Nevertheless, a case study of a hydropower plant with industry data sug-
gests modest economic losses in practice. Our numerical results suggest a potential 
gain of 0.17% in expected revenue and approximately unchanged revenue variance if 
producers consider the co-movements when establishing an operational policy.
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1 Introduction

Reservoir management is fundamental to ensure efficient allocation of resources 
in electricity markets dominated by hydropower [22, 44]. Decision-makers want 
an operational policy that maximizes expected rewards or minimizes expected 
costs over a given time horizon, considering production and reservoir constraints 
and uncertainty. As a result, they must solve a sequential decision problem under 
uncertainty. From a system perspective, the goal is to minimize costs [37], pos-
sibly with a risk measure [41]. Individual producers, on the other hand, aim to 
maximize profits [8, 17, 20, 26]. Inflow to reservoirs is a common source of 
uncertainty, and in liberalized wholesale markets, prices are also uncertain. A rea-
sonable assumption in such markets is that producers are price-takers and cannot 
influence the price by their decisions. However, inflows impact prices. Accord-
ing to both economic theory and empirical observations, low inflows to reser-
voirs correlate with high prices and vice versa in hydro-dominated systems. This 
is because hydropower has no fuel price and producers instead calculate a water 
value to determine the expected price to sell energy [38]. When a system has 
abundant water in its reservoirs, the water value decreases because there is suf-
ficient supply and even a risk of spillage. Conversely, a system with limited water 
has scarce supply and risk not being able to meet demand. Despite this intui-
tive relationship, a common industry practice is to assume independent stochastic 
variables when determining an operational policy. One reason is that forecasting 
prices and forecasting inflow are functionally distinct activities, performed by dif-
ferent professions. This reason is mirrored by [23], studying a problem involv-
ing stochastic wind infeed and electricity prices. For hydropower, it is difficult 
to identify and estimate underlying co-movements because system prices typi-
cally correlate with aggregated system inflows rather than local ones. Still, aggre-
gate inflows are a result of the local inflows at producer locations. Consequently, 
there is little information about the value and effect of including co-movements 
between prices and inflow in medium-term hydropower planning.

[30] argue that correlations between accumulated inflow over a whole season 
and prices are more important than correlations between weekly prices and inflow 
because of storage capacity, but the authors do not provide any numerical results 
to support the argument. Common industry practice is to partially ignore cor-
relations when optimizing release decisions. A common process is to first create 
simultaneous scenarios for price and inflow from a power market model where 
inflow is the input and price the output [45]. In the second step, typically these 
simultaneous scenarios are used as input to a more detailed optimization of reser-
voirs in a smaller geographical area. However, the state-of-the art algorithm used 
to optimize release decisions consider price and inflow as independent stochastic 
processes [20]. Indeed, no works properly investigate the impact of ignoring co-
movements in hydropower planning. The closest effort is [32], which present a 
case study of a Norwegian hydropower plant and include a correlation coefficient 
between the stochastic price and inflow processes. Their findings suggest notable 
reductions in expected revenues. Nevertheless, we find that their treatment of the 



1 3

Co‑movements between forward prices and resource availability…

topic is incomplete, and we aim to address the gaps. First, they investigate a case 
study and report only case-specific findings. In this paper, we present analyti-
cal insights on including co-movements. Second, [32] do not explain or outline 
the intuition behind the results. This is important because we find that their case 
study contains some unintuitive results, as we discuss later in Sect.  5. By con-
trast, we explain all findings according to intuition and analytical insights. Third, 
the modeling of the co-movements by a correlation coefficient estimated using a 
fixed Pearson correlation coefficient is simplistic. Our work, on the other hand, 
introduces a sophisticated price process to consider the dependency between 
price and inflow that vary over the year. Contrary to [32], we find no evidence of 
a substantial impact on expected revenues.

In this work, we first characterize the impact of co-movements on the policy in 
a two-stage setting. From there, we develop a stochastic model with co-dynamics 
between price and inflow to reservoirs, so we can investigate the effect in a multi-
stage setting. We formulate a Markov Decision process (MDP) of the medium-term 
hydropower planning problem and solve it using stochastic dual dynamic program-
ming (SDDP), the state-of-the-art algorithm for seasonal hydropower scheduling 
[37, 39]. Thus we can analyze numerically the effect of co-movements between 
exogenous factors on the optimal policy.

Our work contributes to the extensive literature that studies the hydropower 
scheduling problem [20, 25, 28, 41]. In a broader perspective, we also contribute 
to research on general insights regarding correlations in stochastic optimization [7, 
24]. An example of such work is [1], which uses a distributionally robust approach 
to analyze losses associated with ignoring correlations. Also related are studies 
that analyze the effect of correlation between hydro and wind [4, 9, 29, 36, 43] and 
between electricity prices and wind [34, 36], and between electricity demand and 
fuel prices [15]. Our specific contribution is to characterize the impact of co-move-
ments on the policy of the hydropower scheduling problem in a two-stage setting.

The joint model for price and inflow is also a specific contribution to models for 
commodity pricing. We develop an additive three-factor stochastic model where 
the term structure of electricity prices is partly explained by inflow to reservoirs in 
the system, partly by a latent factor representing long-term dynamics, and partly by 
another latent factor for short-term deviations that cannot be explained by inflow to 
reservoirs. Our model can be interpreted as an additive discrete-time extension of 
the two-factor model by [40] with two latent factors and one factor that represents 
some physical phenomena explaining prices. Furthermore, we develop a risk-neutral 
version that can valuate hydropower cashflows. Our model allows for a linear and 
seasonal dependence structure between stochastic variables, and we present a cali-
bration procedure for how to estimate the joint dynamics under a risk-neutral meas-
ure when futures contracts only exist for the calibration of a subset of the stochastic 
factors.

By applying our stochastic model to a hydropower case study, we find that at a 
given time and state, producers are more willing to postpone production and tolerate 
a higher probability of spillage if they incorporate co-movements when establishing 
their production policy. If a high-inflow state realizes in the next stage, a low-price state 
is more likely, which makes the expected revenue in the high-inflow state less when 
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incorporating correlations. Therefore, since the reservoir capacities are limited, the pro-
ducer is more willing to spill the incoming water and keep the reservoir at a higher 
level. Despite theoretical differences, our result suggests that the impact is modest on 
practical applications. Using industry data from a Norwegian hydropower plant, we 
find that the expected revenue decreases between 0.17% and 0.3% for different set-ups, 
including different parameter estimates of the stochastic model, and different reser-
voir and production capacities. Nevertheless, this is valuable information for reservoir 
operators. They can continue their current practices with more evidence backing their 
assumption of independent price and inflows does not incur large costs.

The rest of the paper is structured as follows. In Sect. 2, we formulate the hydro-
power scheduling problem as a Markov decision process. We characterize the optimal 
policy and present a simple example that illustrates the added value of correlations in 
a two-stage setting. Section 3 briefly discusses the SDDP algorithm, before we present 
the stochastic model with joint dynamics of prices and inflows to reservoirs in Sect. 4. 
Section 5 presents a case study, including calibration of the stochastic model, Markov-
chain discretization, and numerical results. Concluding remarks are provided in Sect. 6.

2  Hydropower scheduling as a Markov decision process

Hydropower planning is a sequential decision problem under uncertainty. Endogenous 
states include the amount of water in the reservoirs, and exogenous states include price 
and inflow. Given the current state and an action of the producer, the state transition 
is independent of previous actions and states. State transitions therefore satisfy the 
Markov property, and the problem can be formulated as a Markov decision process 
(MDP). We denote � as policy, s as endogenous states, � as exogenous random vari-
ables, X�

t
 maps the next state when following policy � at time t, and s�

t
 is the state 

reached at time t when following policy � . The problem can be formulated as

where the expected value at t = 1 is the expected reward, r, from following policy 
� ∈ Π , where Π is the feasible set of policies. Representation (1) uses discrete time 
where the planner makes decisions at every t ∈ T  . The set T = {1,… , T} contains 
the stages of the MDP. The endogenous state, st , includes the amount of water in the 
reservoir at time t. The exogenous state vector �t = (�O

t
,�C

t
) consists of factors that 

determines immediate rewards, �O
t
 , and components that impact the feasible stage 

t action set, �C
t
 . Superscripts O and C denote objective uncertainty and constraint 

uncertainty, respectively. Superscript � denotes that �C
t
 and �O

t
 are correlated. We 

adopt the notation V0
1
(s0,�1) and �0

1
(s1,�1) as the value function and continuation 

function assuming independent �C
t
 and �O

t
 , respectively. Using Bellman’s principle 

of optimality, we can reformulate problem (1) recursively as a stochastic dynamic 
program

(1)V
�

1
(s0,�1) = max

�∈Π
�

[∑
t∈T

� tr(X�
t
(s�

t
,�t),�t) ∣ �1, s1

]
,
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with ��

T+1
(sT ,�T ) = 0 . The set Xt(st−1,�

C
t
) defines the solution space. The continu-

ation, or the expected profit-to-go, function ��

t+1
 provides the expected value at time 

t by following the optimal policy from time t + 1 to T. We want to investigate the 
effect of a negative relationship between �O

t
 and �C

t
 , i.e., Cov(𝜔O

t
,𝜔C

t
) < 0 , on the 

optimal policy of Problem (1). This correlation represents the influence that inflows, 
�C
t
 , have on prices, �O

t
.

A producer’s reward is simply the revenue from selling produced energy, xt , at 
price �O

t
:

Constraints (5a) to (5f) define the decision space. State st is the volume of water in 
the reservoir and (5a) defines the transition from an incoming state st−1 to an outgo-
ing state st . It depends on production, xt , spillage, vt , and inflow, �C

t
 . There is no 

penalty for spillage except the opportunity cost of lost sales. Restriction (5b) ensures 
that the state is within the bounds of the reservoir, where R denotes the maximum 
capacity. Production is either limited by the reservoir contents, (5c), or the maximum 
production capacity, (5d), where G denotes maximum production capacity. Finally, 
(5e) and (5f) ensure that production and spillage cannot be negative, respectively. 

Proposition 2.1 states the properties of the value function V�
t  and continuation 

function ��
t  . These properties make it possible to characterize the optimal policy 

for the hydropower scheduling problem defined by (2) to (3) in Proposition 2.2.

(2)V
�

t (st−1,�t) = max
(xt ,st ,vt)∈Xt(st−1,�

C
t )
r(xt,�

O
t
) + ��

�

t+1
(st,�t),

(3)�
�

t+1
(st,�t) = �

[
Vt+1(st,�t+1) ∣ �t

]
, t = 1,… , T ,

(4)r(xt,�
O
t
) = �O

t
xt.

(5a)
Xt(st−1,�

C
t
) = {

st + xt + vt = st−1 + �C
t

(z1)

(5b)− xt − vt ≤ R − st−1 − �C
t

(z2)

(5c)xt ≤ st−1 + �C
t

(z3)

(5d)xt ≤ G (z4)

(5e)xt ≥ 0 (z5)

(5f)
vt ≥ 0 (z6)

}.
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Proposition 2.1 For a given (t,�O
t
,�C

t
) ∈ T ×ℝ ×ℝ+ , the value function V�

t (⋅,�t) 
and continuation function ��

t+1
(⋅,�t) are concave, and the marginal water value, 

��
�

t+1
(⋅,�t)

�st
 , is decreasing in the endogenous state st.

Proof See A.1.   ◻

Proposition 2.2 The optimal generation policy of Problem 2–3 is given by

where

Proof See A.2.   ◻

2.1  Covariance in two‑stage hydropower scheduling

To study the effect of covariance on the optimal MDP policy, we consider reservoir 
management in two stages where the producer must determine whether to produce 
now or later. In other words, the producer faces problem (2) to (3) with T = 2 . Prop-
osition 2.3 states that a decision-maker underestimates the marginal water value if it 
ignores the negative correlation between objective uncertainty (price) and constraint 
uncertainty (inflow).

Proposition 2.3 If T = 2 , G = R ∈ (0,∞) , Cov(𝜔O
2
,𝜔C

2
) < 0 , and s0 + 𝜔C

1
< R , then 

𝜕𝛼
𝜌

2
(⋅,𝜔1)

𝜕s1

||s0+𝜔C
1

>
𝜕𝛼0

2
(⋅,𝜔1)

𝜕s1

||s0+𝜔C
1

.

Proof See A.3.   ◻

Proposition 2.2 combined with Proposition 2.3 implies x�∗
1

≤ x0∗
1

 and v�∗
2

≥ v0∗
2

 
in a two-stage setting. A producer will therefore produce the same or less today at 
optimum if it considers correlations. Hence, correlations provide an incentive to 
postpone production. If a high inflow realizes, prices tend to be low, and the incom-
ing water is not as valuable compared to an independent stochastic model. This is 
because the reservoir capacity is limited. Example 2.1 illustrates the phenomenon.

Example 2.1 Added value of including correlations under policy computation
This example demonstrates the impact of ignoring correlations on the optimal 

production schedule and profit losses. We consider problem (2) to (3) when T = 2 

(6)x∗
t
(st−1,𝜔t) =

⎧
⎪⎨⎪⎩

0 if 𝜔O
t
<

𝜕𝛼
𝜌

t+1
(⋅,𝜔t)

𝜕st

��st−1+𝜔C
t

min{G,K, st−1 + 𝜔C
t
} if 𝜔O

t
>

𝜕𝛼
𝜌

t+1
(⋅,𝜔t)

𝜕st

��st−1+𝜔C
t

K = st−1 + �C
t
− arg min

st

|||||
�O
t
−

��
�

t+1
(⋅,�t)

�st

|||st
|||||
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and maximum production drains the whole reservoir, G = R . Let the process for the 
stochastic variables be

where

with numerical values and nomenclature outlined in Table 1.
Figure 1 displays the value of the continuation function and its derivative over 

different states. We observe that at maximum reservoir, the continuation function 
must be the same, since any potential new inflow cannot be stored. At low reser-
voirs, we observe that the continuation value differs. The independent policy sees 
higher value in the future, since negative correlation is ignored. When there is zero 
spillage risk, the difference in value is equal to the covariance between price and 
inflow. This is illustrated in the lower right window in Fig. 1, which shows the value 
at level 60 where spillage risk is close to zero. As a result, the slope of the curve 
based on the independent policy must decay at a lower rate. This is illustrated in 
Fig.  1b, which shows the marginal water value. Hence, the first stage generation 
decision differs with and without correlation.

(7)�O
t
= �t + �O

(8)�C
t
= �t + �C

(9)�t = �O�t−1 + �O�O
t

(10)�t = �C�t−1 + �C�C
t

(�O
t
, �C

t
) ∼ N

[(
0

0

)
,

(
1 �

� 1

)]

Table 1  Numerical values and 
nomenclature for Example 2.1

Parameter Value Unit

�O
1

20 €/MWh Initial price

�C
1

20 MWh Initial inflow

�O 30 €/MWh Price mean

�C 20 MWh Inflow mean

�O 0.9 Memory coefficient price

�C 0.5 Memory coefficient inflow

�O 10 €/MWh Price volatility

�C 6 MWh Inflow volatility
� − 0.5 Correlation coefficient
s0 + �C

1
85 MWh Initial reservoir

R 100 MWh Maximum reservoir
G 100 MWh Maximum generation
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From Proposition 2.2, when G > st + 𝜔C
t
> K , the optimal first stage generation 

decision is

Table 2 outlines the optimal solution with zero and −0.5 correlation. The second row 
shows the spill probability in the last stage at optimum. An optimal policy based 
on the joint distribution with correlation −0.5 delays some production and tolerates 
a higher spill probability compared to the policy based on prices and inflow being 
independent. Table 3 show the expected revenue, where the upper left entry is the 
optimal policy value of the independent model relative to the optimal value of the 
joint model with � = −0.5 . An independent policy overestimates the expected rev-
enue by 1.3% . Simulating the policy on the joint model with � = −0.5 leads to an 
expected loss of 0.03% , compared to the optimal policy for the joint model, which is 
to produce less in the first stage.

The state space provides a clearer comprehension of the situations where cor-
relations matter. Figure 2a shows the difference in policy performance as a function 

(11)K = st−1 + �C
t
− arg min

st

|||||
�O
t
−

��
�

t+1
(⋅,�t)

�st

||st
|||||
.
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Fig. 1  Continuation value �i

2
(⋅,�1) and derivative of the continuation value 

��i2(⋅,�t)
�st

 as a function of res-

ervoir volume s
t
 , with (black) and without (red) correlation, i ∈ {0, �} . We observe the continuation 

value with and without correlations as parallel lines with an offset of Cov(wO,wC) when the reservoir is 
low. The two values get closer as the reservoir level increases. The marginal water value is higher when 
co-movements are accounted for. This is valid for high reservoir levels, when there is spillage risk. It 
leads, in principle, to delayed production releases for high reservoir levels (color figure online)

Table 2  Optimal policies for 
Example 2.1

The first and second columns show the solution under zero and −0.5 
correlation, respectively

i = 0 i = �

x
∗,i

0
15.0 13.2 First-stage decision

P(v
∗,i

1
> 0) 6.8% 9.2% Spill probability
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of the current reservoir volume and the current price. The policies are the same for 
a current price above 30. This is because �(𝜔2

2
|𝜔O

1
> 30) < 𝜔O

1
 , and it is optimal 

to produce at maximum, which means that correlations are irrelevant. Correlations 
matter when 𝜔O

1
< 30 and P(v∗,i

2
> 0) > 0 . Here, the current water has a higher value 

in the future if we consider correlations. It is therefore optimal to produce less today. 
If the spillage probability is sufficiently small in the second stage, i.e., the reservoir 
level is low, and 𝜔O

1
< 30 , it is optimal to store water because �(𝜔O

2
|𝜔O

1
< 30) > 𝜔O

1
 

according to the price model. In this case, the first-stage decision is approximately 
equivalent with and without correlation, as seen in Fig. 2a. We emphasize that the 
figures are based on simulations and hence there is zero spillage probability in this 
region. Although, in theory, there will be a spillage probability since the inflow 

Table 3  Difference in expected 
revenue of policies relative to 
V
�

1
(s0,�1)

The first column displays the correlation coefficient used under pol-
icy computation, and the last two column headers display the cor-
relation coefficient used when simulating respective policies. The 
entry policy computation � = −0.5 and policy simulation � = 0 is 
left open since this case is not relevant

Policy computation Policy simulation

� = 0 � = −0.5

� = 0 1.3% − 0.03%
� = −0.5 – 0 %
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Fig. 2  Comparing policies assuming � = 0 and � = −0.5 . Upper left is difference in first-stage decision. 
Upper right is difference in policy values when evaluated on the joint distribution. The lower panel com-
pares spill probabilities
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domain is all real numbers, and the correlated policy will produce slightly less also 
in this region of the state space.

Figure 2 outlines the policies, where Fig. 2b displays the potential for additional 
expected revenue from including correlations under policy computation. For exam-
ple, if the price is around 15 EUR/MWh and the reservoir volume at 75 MWh, the 
policy with correlation gets around 0.06% higher expected revenue. Figures 2c to 
2d compare spillage in the second stage with and without correlation. A policy with 
correlation has a higher spill probability in the region where the correlated policy 
delays production.

3  Solution approach

Unlike the two-stage application in Example 2.1, hydropower producers may have 
reservoirs that can hold water months or years into the future. Medium-term hydro-
power operations, for instance, plan 1–2 years into the future with time discretized 
into weeks [20]. This becomes a multistage stochastic problem. The hydropower 
scheduling problem (2) to (3) suffers from the curses of dimensionality. A particular 
challenge is that the state and decision variables are continuous and consequently 
provide infinite combinations. Although we can discretize them, the problem 
becomes computationally intractable before the granularity becomes representa-
tive for an actual hydropower application. Instead, the industry standard is to solve 
the problem using SDDP, introduced by [37], which approximates the continua-
tion function by a piecewise linear function defined by Benders cuts. The MDP can 
therefore have continuous states and actions. SDDP creates a valid outer approxima-
tion of the expected future value function under certain assumptions [13]: 

 A1. The value function Vt(⋅,�t) is concave (for maximization) with respect to st for 
all stages t ∈ T  for a fixed �t.

 A2. The uncertainty sample space Ωt is finite for all stages t ∈ T .
 A3. The feasible region, Xt(⋅,�t) , is non-empty and an optimal solution exists for 

every obtainable incoming state variable st−1 and sample �t for all stages t ∈ T .
 A4. Realizations of uncertainty are independent of other stages, i.e., 

ℙ(�t ∈ Ωt|�t−1) = ℙ(�t ∈ Ωt) , for all stages t ∈ T  . This is commonly referred 
to as stage-wise independence in the SDDP literature.

Proposition 2.1 proves that the value function Vt(⋅,�t) is concave, and hence it satisfies 
A1. We ensure that our scenario generation procedure makes a finite sample space for 
all stages and hence satisfies A2. Moreover, we select parameters so the feasible region 
satisfies assumption A3. Our application is a liberalized electricity market where prices 
are stage-wise dependent random variables, which violate assumption A4. SDDP can 
circumvent this issue by either including a state variable that follows an autoregres-
sive time series (TS-SDDP) or discretize the random data process to a Markov chain 
(MC-SDDP) [25]. Because the objective multiplies price with a decision variable, 
making price a state variable, as required by TS-SDDP, introduces a bilinear term in 
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the objective that violates assumption A1. A hybrid approach, which acts as a wrapper 
around the SDDP algorithm, can ensure a concave value function [20]. There are also 
extensions of the algorithm that can handle the bilinear term in the objective where 
the value function is a saddle function [11]. The main drawback of MC-SDDP is that 
a fixed uncertainty partition is required, which may lead to bad performance on some 
scenarios. However, the MC-SDDP implementation is less complex, it converges faster, 
and it has been shown to provide policies that perform well when applied to hydro-
power planning [25]. Therefore, we argue that MC-SDDP is suitable for analyzing the 
effect of correlation between price and inflow on hydropower operations policies.

Because the continuation function is concave, SDDP replaces it with the variable 
�t , defined by the hyperplanes or cuts

Parameters �k
t
 and �k

t
 are the intercept and slope of the hyperplanes, where k indexes 

iterations. SDDP solves (2) to (3) multiple times in an iterative fashion, where each 
iteration generates a cut, i.e., parameters �k

t
 and �k

t
 . Let K denote the current itera-

tion. As K increases, the outer approximation of the continuation function receives 
more hyperplanes which improves the approximation of the concave continuation 
function and has convergence guarantees [19, 39]. Problem (2) to (3) is a subprob-
lem that exists for each stage t ∈ T  . The iterative scheme to solve the multistage 
stochastic problem by SDDP includes a forward simulation and a backward pass. 
The former starts at t = 1 with a pre-determined initial state variable. It samples �t , 
solves (2) to (3), and saves the resulting state variable, ŝt . The algorithm proceeds to 
the next stage, t + 1 , samples �t+1 , and solves (2) to (3) again. The process continues 
until the terminal stage, T, where the algorithm has a list of simulated values of ŝt 
for all t ∈ T  . The backward pass starts at t = T − 1 and moves backwards through 
the list. At stage t we solve (2) to (3) for all �t+1 with fixed ŝt and obtain objective 
value V̂t+1,𝜔t+1

 and subgradient �̂�t+1,𝜔t+1
 of the objective function with respect to st . 

Cut parameters at iteration K is then calculated according to (13) and (14). These 
cuts are included in the next forward simulation at iteration K + 1 and provide a 
more detailed approximation of the continuation function.

Note that we use average cuts, which explains the expectation operator in (13) and 
(14). Multi-cut options, which include all the cuts, i.e., removes the expectation 
operator in (13) and (14), are also possible but increase the subproblem’s size. The 
SDDP algorithm terminates when new cuts add negligible reductions to the esti-
mated upper bound, reaches an iteration limit, or satisfies a statistical bounds crite-
rion. When SDDP terminates, it has approximated the continuation function for each 
stage t ∈ T  . The policy is simply the arguments that maximize (2) at stage t with the 
continuation function approximation. Because the contribution of our work is in the 

(12)�t ≥ �k
t
+ �k

t
st.

(13)𝛽K+1
i

= �[�̂�K
t+1,𝜔t+1

]

(14)𝛼K+1
i

= �[V̂K
t+1,𝜔t+1

] − 𝛽K+1
i

ŝt
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price process we use, and not the SDDP method itself, we refer to for instance [37, 
13], or [25] for more information on SDDP and pseudocode.

4  Stochastic modelling

This section presents a model of spot prices with connection to the hydrological system 
state and local inflow. Local inflow often possesses strong seasonal variations. There-
fore, similar to [20], we normalize inflow to reservoirs and impose an autoregressive 
model of order one, AR-1, to the seasonality-adjusted inflow series. This model is often 
used by practitioners. However, inflow generally has positive asymmetry, which moti-
vates the use of skewed distributions, e.g. the lognormal distribution [42]. A compari-
son of the model fit for our Gaussian inflow model and its lognormal counterpart is 
provided in Appendix B. Motivated by the empirical fit, we specify a Gaussian model 
for inflow, but emphasize that our joint model allows for general inflow models. We let 
�̄�t denote the historical average of local inflow and �̄�t the historical standard deviation 
of local inflow at week t, while �t denotes the residuals of normalized inflows. Local 
inflow is still �C

t
 , and it is given by

where �9 is a measure for inflow deviation autocorrelation, and �4,t is normally dis-
tributed with zero mean and unit variance. The local hydrological state, hloc

t
 , indi-

cates the degree to which the plant has more or less resources available than normal. 
This captures whether the plant is located in an area with drought or excess of water 
recently. We define the local hydrological state as the exponentially smoothed inflow 
deviations from the mean:

where �8 is the smoothing coefficient. The lower �8 the higher weight is given to 
recent inflow deviations. A dry period for some time locally often indicates a dry 
period in the system, and vice versa. We propose a linear regression model with 
an AR-1 error structure for the system hydrological state, hsyst  . The relevant local 
hydrological state at the producer’s location, hloc

t
 , is an explanatory variable for the 

hydrological state in a larger geographical area, hsyst  . Our motivation for this model 
is the fact that the system hydrological state is an aggregation of local hydrological 
states. An unobservable factor with AR-1 structure, �t , captures the rest of the sys-
tem hydrological state:

(15)𝜔C
t
= �̄�t + �̄�t𝜈t

(16)�t = �9�t−1 + �4�4,t,

(17)hloc
t

= 𝜙8h
loc
t−1

+ (1 − 𝜙8)�̄�t𝜈t,

(18)h
sys

t = �6h
loc
t

+ �t

(19)�t = �7�t−1 + �3�3,t.
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The parameter �6 measures the effect of local hydrological state on the system state, 
�7 measures the autocorrelation of system state deviations that are not explained by 
the local hydro system that is being modelled, and �3,t is normally distributed with 
zero mean and unit variance. The system hydrological state enters the spot price 
model as an independent factor. In other respects, the price model is equivalent to an 
additive and discrete time version of the two-factor model in [40]:

The first term captures price seasonality. The parameter �1 determines the ampli-
tude of seasonal variations, and �2 determines when the peak is. The next term is 
the hydrological system state, hsyst  , which captures the effect of resource availability 
on price, determined by the parameter �3 . Note that the hydrological system state 
is again explained by another factor, namely, local inflow deviation from the local 
mean, and influences hsyst  through (15)–(17). The equilibrium price level, �t , cap-
tures long-term price behavior, and evolves as a discrete-time arithmetic Brown-
ian motion (ABM) with drift � . Short-term deviations that are not explained by the 
hydrological state, �t , evolves as an AR-1 process, where �4 measures the autocor-
relation in short-term price deviations that are not explained by inflow deviations. 
The perameters �1 and �2 is the standard deviation of short-term price deviations 
and the equilibrium price, respectively, and �1 and �2 are normally distributed with 
zero mean and unit variance. Overall, our model consists of four stochastic factors 
(�t, �t,�t, �t) . Note that local hydrology hloc

t
 is derived deterministically from �t , and 

system hydrology hsyst  is derived deterministically from hloc
t

 and �t.

4.1  Risk‑neutral process

We develop a risk-neutral version of the stochastic model in the previous section. 
Futures contracts can then be used to calibrate the model. Given a risk-neutral price 
process, cashflows can be discounted at the risk-free rate [14]. The stochastic model 
in (15)–(22) are additive Gaussian. The transformation to an equivalent martingale 
measure for this type of underlying processes can be done by making assumptions 
regarding the risk premium [27] or convenience yield [2]. We follow the latter and 
obtain the following risk-neutral version:

(20)�O
t
= �1 cos

(
(t + �2)

2�

52

)
+ �3h

sys

t + �t + �t

(21)�t = �4�t−1 + �1�1,t

(22)�t = � + �t−1 + �2�2,t.

(23)�O
t
= �1 cos

(
(t + �2)

2�

52

)
+ �3h

sys

t + �t + �t

(24)𝜔C
t
= �̄�t + �̄�t𝜈t
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Here, �∗
i,t

 has mean zero under the equivalent martingale measure. See Appendix C 
for derivations. In the next section, we present how to calibrate this model using for-
ward and hydrological data.

5  Medium‑term hydropower scheduling: a case study

In this section, we present a case study of a hydropower plant located in the west-
ern part of Norway. Its operator provided inflow data and plant characteristics. [31] 
provides system price data, while we retrieved data for system resource availability, 
in terms of reservoir content, from [33]. NVE represents the resource availability 
data series as a deviation from an estimated normal situation at any time of the year. 
We first present a description of the interconnected system and the aggregation into 
an energy equivalent reservoir (EER). Then, we present the calibration procedure. 
Finally, we present the numerical results.

5.1  Energy equivalent reservoir and head variations

The watercourse we study consists of multiple interconnected reservoirs. We aggre-
gate the reservoirs into one energy equivalent reservoir (EER). The composite rep-
resentation of the interconnected multireservoir system was originally proposed by 
[3], and has been applied in practice [16, 28]. Note that SDDP efficiently handles 
the situation of multiple interconnected reservoirs, but since our focus is to study 
the effect of covariance on the optimal MDP policy, we instead study an EER for 
comparison and consistency between our analytical two-stage results and numeri-
cal multi-stage results. The aggregation simplifies the modeling of uncertainties and 
allows us to study general insights of the effect of covariance on the optimal MDP 
policy. For the same reasons, we assume a constant reservoir-specific volume-energy 

(25)�t = �∗
4
�t−1 + �1�

∗
1,t

(26)�t = �∗
5
�t−1 + �2�

∗
2,t

(27)h
sys

t = �6h
loc
t

+ �t

(28)�t = �∗
7
�t−1 + �3�

∗
3,t

(29)hloc
t

= 𝜙8h
loc
t−1

+ (1 − 𝜙8)
(
𝜔C
t
− �̄�t

)

(30)�t = �∗
9
�t−1 + �4�

∗
4,t

(31)�∗
i,t
∼ N(0,Σ)
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transformation coefficient. In theory, this transformation depends on the discharge 
xt , where the amount of discharge influences the energy efficiency. Piece-wise lin-
ear efficiency curves can approximate this behavior. Head variations, which depend 
on st , also influence the volume-energy transformation but require non-convex 
subproblems.

When aggregating reservoirs, the problem size is small enough to be solved with 
a standard stochastic dynamic progamming approach (SDP). However, since SDDP 
is state-of-the art in hydropower planning, and the model easily can be extended 
to a multi-reservoir setting, we demonstrate our model using SDDP. The multi-res-
ervoir setting could potentially lead to computational difficulties, as several inflow 
processes must be discretized. A way to avoid this is to reduce the number of inflow 
factors, which often is reasonable in a limited geographical area where inflow often 
is highly correlated.

5.2  Calibration of the stochastic model

We use electricity futures data with time to maturity 1–5 years from 2011 to 2018, 
local inflow data from 2009 to 2018, and data for the system hydrological state from 
the same period when calibrating our model. Pricing models are commonly cali-
brated using Kalman filtering and maximum likelihood estimation, where observed 
futures prices are assessed against model predictions. Joint calibration is unattain-
able because future contracts for inflow do not exist. We therefore apply a two-step 
process. First, we employ maximum likelihood estimation with historical data for 
inflow and system hydrological state. We then use (18) and (19) to predict future 
hydrological states and extract the effect on futures prices. Afterwards we apply 
standard Kalman filtering and maximum likelihood estimation. We must calibrate 
both the joint model and a benchmark model where �O

t
 and hsyst  are independent. 

D outlines how we calibrate the benchmark model, while the following six steps 
explain our estimation approach for the joint model in detail.

Step 1: Computing smooth electricity forward curves and de-seasonalized 
prices. We decompose the forward curve into a seasonal component and an adjust-
ment function that accounts for deviations from seasonality. The seasonal compo-
nent has the same form as in the pricing model from the previous section, while 
the adjustment function is defined based on arbitrage arguments and the maximum 
smoothness criterion. See [5, 10, 18] for procedures for computing smooth synthetic 
forward curves. We estimate coefficients of the seasonal component by regression 
using front month forward contracts. Figure 3 illustrates examples of smooth syn-
thetic forward curves computed using this procedure. Figure 4a displays synthetic 
forward curves for the entire electricity forward contract data set. After having esti-
mated the seasonality in step 1, we de-seasonalize forward prices and continue the 
estimation procedure with forward prices adjusted for seasonality. Figure 4b outlines 
the de-seasonalized forward curves.

Step 2: Calibration of the local inflow model. We first normalize weekly inflow 
data based on weekly mean and standard deviation, similarly as in Gjelsvik et al. (2010) 
[20], before we fit an AR-1 process to account for serial correlations. Figure 5a displays 
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the local inflow. We assume that inflow risk is unrelated to the world economy and 
therefore diversifiable, commanding no risk premium.

Step 3: Constructing a time series of local hydrology. We use the exponentially 
weighted inflow series as the hydrological state

Fig. 3  Examples of smoothed 
futures curves by applying the 
method by Benth et al. [5]. 
Futures prices are obtained from 
[31]. The upper was observed 
on 3 January 2011 and the lower 
was observed on 27 May 2015
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where K denotes the number of time periods. This time series captures the situa-
tion of a local producer having either less or more resources available than normal, 
depending on how inflow has deviated from its mean for a longer period. This may 
partly explain water supply in the system. Figure 5b displays the time series for the 
local hydrology in red together with system hydrology in black.

Step 4: Calibration of the local and system hydrology model. The system hydrol-
ogy model is a linear regression model with an AR-1 error structure. It uses local 
hydrology as an explanatory variable, which again is driven by local inflow. We con-
sider parameters of the inflow model fixed, and jointly estimate parameters of the local 
and system hydrology model. We enforce �8 = �7 , which ensures that the local hydrol-
ogy mean reverts at the same speed as the AR-1 process. We consider this reasonable 
because system hydrology is an aggregation all reservoirs in the system. This restriction 
is necessary to get reasonable hydrology predictions in the next step. When estimating 
the parameters, we iterate over �6 and �8 , or equivalently �7 , and study the likelihood 
surface of the linear regression model with AR-1 structure in (18) and (19). Figure 6 
displays the likelihood surface of �8 = �7 and �6 with a mark at optimum.

Step 5: Estimating the effect of hydrology on prices and using the inflow-
hydrology model to predict and extract the impact on futures prices. Given the 
model parameters � = (�1,�2,�3,�

∗
4
,�∗

5
,�6,�

∗
7
,�8,�

∗
9
) , futures prices at any given 

time t with maturity � can be expressed by our model as follows:

(32)

hloc
t

= 𝜙8(𝜔
C
t
− �̄�t) + (1 − 𝜙8)h

loc
t−1

= 𝜙8(𝜔
C
t
− �̄�t) + 𝜙8(1 − 𝜙8)(𝜔

C
t−1

− �̄�t−1) + (1 − 𝜙8)
2hloc

t−2

= 𝜙8(𝜔
C
t
− �̄�t) + 𝜙8(1 − 𝜙8)(𝜔

C
t−1

− �̄�t−1)

+ 𝜙8(1 − 𝜙8)
2(𝜔C

t−2
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3hloc
t−3

⋮
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K∑
k=0

(1 − 𝜙8)
k(𝜔C

t−k
− �̄�t−k) + (1 − 𝜙8)

Khloc
t−K

,

(33)F̂t,𝜏 (𝜒t, 𝜉t, h
loc
t
, 𝜂t, 𝜈t;𝜃) = �

∗(𝜔O
𝜏
)

(34)= 𝜙1 cos
(
(t + 𝜙2)

2𝜋

52

)
+ 𝜙3ĥ

sys

t,𝜏 + 𝜙∗ 𝜏−t
4
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5

𝜉t

Fig. 6  Likelihood surface for 
estimation of �8 = �7 and �6
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where

We estimate �3 by regressing front month futures contracts on hsyst  . Afterwards, we 
adjust the effect of hydrology by using model predictions and create a new data set 
of smooth synthetic forward curves from step 1, adjusted for hydrology. Figure 7a 
displays the hydrology predictions and Fig.  7b shows hydrology adjusted futures 
contracts, Ft,𝜏 − 𝜙3ĥ

sys

t,𝜏  . By comparing Figs.  4b and 7b, we observe less variabil-
ity in futures contracts after accounting for hydrology. Forward curves adjusted for 
hydrology are then used in the next step.

Step 6: Calibrating the long- and short-term factors to futures residuals. In 
the final step, we run the Kalman filter together with maximum likelihood under the 
restriction of zero correlation between hsyst  and �t . This is motivated by the fact that 
the price component that explains hydrology cannot be correlated by the price com-
ponent explaining everything but hydrology. See [40] and [21] for more information 
on the calibration of geometric models of latent factors �t and �t . We modify the 
likelihood function to calibrate our additive model. Appendix E provides nomencla-
ture and parameter estimates.

5.3  Numerical results

We implement the Markov chain SDDP in Julia [6] using the SDDP package [12] 
and the Gurobi solver. We compute policies on the dependent and independent 
Markov chain based on data from a Norwegian hydropower producer. The procedure 
for estimating the parameters of the stochastic process is explained in Sect. 5.2, and 
parameter estimates are provided in Table 5 (Appendix E). When discretizing the 
stochastic processes we focus on preserving the mean and variance of prices and 
inflow, and the cross-moment. The discretization procedure is described in Appen-
dix F. We use a 2% annual discount rate, reflecting the risk-free rate of return. Rev-
enues are from 2 years of operations to ensure both policies have the same amount 
of inflow to allocate. However, policies in time periods close to the terminal stage 

(35)ĥ
sys

t,𝜏 = 𝜙6(𝜙
𝜏−t
8

+ hloc
t

+ 𝜙∗ 𝜏−t
9

(1 − 𝜙8)�̄�𝜏𝜈t) + 𝜙∗ 𝜏−t
7

𝜂t.

(a) Red points are same as black line
in Figure 5b. Black points are hydrology
predictions.

(b) Prices adjusted for hydrology, Ft,τ −
φ3ĥ

sys
t,τ .

Fig. 7  Hydrology prediction and prices adjusted for hydrology
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experience end of horizon effects because they want to efficiently use all resources 
and thus drain the reservoir. This does not happen in practice, so the policy insights 
we present are only from the first year of operation where end-of-horizon effects 
have negligible impact.

Figure  8 displays the reservoir trajectories under optimal policies. While both 
policies drain their reservoirs to capitalize on high winter prices, a period with tra-
ditionally high demand and prices, their decisions start to diverge in the late spring. 
We observe that the reservoir mean is slightly higher during the autumn (from 
around week 25 to 40) for the policy computed on the dependent Markov chain. 
Prices usually increase in this period because we move toward higher winter prices. 
If prices correlate with inflows to the reservoir, the producer favors a slightly higher 
mean reservoir if it accounts for a negative correlation. This is because if a high-
inflow state occurs in the next stage, the price tends to be low. From a current view-
point, since reservoirs are limited, this makes current inflow less valuable than if 
prices and inflows were uncorrelated. As a result, the producer tolerates a higher 
amount of spillage in this period, as shown in Fig. 9. Figure 8 also shows that con-
sidering correlations reduces the reservoir trajectory variability. We observe from 
the 10th percentile that a policy based on the dependent Markov chain has fewer 
low-reservoir trajectories during the autumn, compared to the independent Markov 
chain. This is the period where the covariance is highest according to our estimated 
model parameters and where prices are expected to increase. The policies differ less 

Fig. 8  Mean and 10th to 
90th percentiles of reservoir 
trajectories for independent and 
dependent Markov chains
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in the other parts of the year. Figure 10, which displays the production, reinforces 
the observations of the reservoir trajectories. We observe that the producer generates 
less on average until around week 30.

Table 4 outlines the expected revenues for 2 years. The first column states which 
Markov chain is used when computing the policy, and the two rightmost columns 
state which Markov chain the policy is evaluated on. The numbers are percentage 
differences relative to the value of the optimal policy of the dependent Markov 
chain, V�

1
(s0,�1) . We observe that the optimal value of the independent Markov 

chain policy overestimates the value by 2.55%. However, when simulating the policy 
from the independent Markov chain, we find approximately 0.17% loss incurred by 
ignoring correlations under policy computation. The policy computed on the inde-
pendent Markov chain has a slight disadvantage because the simulations are from 
the dependent Markov chain, which may have a slight discrepancy in the values of 
the independent Markov chain’s nodes despite similar first and second moments. 
Therefore, our results indicate that although there is a strong relationship between 
inflows to reservoirs and prices, the producer does not necessarily gain much by 
incorporating co-movements when establishing the seasonal operational policy.

Figures 11a, b show scenarios for the 100 lower and 100 upper revenues, respec-
tively, out of 1000 scenarios. The black line is optimized revenue for the dependent 
Markov chain, and the red dashed line is revenue that the policy based on the inde-
pendence assumption attains on the dependent Markov chain. The black solid line 
in Fig. 11a, b lies slightly above the dashed red line, which illustrates that the pro-
ducer can slightly increase revenue in both low and high scenarios by accounting for 

Fig. 10  Mean and 10th to 
90th percentiles of generation 
decisions for independent and 
dependent Markov chains

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Week
Pe

rc
en

ta
ge

 o
f m

ax
im

um
 g

en
er

at
io

n 
ca

pa
ci

ty

Mean dep.
Mean indep.
10−90 percentile dep.
10−90 percentile ind.

Table 4  Difference in expected 
revenue of policies relative to 
V
�

1
(s0,�1)

The first column tells which Markov chain that is used under policy 
computation, and the last two column headers tell which Markov 
chain that is used when simulating respective policies

Policy computation Policy simulation

Independent MC Dependent MC

Independent MC 2.55% − 0.17%
Dependent MC – 0 %
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co-movements between prices and inflows when establishing the operational policy. 
Moreover, we observe from Fig. 11a, b that the blue dotted line, which is optimized 
revenue for the independent Markov chain, mostly lies below the black line in the 
lower 100 scenarios and above the black line in the upper 100 scenarios. An expla-
nation for this is that the negative correlation between prices and inflow creates a 
natural hedge in the lower 100 scenarios. Revenues are therefore underestimated if 
correlations are ignored. In the upper 100 scenarios, however, revenues are overesti-
mated because both high price and high inflow realizations are less likely to happen 
if co-movements are accounted for.

Figure 12 displays a scatter plot of the revenues from 1000 simulations obtained 
when the policy is optimized based on the independence assumption, but evaluated 
on the dependent Markov chain. The black line illustrates the one-to-one mapping of 
optimized revenue for the dependent Markov chain. We observe that scenarios with 
low revenue obtained by the independent policy correspond to low revenue scenar-
ios when following the dependent policy. This further accentuates that the producer 
cannot gain much by accounting for the negative relationship between prices and 
inflows to reservoirs when establishing the operational policy.

To test how sensitive our numerical results are to parameter estimates of the 
stochastic process and plant characteristics, we conduct two additional numeri-
cal experiments. The analytical results from Sect.  2.1 find that a stronger degree 
of co-movements between prices and inflows to reservoirs can increase the oppor-
tunity value from accounting for these co-movements when computing the policy. 
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Moreover, a smaller reservoir capacity relative to inflow measures and more produc-
tion capacity could also enhance revenue, as the opportunity value stems from spill-
age risk. Results from such case studies are provided in Appendix G. A summary 
of the results is that reservoir trajectories and policy values are highly case-specific, 
as expected. In line with intuition, both experiments find that the expected revenue 
decreases. Nonetheless, the reductions are a modest 0.24% for stronger degree of co-
movements and 0.3% for smaller reservoir capacity and increased production capac-
ity. The revenue variances have a similar behavior as the base case. The moderate 
changes reinforce the evidence for just modest relative gains from considering co-
movements in price and inflow when establishing an operational policy.

Our findings diverge from [32], who report 2.5% and 3.1% reduced expected rev-
enue on a case study of another Norwegian hydropower plant. We apply our model 
to different case studies, and we have different assumptions regarding the evolution 
of uncertainties and co-movements, which may explain the differences in results. 
We also note that there is no clear relationship between reservoir trajectories and 
correlation coefficient in their results. This is different from our findings, which 
indicate that the producer tolerates slightly more spillage if correlations are taken 
into account and does therefore prefer a slightly higher average reservoir trajectory.

6  Conclusions

Hydro-dominated systems in liberalized electricity markets have a clear relationship 
between prices and inflows to the system’s reservoirs. Full reservoirs mean abundant 
supply and even risk of spillage, which depress prices. Low reservoirs, on the other 
hand, may indicate a drought and thus high prices. Nevertheless, common industry 
practice is to consider price and inflow as independent stochastic processes when 
optimizing release decisions. This paper investigate the impact of this assumption.

In order to study the co-movements between electricity prices and inflows to 
reservoirs in hydro-dominated electricity markets, we develop a novel stochastic 
model that captures the relationship between system prices and supply. Hydro-
logical states at the producer’s location and in the system as a whole represent 
the latter. The local state indicates the resource availability of the producer. This 
state partly explains the supply in a larger geographical area, which again partly 
explains prices. We provide general insights about the effect of such co-move-
ments on the optimal policy of a production scheduling problem in a two-stage 
setting. We apply the stochastic model in a multistage setting by studying the 
medium-term hydropower scheduling problem on industry data. Policies that con-
sider co-movements prefer a slightly higher average reservoir trajectory during 
periods of high correlations. Moreover, the reservoir trajectory variance reduces, 
and the producer tolerates a slightly higher spillage probability when prices are 
expected to increase in the near future. From case studies using industry data, 
we find that a policy that ignores correlations only incurs 0.17% to 0.30% loss 
in expected revenues for different reservoir and production capacities and inflow 
behavior. This is valuable information for reservoir operators, who receive 
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evidence indicating that the theoretical differences only amount to modest eco-
nomic losses in practice.

Proof of Propositions

This section presents the proofs of propositions.

Proof of Proposition 2.1

Proof The proof requires finiteness. No production results in zero value, hence 
Vt(st−1,�t) ≥ 0 , which implies �t+1(st,�t) ≥ 0 . An upper bound is provided by max-
imum production at every stage:

Furthermore,

Hence, the value function and continuation function are finite. We proceed by show-
ing that the terminal value is concave in st for a fixed �t at stage T. For a given �T , 
we have

This is a linear program where R − sT−1 − �C
T
 is the upper bound of the feasible set 

X(sT−1,�
C
T
) . From standard linear programming results, VT (sT−1,�T ) is piecewise 

linear concave in sT−1 . The continuation function is zero and is therefore also piece-
wise linear concave.

By finiteness of the continuation function and the induction hypothesis, it is easy 
to verify that �t+1(⋅,�t) is piecewise linear concave in st . Hence, for a feasible stage t 
action set X(st−1,�C

t
) which is bounded by R − st − �C

t
 , a linear reward function 

�O
t
xt , and a concave continuation function, it follows that the value function 

Vt(st−1,�t) is piecewise linear concave. This implies that ��t+1(⋅,�t)

�st
 is decreasing in st .  

 ◻

(36)�t+1(st,�t) = ��(Vt+1(st,�t+1)|�t)

(37)≤ �G

(
T∑

i=t+1

�
(
�O
i
|�O

t

))

(38)Vt ≤ �O
t
G + �t+1(st,�t).

(39)VT (sT−1,�T ) = max
xT∈X(sT−1,�

C
T
)
�O
T
xT

(40)�T+1(sT ,�T ) = 0
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Proof of Proposition 2.2

Proof The Lagrangian is given by

This yields optimality conditions

where we have set � = 1 for ease of notation. Rearranging,

In the trivial case, if �O
t
≤ 0 the optimal decision is x∗

t
(st) = 0 . Moreover, the mar-

ginal water value is always non-negative, since if the price is negative, the producer 
can spill the water at zero cost. Therefore, this trivial situation is covered by the 
upper case in Proposition 2.2. Below, we prove each of the two cases, assuming 
𝜔O
t
> 0.

Case 1: 𝜕𝛼t+1(st ,𝜔t)

𝜕st
> 𝜔O

t
.

Since 𝜔O
t
> 0 , we can in this case safely assume st−1 + 𝜔C

t
− xt < R , since the 

marginal water value cannot be positive if the reservoir plus incoming inflow is 
larger than the reservoir plus generation capacity. From (41) we get

Because st−1 + 𝜔C
t
< R , this constraint is not binding and thus z2 = 0 . This means 

that z5 must be positive for the condition to hold. Hence, in this case it is optimal to 
produce nothing, i.e., x∗

t
= 0 . This proves the first case.

Case 2: 𝜕𝛼t+1(st ,𝜔t)

𝜕st
< 𝜔O

t
.

From (41) we get

L(xt, vt, st) = �O
t
xt + ��t+1(st,�t) + z1(st−1 + �C

t
− st − xt − vt)

+ z2(R − st−1 − �C
t
+ xt + vt)

+ z3(st−1 + �C
t
− xt) + z4(G − xt) + z5xt + z6vt.

�L(xt, vt, st)

�xt
= �O

t
− z1 + z2 − z3 − z4 + z5 = 0

�L(xt, vt, st)

�vt
= −z1 + z2 + z6 = 0

�L(xt, vt, st)

�st
=

��t+1(st,�t)

�st
− z1 = 0,

(41)
��t+1(st,�t)

�st
= �O

t
+ z2 − z3 − z4 + z5

(42)
��t+1(st,�t)

�st
= z6 + z2

(43)z2 + z5 > z3 + z4.

(44)z2 + z5 < z3 + z4
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Either z3 or z4 must be positive, which means z5 = 0 since both the maximum and 
minimum generation constraint cannot be binding at the same time. Since either z3 
or z4 is positive, the optimal generation quantity is x∗

t
= min{G, st + �C

t
} if 

𝜕𝛼(st+1,𝜔t)

𝜕st
< 𝜔O

t
 for all st . However, since ��t+1(st ,�t)

�st
 is decreasing in st , see Proposition 

2.1, it is optimal to produce until the price and derivative of the continuation func-
tion, or the marginal water value, are equal, i.e. ��t+1(st ,�t)

�st
= �O

t
 . For an illustration, 

see Fig.  1b. This means that in a situation where 
K = st−1 + �C

t
− arg min

st

|||�O
t
−

��t+1(⋅,�t)

�st

||st||| ∈ (0,min {G, st + �C
t
}) , the optimal 

generation quantity is K. Therefore, in total, the optimal generation quantity is 
x∗
t
= min{G,K, st + �C

t
} . This proves the second case.   ◻

Proof of Proposition 2.3

Proof In stage 2 it is optimal to produce at maximum, and since G = R , the optimal 
production quantity is x∗

2
= min{s1 + �C

2
,R} . Inserting this into the expression for 

�2(s1,�1) gives

The term Cov(�O
2
,�C

2
) is negative and P(�C

2
≤ R − s1) is positive and greater than 

zero if s1 < R , hence 𝛼𝜌

2
< 𝛼0

2
 when s1 < R . Note that P(�C

2
≤ R − s1) is monotoni-

cally increasing in s1 . Hence, �0
2
− �

�

2
 is a decreasing function from 

Cov(�O
2
,�C

2
)P(�C

2
≤ R) at s1 = 0 to 0 at s1 = R . For an illustration, see Fig. 1a. This 

means that 𝜕𝛼
𝜌

2
(s1,𝜔1)

𝜕s1
>

𝜕𝛼0
2
(s1,𝜔1)

𝜕s1
 .   ◻

Assessment of the inflow model

See Fig. 13.

(45)

𝛼
𝜌

2
= 𝛿�(𝜔O

2
min{s1 + 𝜔C

2
,R})

= �

(
𝜔O
2
(s1 + 𝜔C

2
)1{𝜔C

2
≤R−s1}

+ R1{𝜔C
2
>R−s1}

)
)

=
(
�(𝜔O

2
𝜔C
2
) + �(𝜔O

2
)s1

)
P(𝜔C

2
≤ R − s1) + R�(𝜔O

2
)P(𝜔C

2
> R − s1)

=
(
�(𝜔O

2
)�(𝜔C

2
) + Cov(𝜔O

2
,𝜔C

2
) + �(𝜔O

2
)s1

)
P(𝜔C

2
≤ R − s1) + R�(𝜔O

2
)P(𝜔C

2
> R − s1)

= 𝛼0
2
+ Cov(𝜔O

2
,𝜔C

2
)P(𝜔C

2
≤ R − s1)
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Derivation of the risk‑neutral process

We first derive the continuous-time risk-neutral version and then derive the discre-
tized version. The general dynamic of prices is

and the following deterministic convenience yield process is

The discounted gains process of owning a derivative or asset on St must be a martin-
gale and is given by

where r denotes the risk-free rate, and where the risk premium is

By Girsanov’s theorem, the new process dz∗ is a standard Brownian motion [35]. 
The risk-neutral dynamics can now be written as

by rearranging (49) and (52).

(46)dSt = �(St, t)dt + �(St, t)dz,

(47)dCt = �(St, t)dt.

(48)dGt = d(e−rtSt) + e−rtdCt

(49)= −re−rtStdt + e−rtdSt + e−rtdCt

(50)= e−rt
((
−rSt + �(St, t) + �(St, t)

)
dt + �(St, t)dz

)

(51)= e−rt�(St, t)(�(St, t)dt + dz)

(52)= e−rt�(St, t)dz
∗,

(53)�(St, t) =
�(St, t) + �(St, t) − rSt

�(St, t)
.

(54)dSt = (rSt − �(St, t))dt + �(St, t)dz
∗,

Fig. 13  Inflow data, and one-
step ahead predictions under 
the Gaussian model and the 
lognormal counterpart
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We now move to our specific stochastic model for prices, and start with the 
equilibrium price level, �t . If we let �(�t, t) = � and �(�t, t) = � , the underlying is 
an arithmetic Brownian motion (ABM), which can be written in discrete time as 
in (22). Following Alexander et  al. (2012) [2], we impose the long-term con-
venience yield �(�t, t) = ��t . Note that since �t can be positive and negative, con-
venience yield is negative if �t is negative. The risk premium is then given by 
�2��(�t, t) = � − (r − ��)�t , which inserted into (54) leads to the following risk-neu-
tral dynamics:

This process has geometric expected growth and additive noise. It can be discounted 
by the risk-free rate for getting the value today of an asset on �t . Rearranging, a 
discrete-time version risk-neutral process can be written as

where �∗
5
= e(r−�� )Δt and �2

2
=

1

2(r−�� )
�2
�
(1 − e(r−�� )Δt).

For the short-term deviations, �t , we let �(�t, t) = −��t and �(�t, t) = �� . The 
underlying is then an additive Ornstein-Uhlenbeck process, which can be seen by 
inserting into (46). This can be written as an AR-1 process in discrete time, as in 
(21). Imposing the short-term convenience yield �(�t, t) = ���t entails short-term 
risk premium ���� (�t, t) = −���t − (r − �� )�t . Inserting convenience yield into 
(54) gives

Rearranging, a discrete-time version risk-neutral process for the short-term devia-
tions can be written as

where �∗
4
= e(r−�� )Δt and �2

2
=

1

2(r−�� )
�2
�
(1 − e(r−�� )Δt) . For the stochastic processes �t 

and �t in (16) and (19) the derivations are similar to the derivations for �t.

Calibration with !O
t

 and hsys

t
 being independent

For the case study in Sect. 5, we need to benchmark our stochastic model against a 
model where price is not affected by inflows to reservoirs. This can be obtained by 
setting the coefficient of hsyst  to zero and let the short-term price factor �t capture all 
price deviations from the long-term price level, including price deviations related 
to hydrology. We then need to re-estimate parameters of the short-term factor, such 
that mean-reversion speed and variance are approximately equivalent to the model 
where hydrology enters as an explicit factor. Therefore, we let

(55)d�t = (r − ��)�tdt + ��dz
∗.

(56)�t = �∗
5
�t−1 + �2�

∗
2
,

(57)d�t = (r − �� )�tdt + ��dz
∗.

(58)�t = �∗
4
�t−1 + �1�

∗
1
,

(59)�I
3
= 0
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where �3 is re-estimated to system hydrological data when �6 is set to zero, and 
superscript I indicates independent. By defining parameters this way we can closely 
resemble conditional means and long-term variance in our joint model and a model 
with no connection between prices and inflows to reservoirs.

Nomenclature and parameter estimates

Table 5 provides the parameters used in the case study in Sect. 5. The last columns 
provide parameter estimates from the joint model (J) and the independent model (I). 
Section 5.2 explains the procedure for calibrating the joint model, while Appendix 
D presents a possible procedure for calibrating the independent model.

Discretization of the stochastic model

We consider a producer planning its hydropower operation for the next 2 years. 
It thus considers 104 weekly stages. We construct Markov chains according to 
Algorithm 1 from 50,000 weekly Monte Carlo simulations of prices and inflows 
to reservoirs from expressions (23) to (31). Since inflow is normally distributed 
in our model, it can simulate negative inflow values that we set to zero. Negative 
inflow is a challenge in SDDP and could alternatively be addressed by penaliza-
tion [20]. Each week has a price and inflow pair, and we use the k-means method 
to cluster. Transition probabilities are estimated as the number of scenarios that 
travel from one cluster to the next, divided by the total number of scenarios mov-
ing through the previous cluster. A joint clustering on price and inflow pairs cre-
ated a Markov chain that did not capture the variance, mean, and covariance of 
the underlying stochastic model. Instead, we only cluster on prices and map the 
corresponding inflows to each price cluster. These inflows must transform into a 
representative inflow to the price cluster. Importantly, they must retain the prop-
erties of the underlying stochastic model. The average value of the inflows man-
ages to capture the covariance and mean, but not the variance. On the other hand, 
a random sample of the inflows captures the variance but not the covariance and 
mean values. A compromise is the mean of a limited number of samples, which 
manages to provide representative covariances, variances, and means (experi-
ments on our application find five samples to be representative). The variance has 

(60)�I
6
= 0

(61)�
∗,I

4
=

1

2
(�6 + �∗

4
)

(62)�
∗,I

4
=

√√√√1 + �
∗,I 2

4

1 + �∗ 2
4

�2
1
+

1 + �
∗,I 2

4

1 + �∗ 2
6

�2
3
,
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the same shape as the continuous process’ variance, but has a lower magnitude 
that decreases with the number of samples. However, an appropriate factor can 
scale the variance to the magnitude of the underlying stochastic model. Before 
scaling, we need to subtract the mean of all the associated inflows in a cluster and 
add it back afterwards, in order to not scale the mean as well. Algorithm 1 shows 

Table 5  Parameters for case study

Description (J) (I)
State variables
rt [MWh] Reservoir volume
xt [€/MWh] Price deviation from long-term price level
yt [€/MWh] Long-term price level
�t [TWh] Unexplained system deviation state
�t [MWh/week] De-seasonalized and normalized inflow
hloc
t

 [MWh/week] Smoothed local inflow deviations (standardized)
Decision variables
gt [MWh/week] Production
wt [MWh/week] Spillage
Parameters
� Discount factor 0.02
R [MWh] Minimum reservoir volume 0

R [MWh] Maximum reservoir volume 334,989

G [MWh/week] Minimum production 0

G [MWh/week] Maximum production 39,439

�1 [€/MWh] Price seasonality parameter, amplitude 4.421
�2 [€/MWh] Price seasonality parameter, shift 2.792
�3 [€/(MWh TWh)] Effect from hsyst  on pt − 0.820 0
�∗
4
 [1] Short-term price AR-1-coef 0.978 0.977

�∗
5
 [1] Long-term drift 0.999

�6 [1] Effect on from hloc
t

 on hsyst
0.002 0

�∗
7
 [1] Unexplained system deviation AR-1-coef 0.978 0.978

�8 [1] Smoothing coefficient for local inflow 0.978
�∗
9
 [1] Local inflow deviations AR-1-coef 0.356

�1 [€/MWh] Volatility short term price 1.872 2.292
�2 [€/MWh] Volatility long-term price 0.554
�3 [TWh] Standard dev. of unexplained system deviation 0.940 1.323
�4 [MWh] Standard deviation inflow 0.905
�̄�t, t = 1,… , 52 [MWh] Weekly historical local inflow mean
�̄�t, t = 1,… , 52 [MWh] Weekly historical local inflow standard deviation
Values derived from states
�C
t
 [MWh] Local inflow

�O
t
 [€/MWh] Spot price

h
sys

t  [TWh] System reservoir volume, deviation from the mean
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pseudocode for this operation. We use a Markov chain with five price and inflow 
pair nodes. Simulations verify that it is representative of the continuous price and 
inflow processes.

Algorithm 1 Pseudocode to build Markov chains

1: Initialize parameters in Table 5 and decide inflow sample size Nsample and
scaler κ.

2: Simulate random variables χ, ξ, η, and ν using equations (25), (26), (28),
and (30), drawing random samples according to (31).

3: Calculate hsys according to (27).
4: Calculate prices ωC

t according to (24).
5: Calculate inflows ωO

t according to (23) and set negative values to 0.
6: Standardize prices ωC

t .
7: Use k-means algorithm to get price centroids.
8: Identify which price (and inflow) scenario belongs to which centroid.
9: for t in all stages do

10: if first stage then
11: Calculate transition probability at first stage as number of scenarios

in a centroid divided by the total number of scenarios.
12: else
13: Count what centroid each scenario comes from and to what scenario

it moves to. Calculate transition probabilities by dividing by number of
scenarios that came from each centroid.

14: Convert prices to original values by removing standardization.
15: for c in all centroids do
16: Make list Ic of all inflows that belong to centroid c.
17: Calculate mean µIc of Ic.
18: Make new list Îc by subtracting mean µIc from inflows in Ic.
19: Calculate the mean µÎc

from a sample of size Nsample from Îc.
20: Multiply µÎc

with scaler κ and then add µIc to get the centroid’s
inflow. Set value to 0 if negative.

21: end for
22: end if
23: end for
24: Return transition probabilities and centroids with price and inflow pairs.

Additional case studies

This section contains results for different parameters to investigate the sensitivity of 
the findings. We first change parameters of the stochastic process to test stronger co-
movements and higher seasonal price variations. Afterwards, we test different plant 
characteristics by reducing reservoir capacity and increasing generation capacity.

Extreme effect from hydrology on prices and higher seasonal price variations

To study the effect when seasonal price variations are higher and co-movements are 
stronger, we increase �1 to −1.5 and �3 to 10. This also introduces a higher price 
variance. All other model parameters remain as they were. Figure 14a displays the 
reservoir trajectories under optimal policies. The behavior of the mean reservoir is 
similar to the base case. It shows that the producer favors a higher mean reservoir 
from around week 25 and is therefore more willing to risk spillage in this period. 
The 10th to 90th percentiles are narrower throughout the year in both the depend-
ent and independent Markov chain compared to the base case. This is a result of 
increased seasonal price variations. Figure 14b shows a scatter plot of revenue. As in 
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the base case, the producer only slightly increases revenue in most scenarios when 
accounting for co-movements when establishing the operational policy. Table 6 out-
lines the percentage expected opportunity loss in the extreme case.

Changing plant characteristics: higher production capacity and lower reservoir 
capacity

The next case study keeps the stochastic model parameter estimates as the base case 
but changes the plant characteristics to R = G = 106, 382 MWh. Both the genera-
tion capacity and reservoir capacity are equal to the average inflow of four weeks. 
The reservoir capacity is 32% and generation capacity is 270% of that of the base 
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Fig. 14  Revenues and reservoir trajectories for the extreme case

Table 6  Difference in expected 
revenue of policies relative to 
V
�

1
(s0,�1) for the extreme case

The first column tells which Markov chain that is used under policy 
computation, and the last two column headers tell which Markov 
chain that is used when simulating respective policies

Policy computation Policy simulation

Independent MC Dependent MC

Independent MC 0.68% − 0.24%
Dependent MC – 0 %
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Fig. 15  Revenues and reservoir trajectories for case with different plant characteristics
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case. Figures 15a, b show reservoir trajectories and revenues. The producer drains 
the reservoir already in the first week, because it can now produce the entire res-
ervoir at any point in time, and the price seasonality trends downwards in January. 
Figure 15b demonstrates that the sample path revenues behave as in the other cases. 
Table 7 shows that the revenue improves by 0.30% in expectation.
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