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Abstract
Short-term hydropower scheduling seeks to find a production schedule that maxi-
mizes profit, but must also consider the hydrological balance and risk of overflow. 
Overflow is by nature a non-linear and non-convex phenomenon. Common approxi-
mations and relaxations may cause non-physical results such as overflow from res-
ervoirs that are not full. This paper presents a mixed-integer linear programming 
formulation that can be used to prevent non-physical overflow behaviour, but that 
comes at a cost of significant higher solving time. To achieve an acceptable solving 
time, we propose a heuristic to provide tight upper bounds on the overflow variables 
in each time step. When applied on the model of the Fossdal watercourse in Nor-
way, the proposed method reduces the solving time with more than 90% compared 
to using a conservative fixed coefficient for all time steps.
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1  Introduction

Short-term hydropower scheduling seeks to find an optimal dispatch of stored water 
through a cascade of plants and gates that maximizes the profit. Besides producing 
power, hydropower also plays an important role with respect to flood management 
[1, 2]. Accurate descriptions of the water flow is therefore important both for eco-
nomical and societal reasons.

A hydropower reservoir typically has three different water routes: power plant 
discharge, bypass, and overflow. Whereas the first two alternatives are explicit deci-
sions taken by the operator, the overflow is an implicit decision. It occurs when the 
reservoir is unable to store more water. In long-term hydropower scheduling, where 
the optimization horizon can be several years, the overflow is typically modelled as 
an additional large gate, sometimes with a relative high operating cost that penalizes 
operation of the overflow gate such that it is not used unless it is highly necessary [3, 
4]. However, the only mathematical relation between reservoir level and overflow is 
that overflow is the last possible way to get rid of water when a reservoir is full. This 
approach does neither consider the physical characteristic nor the time delay asso-
ciated with overflow since computationally efficient linear formulations are more 
important than high physical accuracy of this phenomenon.

For short-term hydropower scheduling, with a typical optimization horizon in 
the range 1–14 days, it is necessary to consider the coupling between overflow and 
water levels of the reservoirs, especially for small reservoirs. A common approach 
is to assume a functional relation between the overflow and reservoir head [5], for 
example a polynomial relation [6, 7], that is approximated by a piecewise linear 
relaxation. Although these formulations are more physically accurate, they also per-
mit so-called nonphysical overflow, that will be further explained in Sect. 2. How-
ever, previous research does not discuss challenges arising when using a relaxation 
of the overflow function.

To overcome the challenges with nonphysical behaviour of the optimization 
model, we present a mixed-integer linear programming (MILP) formulation of the 
reservoir overflow. The proposed formulation also serves as a tight relaxation when 
the binary variables are replaced by their continuous counterparts. We also propose 
a heuristic for estimating coefficients that reduces the computation time of the MILP 
problem when solving the hydropower scheduling problem with successive linear 
programming (SLP). We test the effectiveness of the proposed heuristic with respect 
to reducing the computation time of the combined SLP/MILP problem for the Fos-
sdal watercourse in Norway.

2 � A hydropower scheduling model

This paper considers the hydropower producer perspective in a competitive mar-
ket where the objective is to maximize the revenue for an exogenous market price. 
The presented formulation summarizes the key properties of the hydropower 
scheduling problem and we refer to [8] for a comprehensive description.
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2.1 � Hydropower formulation

Consider a planning horizon divided into a set T of time periods of possibly une-
qual lengths, and let Δt denote the length of period t ∈ T  . A watercourse consists 
of a set R of possibly connected reservoirs. Each reservoir may have a downstream 
plant, bypass gate and overflow route. Let Ur ⊆ R ⧵ {r} denote the set of hydraulic 
upstream objects discharging into reservoir r ∈ R . We assume, to ease the notation, 
that each plant consists of one producing unit, but the plant description can be fur-
ther generalized to include multiple sets of generators and turbines as shown in [8, 
9].

In the objective function

MSALE
t

 and pSALE
t

 denote, respectively, the market price and the produced power 
at time t. The value of storing water beyond the optimization horizon is given by 
the outgoing reservoir volume vr,t̄ multiplied with their respective water values 
WEND

r,t̄
[C/MWh] and an energy conversion factor Er[MWh∕Mm3] . The water value 

represents the opportunity value of storing the water for later use rather than using 
it now. The energy conversion factor is in reality a function of the head, but is often 
approximated with a constant value. The water value, that also can be a function of 
the reservoir levels in cascaded systems, typically comes from a medium- or long-
term model [9].

Hydrological balance in the reservoirs is expressed as

where the variable vr,t denotes the hydro storage in reservoir r at time t, QINFLOW
r,t

 
the reservoir inflow, and qP

r,t
 , qB

r,t
 , and qS

r,t
 the reservoir discharge from the plant 

production, bypass, and overflow, respectively. The delay from water is released at 
upstream object u until it arrives the reservoir is enforced by the time delay �u,t , and 
the initial storage VINIT

r
 is enforced by

Let �r(v) denote the water level of reservoir r as a function of its volume. The power 
pr,t produced by plant r in period t is proportional to the turbine efficiency �TURB

r
 , 

which, in its turn, is a function of the net head hNET
r,t

 of the unit and the discharge 
qP
r,t

 . The gross head at r in period t is simply the difference �r

(

vr,t
)

− Lr between 
the water level �r

(

vr,t
)

 at the intake reservoir r and the level Lr of the plant outlet or 
the downstream head if the plant is hydraulically connected to the reservoir below. 

(1)max
∑

t∈T

(

MSALE
t

⋅ Δt ⋅ p
SALE
t

)

+
∑

r∈R

WEND
r,t̄

⋅ Er ⋅ vr,t̄,

(2)

vr,t =vr,t−1 + Δt ⋅

(

QINFLOW
r,t

+
∑

u∈Ur

(

qP
u,t−�u,t

+ qB
u,t−�u,t

+ qS
u,t−�u,t

)

− qP
r,t
− qB

r,t
− qS

r,t

)

,

(3)vr,0 = VINIT
r

.
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Accounting for the friction �r ⋅ qPr,t2 , where �r is a constant friction factor, the net head 
becomes

Scaled by the turbine efficiency �TURB
r

(

hNET
r,t

, qP
r,t

)

 and the generator efficiency 
�GEN
r

(

pr,t
)

 , the power production pr,t is given by

where the constant water density and gravity are denoted � and g, respectively.
When a unit is turned off, the corresponding production and discharge variables 

equal zero. Otherwise, their values are constrained within some interval between lower 
and upper bounds. For the production and discharge at plant r, the bounds, denoted 
Pmin
r

 , Pmax
r

 , Qmin
r

 , and Qmax
r

 respectively, are assumed to be constant. Defining �r,t as 
a binary variable indicating whether or not the unit is operating in period t, we hence 
arrive at the inequalities

constraining power and discharge, respectively.
Finally, the power balance constraint says that the total production sums up to the 

total sale:

2.2 � Overflow model

Whereas the discharge from production and bypass represents explicit decisions, the 
overflow is a consequence of a full reservoir and can only be controlled implicitly by 
adjusting the production and bypass into and out of a reservoir. The overflow typically 
represents a water flow over a crest, where the relation between the flow q and the water 
level above the crest h is

where C is a friction coefficient and L the crest width [10]. In its turn, the water level 
is a function of the volume of the reservoir, and a typical correspondence between 
volume and overflow is illustrated by the curve in Fig. 1.

Denote by Vmax
r

 the maximum volume of reservoir r before overflow occurs, and 
assume that the overflow is a function of the excess volume. Let VSr,i,QSr,i denote 

(4)hNET
r,t

= 𝓁r

(

vr,t
)

− Lr − �r ⋅ q
P
r,t

2
.

(5)pr,t = � ⋅ g ⋅ �GEN
r

(

pr,t
)

⋅ �TURB
r

(

hNET
r,t

, qP
r,t

)

⋅ hNET
r,t

⋅ qP
r,t
,

(6)Pmin

r
⋅ �r, t ≤pi,s,t ≤ Pmax

r
,

(7)Qmin

r
⋅ �r, t ≤qr,t ≤ Qmax

r
⋅ �r,t.

(8)
∑

r∈R

pr,t = pSALE
t

q = C ⋅ L ⋅ h
3

2 ,
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points of a piecewise linear approximation of the flow curve with I segments. The 
minimum overflow can then be expressed as

A weakness of the formulation is that qS
r,t

 may be positive even when vr,t < Vmax
r

 , 
and this phenomenon is referred to as nonphysical overflow, reflecting that it does 
not make physical sense. To reduce this effect, qS

r,t
 is often penalized in the objec-

tive. Nevertheless, nonphysical overflow may still occur in some situations which 
will be further explained in the experimental results in Sect. 4.

A possible approach to avoid nonphysical overflow is introducing a binary vari-
able �r,t , which takes the value 1 if qS

r,t
 is nonzero. To that end, the constraints

where VSmax
r

= VSr,I , are imposed. Constraint (13) forces the overflow variable qS
r,t

 to 
zero if �r,t = 0 . Constraint (11) and (14) further ensure that if �r,t = 1 , then qS

r,t
 stays 

within the light gray area in Fig. 1.
Owing to the computational burden introduced by the new binary variables, com-

mon practice in the industry is to relax the integrality constraint, and allow fractional 

(9)QSr,0 = 0

(10)VSr,0 = Vmax

r

(11)qS
r,t
≥ QSr,i +

QSr,i+1 − QSr,i

VSr,i+1 − VSr,i
⋅ (vr,t − VSr,i), i ∈ {1,… , I}

(12)qS
r,t
≤ QS,max

r
.

(13)qS
r, t

≤ QS,max

r,t
⋅ �r,t, and

(14)qS
r, t

≤
QS,max

r

VSmax
r

− Vmax
r

⋅ (vr,t − Vmax

r
⋅ �r,t),

Fig. 1   Overflow as a function of volume
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values of all variables �r,t yielding the feasible region illustrated by the light and 
dark gray area in Fig. 1. Without prior knowledge to any lower bound on the reser-
voir volume beyond Vmax

r
 , the figure illustrates the tightest possible convex relaxa-

tion of this problem. Access to any stronger bound, however, enables a closer linear 
approximation of the non-linear curve, and thereby a stronger relaxation. The benefit 
of an approach involving relaxation of the integrality restrictions is a considerably 
easier problem to solve than the mixed-integer formulation, but comes with a risk of 
nonphysical overflow.

2.3 � Linearization

To arrive at a computationally tractable model, all nonlinear functions that appear in 
any of the constraints discussed in Sect. 2.1 are linearized. Linearization techniques 
adopted from [9] are applied:

•	 The discharge bound functions Qmin
r

 and Qmax
r

 appearing in (7) are approximated 
by piecewise linear functions. That is, the set of feasible values qP

r,t
 can attain is 

partitioned into a finite set of intervals. A binary variable is associated with each 
interval, and corresponds to the decision whether or not to assign qP

r,t
 a value in 

the interval. The sum of these variables is, for each nonlinear function, bounded 
above by one. Within each interval [l, u], Qmin

r
 is replaced by a linear function 

interpolating 
(

l,Qmin
r

(l)
)

 and 
(

u,Qmin
r

(u)
)

 , and Qmax
r

 is handled analogously.
•	 The relation between production pr,t and discharge qP

r,t
 becomes a concave and 

monotonously increasing curve when the efficiencies �GEN
r

 and �TURB
r

 are taken 
into account. The efficiencies are given as a set of points based on measurements 
of the specific generator and turbine. The said shape of the curves is exploited in 
a piecewise linear approximation, written 

 where S is a set of integer segment indices, qP
s,r,t

 is the discharge contribution 
from segment s ∈ S , and as,r,t is the slope of the curve in segment s. Because as,r,t 
is decreasing with increasing segment index, it is also optimal to assign positive 
values uniquely to qP

s,r,t
 for a set of consecutive segments, starting with the small-

est index value.
•	 All other nonlinear functions are processed by means of a SLP technique. In 

short, this implies that a sequence of linear approximations to the model are 
solved. In the first iteration, an initial guess of the values of all variables occur-
ring in the functions is made. The functions are next replaced by a first order 
Taylor approximation in the guessed point. An optimal solution to the resulting 

(15)pr,t =
∑

s∈S

as,r, t ⋅ q
P
s,r, t

,

(16)qP
r,t
=
∑

s∈S

qP
s,r, t

,
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linear model yields the next linearization point, and the procedure is continued 
until convergence (two consecutive solutions are sufficiently close).

More involved hydro production functions than those considered in the current work 
fail to satisfy the concavity condition exploited in (15)–(16). As a consequence, 
piecewise linear approximations require the introduction of a binary variable for 
each segment in question. Because the extension applies to all time periods and all 
reservoirs, it implies a significant increase in the computational burden. Readers are 
referred to Borghetti et al. [11] and Diniz and Maceira [12] for examples of MILP 
models incorporating piecewise linear approximations to non-concave production 
curves.

3 � Tight formulations of overflow constraints

It is well known that the computational performance of integer programming mod-
els may depend heavily on the formulation of the constraints. Nevertheless, Belotti 
et al. [13] argue that aggressive bound tightening is often overlooked in works on 
such models. With a problem in supervised classification as an example, it is dem-
onstrated in [13] how significantly the constraint formulation may impact the run-
ning time. Their approach is pursued and further developed in [14].

In this section, we focus on how the constraints involving the binary variables con-
trolling the overflow can be formulated in a way that favors fast solution. Particular 
attention is given to inequality (13), to which qS

r,t
≤ Mr,t ⋅ �r,t is an equivalent formula-

tion, given that Mr,t is a sufficiently large number. For a tight formulation, a small value 
should be assigned to Mr,t , but it is essential that Mr,t (in popular terms, referred to as 
the ‘big-M’ coefficient) is not so small that the constraint cuts off feasible solutions.

3.1 � Computing an upper bound on the overflow

As long as Mr,t is no larger than the maximum possible overflow at reservoir r in 
period t, the inequality qS

r,t
≤ Mr,t ⋅ �r,t is valid. An estimate of the maximum is 

therefore helpful in cutting the running time of the model, and a heuristic estimation 
method is given next.

Recall from Sect. 2.3 that the SLP procedure involves solving a sequence of lin-
ear problem instances. For SLP iteration j, the idea is to use the solution from the 
previous SLP iteration Vj−1

r,t  plus a tolerance to approximate Mr,t . However, there 
exists no previous solution in the first iteration, and hence it must be approximated. 
By assuming maximum discharge into and minimum discharge out of the reservoir 
for each timestep, we obtain Eq. (17) and (18):

(17)V0

r,0
= VINIT

r
,
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where DUP
r

 denotes the set of plants and gates discharging into reservoir r, DDOWN
r

 
an analogous set for discharge out of reservoir r, and QMAX

i
,QMIN

i
 the maximum 

and minimum possible discharge from element i, respectively. Given the inflow, the 
overflow function and the minimum and maximum discharge for gates and plants 
are known, V0

r,t
 can be computed sequentially for increasing values of t.

The difference between the current reservoir volume and the volume Vmax
r

 at which 
overflow occurs constitutes an upper bound on the overflow. Consequently, the heuris-
tic approach is to let Mr,t = (1 + g0) ⋅ Vr,t − Vmax

r
 for some (small) positive number g0 . 

Multiplying Vr,t by 1 + g0 accounts for the risk of inaccuracy in Vr,t as an estimate of 
the actual reservoir volume, and helps to avoid feasible solutions being cut off.

In other iterations but the first of the SLP procedure, the volume estimate is rather 
given as the optimal value v∗

r,t
 of the volume variable vr,t obtained in the preceding 

iteration. Then, the bound is set to Mr,t = (1 + g1) ⋅ v∗
r,t

 , where g1 is a small positive 
number, possibly different from g0.

4 � Experimental results

The proposed method has been implemented in the short-term optimization model 
SHOP [15] that is developed by SINTEF Energy Research, and has been tested on 
the Fossdal watercourse in Norway, illustrated in Fig. 2, which is operated by Eviny 
Fornybar AS. The upper reservoir, Gråsidevatn, discharges water into Fossdalsvatn 
through a gate, and the released water is delayed by up to three hours. Overflow 
from Gråsidevatn also goes to Fossdalsvatn, but the overflow has a delay up to 48 h. 
The overflow from Fossdalsvatn goes to the sea. The reservoir sizes are 0.6Mm3 and 
1.25Mm3 for Gråsidevatn and Fossdalsvatn, respectively, and the plant maximum 
production capacity is 8.85MW. The water value in this experiment is 9.76 € ∕MWh , 
which is below the electricity price for the whole optimization period.

(18)V0

r,t+1
= V0

r,t
+ QINFLOW

r,t
− fr(V

0

r,t
) +

∑

i∈DUP
r

QMAX
i,t

−
∑

i∈DDOWN
r

QMIN
i,t

,

Fig. 2   Fossdal watercourse topology
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This system occasionally experiences nonphysical overflow, as illustrated in Fig. 3. 
We observe a spike in the overflow around day 12 when using the convex relaxation, 
which does not make physical sense. At the same time, Fig. 4 shows abrupt changes 
to the head at both reservoirs. In contrast, the MILP formulation effectively avoids 
nonphysical overflow yielding a smooth overflow curve consistent with the reservoir 
inflow. Gråsidevatn has a high initial level and a high inflow, and the bypass capacity 
is too low to avoid overflow. When using the linear relaxation, the overflow variable 
appears as an additional gate that can increase the discharge capacity. In many situa-
tions, nonphysical overflow is avoided due to the overflow penalty. However, in situ-
ations where overflow is unavoidable, shifting the overflow in time can improve the 
objective function. The end level of Gråsidevatn is equal for both cases, hence the total 

Fig. 3   Market price, and inflow and overflow at Gråsidevatn

Fig. 4   Reservoir head compared to higher- and lower regulated levels
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overflow and overflow penalty are equal. However, with the nonphysical overflow, the 
overflow reaches Fossdalsvatn by the end of the optimization period enabling Foss-
mark to produce more than what is the case of the more physically correct model. In 
all experiments, the first three iterations are spent finding a stable unit commitment 
using integer variables for the power production, followed by three iterations adjust-
ing the production given the unit commitment is known. This solution methodology 
is described more in detail in [8]. The instances solved in the first three iterations have 
13.364 variables and 6.254 constraints, where 314 variables are binary. Using over-
flow MIP gives additional 672 binary variables. In the final three iterations, the MIP-
instances have 8.750 variables and 4.533 constraints, where there are no binary vari-
ables except from the 314 overflow MIP variables.

The use of integer variables to avoid nonphysical overflow has a significant disadvan-
tage with respect to solving time of the MILP problem. Whereas the linear model using 
6 SLP iterations is solved within a few seconds, the corresponding MILP model takes up 
to around 300 s to solve for the same number of iterations, and the solving times grows 
even more than the problem size as shown in Fig. 5. When applying the proposed heuris-
tic to dynamically update the value of Mr,t , the solving time is reduced to less than 40 s.

Since the solving time is sensitive to the numerical input, the experiment has 
also been repeated with low and high inflow, where the original inflow has been 
scaled with factors 0.5 and 1.5, respectively. Moreover, since the initial reservoir 
level is high in the base case, two additional combinations with medium and low 
initial reservoir storage have been added, where the volume has been scaled with 
factors 0.5 and 0.2, respectively. The total number of experiments will therefore 
sum up to nine and the resulting solving times are summarized in Table 1.

The results show that the MIP solving time increases more with high inflow and 
high initial reservoir level. In all situations, the dynamic assessment of the big-M 
coefficient reduces the solving time. In the low-low scenario (low inflow, low initial 
storage), overflow does not occur at all and the overflow MIP has no effect.

The value gi in the experiments adds a tolerance to the approximated value of 
big-M to prevent too tight bounds resulting in an infeasible model formulation or 
penalties in the solution. The sensitivity of this value with respect to computation 
time has therefore been assessed. Figure  6 shows how the solving time changes for 
increasing value of gi.

5 8 11 14
Solving time [s]

0

100

200

300

O
pt
im

iz
at
io
n
ho

ri
zo
n
[d
ay
s] Static big M

Dynamic big M

Fig. 5   Solving time with static big M value compared to proposed dynamic big M
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For the first iteration in the left part of Fig. 6, where a different heuristic has been used, 
the change in solving time is rather irregular. For the remaining iterations, there is a clear 
connection between the tightness of the big-M coefficient and the solving time. Further 
reductions in the tolerance would incur a reservoir penalty, which means that the model 
formulation is too strict such that the water has no way to escape in case of overflow.

5 � Discussion

The solving time in the demonstrated case can be reduced significantly by lower-
ing the values of the big-M coefficients. However, the proposed heuristic is not 
guaranteed to work for other numerical inputs of the given system, nor for more 
complex watercourses. A main challenge is therefore to obtain both tight and robust 

Table 1   Solving time for linear 
relaxation, MIP and dynamic 
big M for different combinations 
of inflow and initial reservoir 
volumes

High, medium and low inflow represents 1.5, 1.0 and 0.5 scaling of 
the original inflow. High, medium and low reservoir volume repre-
sents 1.0, 0.5 and 0.2 scaling of initial volume of both reservoirs. For 
dynamic big M g0 = 0.015 and gi = 0.003 ∀ i > 0

Inflow Initial storage Solving time [s]

Relaxation MIP Big M

High High 0.7 341.6 144.9
Medium 1.1 292.8 1.5
Low 1.4 333.1 1.0

Medium High 0.7 301.4 37.5
Medium 1.0 248.1 1.7
Low 0.9 81.1 2.1

Low High 0.9 326.6 16.5
Medium 1.9 22.9 2.5
Low 2.8 3.6 2.4

0.01 0.02 0.03 0.04 0.05
0

20

So
lv
in
g
ti
m
e
[s
]

First iteration

0.01 0.02 0.03 0.04 0.05

Other iterations

Fig. 6   Change in solving time (y-axis) for different values of gi (x-axis). Left figure shows for the first 
MIP iteration of the optimization where a distinct heuristic is used, while the right figure shows the aver-
age solving time for remaining MIP iterations
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coefficients, especially in the first iteration where there exists no good initial solu-
tion. The hydropower scheduling problem is typically solved multiple times every 
day as new information becomes available, and hence, solutions from previous runs 
may provide a good starting point for such a heuristic approach.

Methods in the domain of artificial intelligence have recently gained increased 
interest as supplementary methods to formal optimization, and [16] demonstrates that 
they can be used to improve the inputs to the formal optimization in a systematic way.

6 � Conclusion

Risk of overflow influences the short-term operation of hydropower systems, and 
accurate physical descriptions of the watercourses are necessary to provide optimal 
operation plans that respect the limitations of the system. In this paper, we address 
a common problem associated with the use of a relaxation to describe overflow in 
real-life operation planning. We present an alternative MILP formulation that pre-
vents model errors like overflow from reservoirs that are not full. The proposed 
formulation is implemented in the short-term hydro scheduling model SHOP from 
SINTEF Energy Research, which applies SLP to manage non-linearities. We also 
present a heuristic for updating the coefficient of the new integer variable. The 
results show that the MILP formulation effectively prevents nonphysical overflow, 
but that introducing integer variables increases the solving time of the MILP prob-
lems from a few seconds to around 30 min for a relatively small case. However, by 
using the proposed heuristic to update the so-called big-M coefficient of the integer 
variable reduces the solving time by more than 90%.

Solving time of the proposed MILP formulation is sensitive to how the big-M coef-
ficients are assessed, and hence, the coefficients need to be chosen carefully. The pre-
sented results consider a relatively small system, and deriving tight but still feasible 
upper bounds on the overflow variables will be more difficult in more complex sys-
tems. Moreover, it is also important to emphasize that there is no guarantee that larger 
systems will achieve a similar reduction in solving time. Therefore, to arrive to more 
solid conclusions, applications to larger systems need to be addressed in future work.
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