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Abstract
Since energy system models require a large amount of technical and economic data, 
their quality significantly affects the reliability of the results. However, some pub-
licly available data sets, such as the transmission system operators’ day-ahead load 
forecasts, are known to be biased and inaccurate, leading to lower energy system 
model performance. We propose a time series model that enhances the accuracy of 
transmission system operators’ load forecast data in real-time, using only the load 
forecast error’s history as input. We further present an energy system model devel-
oped specifically for price forecasts of the short-term day-ahead market. We dem-
onstrate the effectiveness of the improved load data as input by applying it to this 
model, which shows a strong reduction in pricing errors, particularly during periods 
of high prices and tight markets. Our results highlight the potential of our method 
the enhance the accuracy of energy system models using improved input data.

Keywords  Data pre-processing · Day-ahead electricity prices · Energy system 
modelling

1  Introduction

Energy markets are complex and exhibit non-trivial interdependencies, so decisions 
from policy and industry stakeholders rely on theoretical models and other meth-
odological support. Techno-economic energy system models are widely used in 
academia, policy-making and industry. Typically, they determine market equilibria, 
minimising production costs or maximising social welfare. A market’s supply and 
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demand sides are equally essential to derive equilibria. Various models have been 
developed using time series of load data as an essential input on the demand side. 
On the supply side, models focus on power plants (electricity system models) or gas 
production (gas systems). Transmission and distribution infrastructure, i.e., connect-
ing supply and demand, can also be included and analysed with energy system mod-
els. A strength of these models is that they can provide valuable insights into both 
causes and effects of current and planned developments, as well as into “what-if” 
types of analyses. They are capable of reflecting structural breaks better than most 
other model types. Thus, energy system models are among the most essential meth-
odologies for a successful energy transition.

However, they rely on the quality of input data to provide accurate results. Pre-
paring and collecting data for energy system models is a challenge, and tremen-
dous efforts have been done to generate techno-economic data ([see, e.g., 33, 56]) 
or forecast data ([see, e.g., 34]), among others. Moreover, literature has shown that 
widely used input data sets for energy system models, in particular load data and 
wind or solar forecasts from official sources, often have significant systematic errors 
[28, 39]. In our paper, we refer to these results and elaborate on how these errors 
can be reduced by real-time time series filters. Considering the errors as an econo-
metric time series, serial structures in these errors can be used to predict future 
errors, which in effect, significantly reduces the errors themselves. We then analyse 
whether using these improved input data in an energy system model will improve 
model quality.

The contribution of this paper is threefold. First, we develop and provide a sim-
ple time-series model reducing forecast errors of hourly day-ahead load predictions 
of transmission system operators (TSOs) in real-time. We focus on load forecasts 
because they are the most correlated with the prices of the day-ahead electricity mar-
ket and have the most potential for improvement compared with wind and PV fore-
casts [see, e.g., 39]. One advantage of our approach is that we take publicly available 
TSO-based load forecasts as given and thus, in modelling directly their prediction 
error as a predictable subject, do not need to develop a complex load forecast model. 
On country level, load forecasts are often used to represent the demand on the day-
ahead market clearing.1 Thus, load forecasts are central variables for determining 
equilibria of demand and supply in energy system models.

Second, we present a fundamental energy system dispatch model called the em.
power dispatch model, developed and calibrated precisely for short-term use in the 
day-ahead market. A primary objective of this model is to predict wholesale elec-
tricity prices. Using a rolling window, it consecutively determines the optimal power 
plant operation for three consecutive days. Moreover, the model considers hourly net 
transfer capacities to limit electricity transmission across countries and a formula-
tion for medium- and long-term energy storage. We describe these steps in detail in 
Sect. 4.

Third, we demonstrate the value of sequentially and continuously improving the 
quality of input variables in fundamental energy system models in the empirical 

1  In all main European markets, wholesale electricity prices are determined in the day-ahead market 
clearing one day before the actual delivery.
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part of the paper. We consider TSO day-ahead load forecasts provided by one of the 
most used data sources [21] and day-ahead prices forecasted with the energy system 
model for Germany, one of the largest and most liquid electricity markets in the 
world. By capturing and reflecting systematic biases and autoregressive structures, 
we reduce the mean squared error by 26% compared to the TSO-based load forecast. 
Therefore, market participants’ expectations of the day-ahead market clearing can 
be better reflected. As a result, the mean squared error of the em.power dispatch 
model’s price forecast is reduced by nearly 15% in hours with high prices using the 
improved load forecast compared to using the TSO load forecast. By demonstrating 
that energy system models with the improved load data perform significantly better 
compared to the TSO data, we provide valuable insights for many stakeholders in 
the power sector, particularly energy system model developers seeking to improve 
the validity of their models. Based on these results, we encourage energy system 
modelers and all users of fundamental input data to be aware of the predictable 
structure of their errors. In particular, stochastic modelling of the errors significantly 
reduces the forecast error of input data. It thus improves the quality of input data 
as part of sequential data pre-processing in real-time and offers the possibility to 
enhance the output of fundamental energy system models.

The remainder of the paper is organised as follows. First, we examine the litera-
ture on energy system modelling, data quality and time series modelling in Sect. 2. 
Section  3 presents the data used in this application. In Sect.  4, we provide and 
explain the methodology for the model improving the load forecasts and the energy 
system model used to evaluate the impact of the improved load data. The results are 
presented in Sect. 5. Finally, a conclusion is drawn in Sect. 6.

2 � Literature

With our paper, we address energy system modelers who model energy systems with 
a high degree of detail and therefore require large and as accurate as possible data 
sets. Out of a wide range of modelling applications, examples include the determi-
nation and assessment of long-term investment decisions for generation and storage 
capacities [e.g., 45, 54] or implications on short-term operational decisions [e.g., 
55], transmission expansion planning [e.g., 13, 53], the evaluation of carbon reduc-
tion paths [e.g., 61] and support schemes for renewable energy system [e.g., 31] and 
the evaluation of interdependencies between energy sectors (e.g., [36] for electricity 
and gas markets, [25] for transport, electricity and district heating, [32] for elec-
tricity, hydrogen and methane). Moreover, scholars developed stochastic models to 
assess the impact of uncertainty on a power system [50], for example, to quantify the 
expected costs of ignoring uncertainty of critical parameters in the electricity and 
gas sector. An overview and classification of stochastic models dealing with uncer-
tainty in the power sector is provided by [42]. With regard to uncertainty, scholars 
analyse the effect of risk preferences as well [e.g., 2, 41].

In particular, our paper analyses the impact of better load forecasts on the day-
ahead forecast of wholesale electricity prices using a fundamental energy system 
model. Estimating wholesale electricity prices is essential for making optimal eco-
nomic decisions (e.g., investment and dispatch of various technologies) and policy 
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decisions (e.g., calculating the implications of a coal phase-out). Wholesale elec-
tricity prices can be forecasted with multiple methodologies, all with their unique 
advantages and disadvantages. Energy system models have advantages, e.g., they 
perform exceptionally well at structural breaks, are based on a broad economic theo-
retical foundation explaining causality, and provide additional information beyond 
the forecast. Consequently, much attention has been paid in the literature to the sim-
ulation or prediction of electricity prices in energy system models. Scholars simulate 
electricity prices to quantify, for example, the drop in the market value of variable 
renewables [e.g., 27].  Additionally, [14] quantify market values for renewables gen-
erating electricity prices in a future power system with the help of an energy system 
model. To quantify weather-specific market values for a comprehensive database of 
onshore wind capacities in Germany, [15] derive market prices assuming different 
weather years. An agent-based model with rule-based bidding strategies to repro-
duce spot prices for the German bidding zone is used in [49]. 

Market power and strategic behaviour are other applications of wholesale price 
forecasts with energy system models. When modelling competitive market prices 
and comparing them with actual prices, they were able to point to serious problems 
(e.g., [44, 63] for Germany, and [5] for the United States).

These and many other model applications have a dedicated empirical focus. Thus, 
the high quality of input data is vital. For the European electricity sector, data is 
conveniently gathered and made publicly available by transmission system opera-
tors (TSOs) via the transparency platform of the ENTSO-E. The platform is a very 
ambitious and unique project to provide an extensive data set for electricity mar-
kets and is thus both well-known and widely used. Nevertheless, the data presented 
on the platform is not without its shortcomings regarding completeness and quality 
[see 28]. Furthermore, [39] analyse the quality of load data for the Germany-Luxem-
bourg bidding zone. They detect a bias in TSO load forecasts and develop an alter-
native load prediction model that incorporates information from these forecasts to 
remove the bias and thus achieve an enhanced load prediction. For the Spanish mar-
ket, [8] analyse the forecast errors of the TSOs day-ahead load forecasts for serial 
structures and influences of special days such as Christmas holidays or New Year’s 
Eve. Hence, researchers using such empirical data should raise awareness and aim to 
improve data quality.

With our paper, we aim to provide energy system modelers with a methodology 
to improve the quality of their results by improving the input data. Concerning load 
data, a comprehensive literature review of various methods and models for energy 
demand forecasting is given by Ref. [57, 58]. Among others, approaches for stan-
dalone load forecasting models are presented by [1, 9, 37, 46, 51, 59, 62, 64–66] and 
[67].

Load forecasts are publicly available. However, they can be improved with a 
simple and straightforward approach. Given a series of load forecasts with forecast-
ing errors that still show a predictable structure, the method proposed in this paper 
offers a possibility to enhance existing forecasts. We improve the forecasts by mod-
elling and removing predictable parts of the errors needing no other information 
than the forecast error itself. Implicitly, [67] use a similar step since they remove a 
structure from their forecasting model (first stage) in a second stage by a time series 
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approach. However, they rely on neural networks, while we propose a simple time 
series model.

In energy system modelling, activities to improve input data can be described as 
data pre-processing or, more precisely, continuous data processing and enhancement 
with subsequent use. Such continuous data processing is typically not performed for 
energy system models and the value it provides has not yet been researched. We 
believe this is a methodological gap in the literature and aim to bridge it by provid-
ing an approach to sequentially improving input data and sequentially using these 
continuously improved datasets in an energy system model. We demonstrate the 
effectiveness in an empirical application, focusing on the effect of better load fore-
casts for electricity price forecasts derived from energy system models.

3 � Data

Energy system models require extensive input data to model market equilibria on 
both the demand and the supply sides. Since this paper focuses on a day-ahead time 
horizon, TSO-based load forecasts published by ENTSO-E may be used as pre-
dictors for the demand side. However, as was pointed out in the literature section, 
the quality of these load forecasts is debated and will be improved in this paper. In 
Sect. 3.1, we first provide a detailed overview of the TSO-based load forecast data 
and forecast errors. Moving to the supply side of the energy system model, data on 
techno-economic parameters for conventional generation, renewables, storage and 
electricity transmission are of the utmost importance and are presented in Sect. 3.2.

3.1 � TSO‑based load forecast data

The load data set we use for our analysis contains hourly day-ahead load forecast 
data and hourly actual load data from January 1st, 2016, until December 31st, 2019, 
for Germany and Luxembourg. It was downloaded from the ENTSO-E transparency 
platform [21] in MWh. Missing values were replaced by the average of the value of 
the previous week and the week after.2 An illustration of the time series of the actual 
load, TSO load forecast and the resulting error, computed as the difference between 
actual load and load forecast, is shown in Fig. 1.

For the considered years, Table 1 contains descriptive statistics of the TSO load 
forecast errors defined as 𝜖t∶=Lt − L̂t , meaning actual load minus TSO load forecast. 
Thus, a positive error states an underprediction of load.

The TSO forecast data is mean-biased, as discussed in [39]. In our analysis, we 
find systematic underpredictions with a mean error of 881.3 MWh across all years 
and positive mean errors for every year.

However, the absolute level of the error and whether the TSO under- or over-
predicts in its forecasts depend on the day of the week and the hour of the day. Fig-
ure 2 states the averaged hourly forecast errors in a week. Broadly, we can observe 

2  There are 1105 missing values in the hourly TSO load forecast and 38 missing values in the hourly 
actual load data.
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Fig. 1   Actual load and TSO’s day-ahead load forecast in 2017 (left) and error of TSO’s day-ahead load 
forecast in 2017 (right)

Table 1   Descriptive statistics of TSO load forecast errors for the years 2016 to 2019

Except for LB hypothesis, all variables are given in [MWh]

All 2016 2017 2018 2019

Mean 881.29 1555.38 446.50 298.60 1222.84
Median 892.75 1468.00 479.50 395.63 1195.75
Minimum – 20,358.00 – 7752.50 – 7868.50 – 20,358.00 – 7415.00
Maximum 12,930.75 12,930.75 8392.50 9045.25 9635.25
5%-quantile – 2477.50 – 1684.03 – 2413.75 – 3180.63 – 2266.13
95%-quantile 4294.40 4894.20 3099.38 3644.75 4811.38
Std 2149.75 2079.19 1746.54 2341.68 2128.55
LB hypothesis 1.00 1.00 1.00 1.00 1.00

Fig. 2   Average weekly pattern 
of TSO day-ahead load forecast 
errors from 2016 to 2019



1 3

Enhancing energy system models using better load forecasts﻿	

underprediction during weekdays and overprediction on the weekends, especially on 
Saturdays. During the day, in the morning and the evening hours, the error of the 
TSO day-ahead load forecast is generally positive and higher than in the other hours 
of the day. With an average error of 943.53 MWh at 6 a.m. and 1180.48 MWh at 
7 p.m., the prediction error in these hours is higher by 7% (34%) than the mean 
error of the entire time period considered (compare with Table  1). These are the 
hours when the workday begins or ends and where production ramps up or down. 
Although the standard deviation of the forecast in these hours is not significantly 
larger than in the other hours, it appears that the load in these hours is still more 
challenging to forecast on average than in the other hours of the day (see weekday-
wise descriptive measurements in Table 5 for more details).

Finally, we perform Ljung-Box (LB) tests to verify the auto-correlation of the 
TSO load prediction errors. The null hypothesis at a 5% significance level is rejected 
for all years, which indicates a strong auto-correlation of the errors. Compar-
ing the errors with those one hour before (see Fig. 3), we can see a highly linear 
dependence.

In summary, the load data shows high auto-correlated TSO forecast errors, which 
average 1.56% of the total load’s mean. The mean absolute error of the TSO load 
forecast is 1776  MWh (3.14% of the total load’s mean). The TSO forecast errors 
are biased with some seasonal structures in the bias and are highly auto-correlated. 
Hence, autoregressive type models could improve the TSO load forecast.

3.2 � Input data for an energy system model

Aiming to analyse the impact of improved day-ahead load forecasts on the accuracy 
of electricity price forecasts, which are derived using an electricity system model, 
we develop and parameterise a European electricity market model with data from 
January 1st, 2017, until December 31st, 2019. A meaningful empirical parameteri-
sation of such models requires extensive input data derived from various sources. To 
model the demand side, the load data presented in the previous Sect. 3.1 is essential. 
Furthermore, there is typically an option to shed load during supply scarcities. In 
our application, we assume the costs for load shedding to be 3000 €/MWh.

Fig. 3   Scatterplot of TSO’s day-
ahead load forecast error and 
TSO’s day-ahead load forecast 
error one hour before
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On the supply side, several technologies are available for electricity generation 
and storage. Our energy system model distinguishes ten conventional thermal gen-
eration technologies, which form 30 capacity clusters according to a power plant’s 
commissioning year. We provide each of the capacity clusters with different effi-
ciencies, minimum outputs and efficiency losses in part-load operations, which are 
derived from [47, 56]. The capacity, fuel type, generation technology and commis-
sioning date are derived from [11, 20, 47]. For power plants on the German market, 
we additionally use data from [4, 60]. Fuel costs, costs for CO2 emissions and the 
power plant efficiency determine the variable generation costs of conventional ther-
mal technologies. For fuel costs, we use daily gas prices that are provided by Ref. 
[12], monthly coal prices are taken from [7], and monthly oil prices from [7]. Fuel 
costs for nuclear, lignite and waste are derived from [23]. These are assumed to be 
constant over time. Prices for CO2 certificates are implemented as weekly values 
from [52].

The process of starting up power plants requires the use of fuel, emits CO2 and 
leads to material wear in the plant. Data for start-up times, secondary fuel usage and 
depreciation are derived from [56].

The ability to generate electricity depends not only on the installed capacity but 
also on the technical availability of the plants. Therefore, we consider all scheduled 
and non-scheduled power plant outages known before the day-ahead market’s clo-
sure. Hourly outages are derived from [22].

Since combined heat and power (CHP) plants are used in most electricity mar-
kets, electricity and heat supplies are linked. To account for this dependency, we 
provide these units with a must-run condition that ensures their operation at certain 
minimum output levels. These output levels are derived in two steps. First, we deter-
mine an hourly heat-demand factor consisting of a temperature-dependent (spatial 
heating) and temperature-independent (warm water and process heat) part. The tem-
perature-dependent heat demand is generated with heating degree days using mean 
temperature data from [48]. We derive the temperature-independent heat demand 
using the hourly and daily consumption patterns from [26]. Second, we use the heat-
demand factor to allocate annual electricity generation volumes by CHP plants to 
single hours. The annual technology-specific electricity generation by CHP units is 
taken from [24].

In addition to conventional thermal technologies, we consider renewable energy 
sources (RES), energy storage, hydro-reservoirs and run-of-river. Intermittent RES 
such as onshore wind, offshore wind and photovoltaics (PV) are implemented by 
hourly availability factors that are derived from feed-in forecasts from [19]. We do 
not also improve these forecasts by sequentially modelling their forecast errors in 
order to clearly measure the impact on the quality of the price forecast when we 
improve the forecast of the variable that not only offers the greatest potential for 
improvement but is also most strongly correlated with day-ahead electricity spot 
market prices. Biomass is implemented as base-load as the historic operation is at a 
constant level [compare 16].

We exclusively consider pumped storage plants (PSP) for energy storage that 
actively charge and discharge. The overall turbine capacity of PSPs is made avail-
able by Ref. [20], and the efficiency of a storage cycle is around 75% [56]. For 
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PSPs, the energy storage capacity and the turbine capacity are linked. Assuming an 
energy-power factor (epf) of nine, the plant can generate electricity at full load for 
nine hours until the storage is empty.

Long-term PSP, as well as hydro-reservoirs, are assigned a variable generation 
cost, i.e., the value for water consumption. Using historical electricity prices from 
[17] and the observed generation and pumping activities in the respective hour 
from [16], a step-wise merit-order for long-term PSP and hydro-reservoirs is con-
structed. Run-of-river and mid-term PSP3 are subject to seasonal variations, which 
we acknowledge by a monthly availability factor derived from historical generation 
data from [16].

The German electricity market is highly integrated into the European system. 
Total interconnector capacity amounts to 27 GW, which is more than 30% of the 
German peak load.4 Both annual aggregated exports (around 13% of annual Ger-
man consumption in 2019) and imports (around 7% in 2019) are significant. Hence, 
we parameterise a Pan-European electricity market model, which includes the bid-
ding zones of most EU-27 member states,5 Norway, Switzerland and the United 
Kingdom.6 Within Germany, day-ahead electricity prices are derived following 
the bid-based economic dispatch principle, neglecting the market zone’s physical 
transmission constraints. Since the energy system model focuses on analysing day-
ahead prices, we follow this approach and treat all of Germany, plus Luxembourg, 
as one bidding zone.7 Thus, we include 23 different markets in the analysis, which 
will be referred to as ‘nodes’ in the formal model, connected by net transfer capaci-
ties (NTCs). We implement hourly day-ahead forecasts for NTCs made available by 
Refs. [18, 30].

As the data parameterisation may be interesting for numerous stakehold-
ers but is difficult and time-consuming to replicate, we publish our input 
data in the supplementary material: https://github.com/ProKoMoProject/
Enhancing-Energy-System-Models-Using-Better-Load-Forecasts.

4 � Methodology

In the following, we present our two components to analyse the value of improved 
day-ahead load forecasts for electricity price forecasts derived by an electricity 
system model: a time series model for the sequential load data pre-processing and 

3  Note that we call it mid-term because we focus on the day-ahead market with an hourly granularity, as 
opposed to short-term storage with an intra-hourly resolution closer to time of delivery.
4  Note that the availability of the interconnectors depends on various factors (e.g., congestion within a 
market zone).
5  Bulgaria, Cyprus, Greece, Iceland, Ireland, Malta and Romania are not included.
6  Note that we aggregate the bidding zones of Spain and Portugal to one market, ‘Iberian peninsula’, and 
the bidding zones of Lithuania, Estonia and Latvia to one market, ‘Baltic’. Also, note that we consider 
the different bidding zones within countries. However, we aggregate the following zones: in Norway 
NO1-NO5, in Sweden SE1-SE3, and in Italy all zones except IT-North.
7  Note that the market area, Germany-Luxembourg-Austria, was split into two market zones (Germany-
Luxembourg and Austria) in 2018. Our model accounts for this fact.
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improvement in Sect. 4.1 and the dispatch market model that is used to generate 
price estimators in Sect. 4.2.

4.1 � Model for load forecast error

To improve load forecasts, we use a well-known time series approach that 
achieves a trade-off between performance and complexity. The approach is based 
on the idea of forecasting the TSO load forecast error and using this to enhance 
the load prediction. Thus, we model the time series of forecast errors. For this 
reason, and to obtain a low-parameter model, we do not use exogenous variables 
such as feed-in of renewable energy or weather in our model for forecasting the 
load forecast error, in contrast to the main load forecasting methods in the litera-
ture, which include temperature and weather data in particular, e.g., [1, 3, 8, 35, 
66]. We propose a purely endogenous time series approach that can be applied 
using TSO load forecast error alone as input data. It is detached from the outgo-
ing model, which generally already includes exogenous variables. With forecast-
ing the forecast error, the resulting load prediction L̂t

∗ at time t is then given by

where L̂t is the original TSO load prediction and 𝜖t is our forecasted TSO load pre-
diction error. Thus, L̂∗ is an improved load forecast in which we adjust the original 
forecast for predictable structure in its error.

For the overall setup, the subindex t will denote consecutive hours. So, L̂1 , for 
instance, is the load forecast for the first hour of the considered time period, and 
L̂123 is the forecast for the hour 123. This fits best into the observation process 
of the actual load data. For example, in contrast to electricity prices, for which 
we observe a realisation of 24 daily hourly prices simultaneously, load data can 
theoretically be observed hour by hour. For day-ahead electricity prices, alterna-
tive parameterizations, such as modelling every day as a 24-dimensional vector, 
or using 24 time series each for one hour of the day, would be more appropriate 
[see, e.g., 69].

Furthermore, we decompose the time series into the sum of a seasonal com-
ponent and a remaining stochastic component. As we do not observe any trend in 
the forecast error data in Sect. 3.1, we do not use the usual trend component of 
such decomposition models (see, e.g., [6, 29, 38] for comprehensive introductions 
into time series models). Together, the model is

where �t is the TSO load forecast error, SCt is a seasonal and RCt is the remaining 
component at time t.

The forecast errors’ average sizes depend on the specific hour of the week (see 
Sect. 3.1), so the seasonal component SCt captures a weekly season, consisting of 

(1)L̂t
∗
= L̂t + 𝜖t,

(2)�t = SCt + RCt,
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an average value for each of the 24×7 h of a week. This means addressing the hour 
of the day and the day of the week with a total of 168 dummy variables, as given by

Here h = 1, ..., 24 denote the hours of a day and d = 1 (Monday), ..., 7 (Sunday) 
the weekdays of a week.

The seasonal component SCt for time t is now defined by Eq.  3 with 4 being the 
average of TSO forecast errors from the hours of a week from the time period used 
to estimate the model (e.g., the last lw hours).

The rest of the time series RCt = �t − SCt is modelled by the econometric SARMA 
(1, 1)x(1, 1)24 model given in Eq. 5, i.e., a (S)easonal (A)uto(R)egressive (M)oving 
(A)verage model. Here, the value RCt at hour t depends on its previous value at t − 1 
as well as the previous model error �t−1. Additionally, the model contains a 24-h 
seasonal part which captures stochastic seasonal behaviour in contrast to the more 
deterministic seasonal structure filtered by SCt. Formally, the seasonal part leads to 
direct effects of all variables lagged by another 24 h on RCt as given in detail in Eq. 
(5).

where the innovations are assumed to be homoscedastic and normally distributed, 
which means �t ∼ N(0, �2

�
) . Assuming a normal distribution for the innovations is a 

simplification and idealisation.
We calibrate and estimate the model on a rolling window. The window length, 

denoted by lw , is an integer multiple of 24 and thus contains full days only. The win-
dow is also rolled over full days in each step to further reflect the daily availability 
of load data and, thus, the error of the TSO’s load forecast. In this work, we decide 
on one window length lw to estimate the model. Alternatively, one could average 
multiple models calibrated on different window lengths, e.g., as proposed in [39, 
40, 69]. However, in this paper, where the simplicity and usability of the model are 
important considerations, we believe such an increase in complexity would not be 
justified.

HoW
h,d
t

=

{

1, if t is the h-th hour of the d-th day of the week,

0, otherwise.

(3)SCt =

24
∑

h=1

7
∑

d=1

HoWh,d
t

⋅ HSh,d,

(4)HSh,d∶=

∑t−h−24

s=t−h−lw−23
�s ⋅ HoW

h,d
s

∑t−h−24

s=t−h−lw−23
HoW

h,d
s

,

(5)

RCt =�0 + �1 ⋅ RCt−1 + �24 ⋅ RCt−24 − �1�24 ⋅ RCt−25

+ �1 ⋅ �t−1 + �24 ⋅ �t−24 + �1�24 ⋅ �t−25

+ �t,
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The estimated model is used to recursively (i.e., on an hour-by-hour basis) predict 
the hours of the next day. Since we rely on an autoregressive time series model, we 
need load data from the last hours for prediction, which enter the model as explana-
tory variables. Although load generation can theoretically be observed hourly, in 
practice, the load values of the previous hours are available with a time lag, meaning 
they may not be available as explanatory variables when forecasting the following 
hours. A solution is to replace unavailable variables with recursively forecasted vari-
ables based on the last available observations.

To ensure data availability in the sense of a day-ahead forecast at all times, we 
only use load observations up to yesterday’s last hour for TSO data as inputs if we 
make predictions today for tomorrow. Today’s hours must be replaced by forecasts 
based on yesterday. More clearly, let t=8785 be the first hour of January 1st, 2017, 
for simplicity and let x be the hour of January 1st from which we forecast the next 
day’s hours. In the further course, we assume x = 12 , so we forecast the next day’s 
hours between 11:00 and 12:00 a.m. today. Depending on availability, real TSO load 
forecast errors �t enter our model or forecasted ones. For hour t ≤ x − 12 , we use the 
observed real errors �t and the forecasted ones 𝜖t for t > x − 12 . We want to predict 
the load for the next day’s 24 h, thus, x + 13 to x + 37 . Due to the information delay 
and ensuring data availability, we do not indicate the actual load of hours x − 11 to 
x − 1 . We also have no information about the hours x to x + 12 lying in the future. 
For this reason, we first estimate the model based on the last available lw observa-
tions (i.e., of hours x − 12 − (lw + 1) to x − 12 . From that, we predict the errors of 
the TSO load forecast of the next 48 hours x − 11 to x + 37 , i.e., of the hours of 
January 1st and 2nd, and use the last 24 predicted values. Thus, at hours x + 13 to 
x + 37, for improving the original load forecasts of the following day. Note that by 
rolling over the estimation window daily, we ensure that the prediction of TSO fore-
cast errors for all load periods of one day is based on the same estimated model.

The proposed model is implemented in MATLAB®. For this paper, the code is 
run with MATLAB®Version R2020b. The code, used data and the generated result 
are provided on GitHub: https://​github.​com/​ProKo​MoPro​ject/​Enhan​cing-​Energy-​
System-​Models-​Using-​Better-​Load-​Forec​asts.

4.2 � Energy system model

We develop a new energy system model, the em.power dispatch model, to derive 
wholesale day-ahead price forecasts. The model is formulated as a linear optimisa-
tion problem minimising total system costs and includes a detailed representation of 
central techno-economic aspects of the European electricity sector. In particular, the 
model dispatches various generation technologies to satisfy electricity demand. In 
addition to power plant dispatch in Germany, the model considers international trade 
between the markets described in 3.2, electricity production by combined heat and 
power plants, energy storage and control power provision. To ensure a linear formu-
lation of such a highly complex system, we form capacity clusters, parameterised 
as described in 3.2. Within each technology cluster, capacity can be started-up and 
electricity can be produced in marginal increments [see, e.g., 44]. The advantage of 

https://github.com/ProKoMoProject/Enhancing-Energy-System-Models-Using-Better-Load-Forecasts
https://github.com/ProKoMoProject/Enhancing-Energy-System-Models-Using-Better-Load-Forecasts
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this approach is twofold. First, computational efforts are reduced. Second, the mar-
ginal of the demand restriction is differentiable at each point and can thus be inter-
preted as a wholesale market price estimator. Additionally, the accuracy of model-
ling large energy system, in particular, remains reasonably high [43, see].

Considering all economic and technical restrictions, the model solves the cost 
minimisation problem and determines (i) the optimal dispatch decision for all con-
sidered infrastructure elements, such as generation technologies, energy storage and 
cross-border transmission capacities, and (ii) the short-run marginal system cost that 
determines the price estimator for the day-ahead market in hourly resolution.

Furthermore, as our research analyses the impacts on day-ahead price forecasts, 
we set up the model to reflect the information available to market participants on the 
day before delivery. We thus consider that market participants do not have perfect 
foresight for the upcoming days. We achieve this with a rolling window model that 
is repeatedly solved and provides information for 24 day-ahead hours of one “target 
day” in each model run. To reduce the problem of starting and ending values, in par-
ticular for power plant start-ups and pump storage plants, each model run includes 
3 days, as shown in 4. In this setting, the 24 h of the respective target day are rep-
resented by the second day of the horizon (d+1). This is following the EPEX spot 
market organisation, where 24 hourly day-ahead prices are determined at 12 p.m. on 
the day before delivery (d). In addition to the target day d+1, we also include the day 
before (d) and the day after (d+2). Note that we include a water value to increase the 
accuracy of seasonal hydro-storage modelling.

As with the improvement of the load forecast, this approach is repeated continu-
ously (“rolling window”), once for each day of the observation period. At each itera-
tion, the input data for d+1 and d+2 are limited to the values available on day d (i.e. 
forecasts), so that the incoming day-ahead load forecast is successively improved 
and processed in our approach. Correctly parameterised, our model uses the same 
data as market participants (e.g., energy suppliers, direct marketers, investment 
banks) when forecasting the day-ahead prices to optimise their portfolio. Given this 
day-ahead focus of our analysis, installed and available capacities are exogenous. 
The model endogenously optimises power plant dispatch only.

Our rolling window approach to forecasting hourly prices implies that we fore-
cast three years with 365 daily model runs each year. As each model run comprises 
72 hourly dispatch decisions with numerous variables in 23 model regions, the total 
number of variables is 340 million. In the following, we present the mathemati-
cal formulation of our model. The model is coded in GAMS.8 The entire code is 
provided on GitHub: https://github.com/ProKoMoProject/Enhancing-Energy-Sys-
tem-Models-Using-Better-Load-Forecasts. A nomenclature containing all indices, 
parameters and variables of the energy system model formulation is provided in 1.

Fig. 4   Illustration of the rolling 
window

8  GAMS General Algebraic modelling System Version 41 (https://​www.​gams.​com/). The computer 
specification the code was running on are as follows: 199 GB RAM, 2.8–3.2 GHz Processor.

https://www.gams.com/
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The objective function in Eq. 6 minimises total system costs and accounts for all 
costs that generation units face in the short-term. We include costs at full load opera-
tion ( vcFL

i,n,t
 ), additional costs for units that operate at partial load ( vcML

i,n,t
− vcFL

i,n,t
 ), and 

start-up costs ( sci,n,t ). Note that we apply a linear formulation of the unit commit-
ment, and all units have to produce at least a minimum output level. Additionally, 
we account for load shedding costs (voll) and penalty payments for curtailing renew-
ables (curtc).

Since we apply our model with a rolling window, we consider three days in each 
model run. Modelling an additional day before and after the target day seems appro-
priate for storages with large energy-to-power ratios, which are essentially operated 
on a daily cycle (e.g., the largest German pump storage facility, Goldisthal, can store 
enough energy for nine hours of full load operation). However, other storages (both 
PSP and seasonal storages without pumps) have a storage cycle longer than 3 days. 
Therefore, we model two types of PSP, first as mid-term storage that operates a stor-
age cycle within a 3-days horizon, and second as long-term storage that operates a 
storage cycle longer than 3 days. The dispatch of mid-term storage is determined 
endogenously, with the exogenous restriction that they both start and end the cycle 
with reservoir levels at 30%. The approach is different for long-term PSPs, which 
are assigned a water value ( wvstl,n,t ) that is implemented as a variable cost factor for 
electricity generation ( Gstl,n,t ) and consumption ( CLstl,n,t ). We assume that 70% of 
the pump storage capacity is optimised in the medium-term. The remaining 30% are 
long-term PSPs.

Compared to pumped storage plants, hydro-reservoirs have a natural water feed-in 
and do not perform a pumping process. However, the water budget for electricity 
generation is limited according to seasonal inflow volumes. Therefore, we also apply 
a water value for electricity generation by hydro-reservoirs.

Market clearing is ensured by Eq. 7: for all T hours of the given rolling window, 
demand ( dn,t ) must equal the sum of generation ( Gi,n,t ), load shedding ( SHEDn,t ) 
and electricity imports ( FLOWnn,n,t ), reduced by electricity consumption of mid-
term energy storage ( CMstm,n,t ) and long-term energy storage ( CLstl,n,t ) and elec-
tricity exports ( FLOWn,nn,t).

(6)

minTC =
∑

i,n,t

Gi,n,t ⋅ vc
FL
i,n,t

+
∑

i,n,t

SUi,n,t ⋅ sci,n,t

+
∑

i,n,t

(Pon
i,n,t

− Gi,n,t) ⋅ (vc
ML
i,n,t

− vcFL
i,n,t

) ⋅ gmin
i

∕(1 − gmin
i

)

−
∑

stl,n,t

CLi,n,t ⋅ wvstl,n,t +
∑

n,t

SHEDn,t ⋅ voll

+
∑

n,t

CURTres,n,t ⋅ curtc
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The dual variable of the demand constraint Eq.  7 is used as an hourly day-ahead 
wholesale electricity price estimator. As we want to analyse how well these price 
estimators based on different demand forecasts fit real-world day-ahead prices, we 
compare them and compute error measures.

Electricity generation by capacity cluster is limited by an upper and a lower 
bound. The upper bound is formalised in Eq. 8 and ensures that electricity genera-
tion does not exceed the running capacity ( Pon

i,n,t
 ) in the cluster. The possible electric-

ity generation by running capacity is further limited by the reserve for positive con-
trol power provision ( PCRi,n,bp, SCR

pos

i,n,bs
 ). The lower bound is presented in Eq. 9 and 

states that running capacities must operate at least at a minimum power level, includ-
ing the capacity reserved for negative control power provision ( PCRi,n,bp, SCR

neg

i,n,bs
 ). 

Note that primary control power ( PCRi,n,bp ) in Germany is provided synchronously, 
i.e., a unit has to provide both positive and negative primary control power. Different 
products for positive and negative control power were introduced for secondary con-
trol power. Since fast-reacting units (e.g., hydro- and open-cycle gas turbines) can be 
started-up to provide a positive-minute reserve, the effect on the running capacities 
is neglected. In addition, we assume that a negative-minute reserve is provided by 
multiple market players, not necessarily by power plants. The hours that belong to 
bidding blocks are mapped for primary control power by bp and secondary control 
power by bs.

The running capacity of a power system is limited by the installed capacity 
( capi,n,t ) in combination with either the availability factor ( afi,n,t ) or power plant out-
ages ( outi,n,t ), as shown in Eq. 10. For thermal generation capacities, we use hourly 
power plant outages. Renewables are provided with an hourly availability factor and 
hydroelectric units with a monthly availability factor.

Equation 11 tracks start-up activities ( SUi,n,t ) that increase the running capacity 
from one hour to another. Due to the non-negativity condition, start-ups are either 
positive or zero.

(7)

dn,t =
∑

i

Gi,n,t −
∑

stm⊂I

CMstm,n,t −
∑

stl⊂I

CLstl,n,t + SHEDn,t

+
∑

nn

(FLOWnn,n,t − FLOWn,nn,t)

∀n, nn ∈ N, t ∈ T

(8)
Gi,n,t ≤ PON

i,n,t
− PCRi,n,bp|t∈bp − SCR

pos

i,n,bs|t∈bs

∀bp ∈ BP, bs ∈ BS, i ∈ I, n ∈ N, t ∈ T

(9)
Pon
i,n,t

⋅ gmin
i

+ PCRi,n,bp|t∈bp + SCR
neg

i,n,bs|t∈bs
≤ Gi,n,t

∀bp ∈ BP, bs ∈ BS, i ∈ I, n ∈ N, t ∈ T

(10)Pon
i,n,t

≤ capi,n,t ⋅ afi,n,t − outi,n,t ∀i ∈ I, n ∈ N, t ∈ T
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The delta between available feed-in from intermittent renewables and their actual 
generation defines the curtailment of renewables ( CURTres,n,t ), as shown in Eq. 12.

Some power plants are active in the heat market in addition to the electricity mar-
ket. The model thus implements a must-run condition for such units on the electric-
ity market, which varies over time (e.g., higher in the winter season due to space 
heating). Depending on hourly heat demand, Eq. 13 states that the output of a com-
bined heat and power unit is at least equal to the electricity generation linked to the 
heat production ( chpi,n,t).

Equation 13 constraints the cross-border electricity transfer ( FLOWn,nn,t ) by the 
net transfer capacity ( ntcn,nn,t).

Equation 15 describes the state of the storage level of a mid-term storage. The 
storage level is increased by the generation ( Gstm,n,t ) and decreased by the consump-
tion while charging ( STin

stm,n,t
 ). The efficiency of an entire storage cycle ( �stm ) is 

assigned to the charging process.

The maximum energy storage capacity ( SLstm,n,t ) of a mid-term storage is defined 
by the maximum installed turbine capacity times an energy-power factor (epf), as 
shown in Eq. 16.

Equation  17 restricts the turbine and pumping capacity, where the pumping 
capacity is assumed to be lower than the turbine capacity.

At the beginning and end of each model run, all mid-term storages must be filled 
with 30 % of their energy level (Eqs. 18 and 19).

Long-term storage is not subject to a storage mechanism. However, the electric-
ity generation and consumption of long-term storage units are also restricted by the 
installed capacity of long-term storage by Eq. 20.

(11)Pon
i,n,t

− Pon
i,n,t−1

≤ SUi,n,t ∀i ∈ I, n ∈ N, t ∈ T

(12)capres,n,t ⋅ afres,n,t = Gres,n,t + CURTres,n,t ∀res ∈ I, n ∈ N, t ∈ T

(13)chpi,n,t ≤ Gi,n,t ∀i ∈ I, n ∈ N, t ∈ T

(14)FLOWn,nn,t ≤ ntcn,nn,t ∀n, nn ∈ N, t ∈ T

(15)
SLstm,n,t = SLstm,n,t−1 − Gstm,n,t + CMstm,n,t ⋅ �stm

∀stm ∈ I, n ∈ N, t ∈ T

(16)SLstm,n,t ≤ capstm,n,t ⋅ epf ∀stm ∈ I, n ∈ N, t ∈ T

(17)Gstm,n,t + 1.1 ⋅ CMstm,n,t ≤ capstm,n,t ∀stm ∈ I, n ∈ N, t ∈ T

(18)SLstm,n,tfirst = 0.3 ⋅ capstm,n,t ∀stm ∈ I, n ∈ N, tfirst ∈ T

(19)SLstm,n,tlast = 0.3 ⋅ capstm,n,t ∀stm ∈ I, n ∈ N, tlast ∈ T
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Equations 21, 22 and 23 ensure the control power provision for primary, positive 
secondary and negative secondary control power.

The non-negativity constraint is presented in Eq. 24.

We use both models presented alternately. To predict the next day, we first forecast 
the load forecast error with the load forecast improvement model and thus enhance 
the day-ahead load forecast. As one input data, it enters the power system model, 
which estimates the next day’s prices using the presented approach. This sequence 
is repeated continuously day by day over the rolling window for all points in time in 
our observation period.

5 � Results

Our paper explores two different methodologies that are combined. It presents a 
forecast error improvement model for load forecasts based on data from ENTSO-E, 
and it develops the energy system model em.power dispatch which is built for day-
ahead wholesale price forecasts. We present the results accordingly. First, we show 
the performance of our approach to model the load forecast error. Therefore, we use 
statistical data and different error measures for various time periods of the enhanced 
load forecast. With our approach we are able to reduce the RMSE of load forecast 
error by 22.5%. Second, we analyse the impact of the improved forecast on the 
resulting price estimates of the em.power dispatch model. Therefore, we compare 
the resulting price estimators generated with the original TSO load forecast L̂ and 
the enhanced load forecast L̂∗ with the actual price observed at the day-ahead market 
using several error measures: mean squared error (MSE), root mean squared error 
(RMSE), and mean average error (MAE). We find that during hours with relatively 
high prices, the usage of improved load forecasts leads to a reduction of prices’ fore-
cast mean squared error by nearly 15%.

(20)Gstl,n,t + CLstl,n,t ≤ capstl,n,t ∀stl ∈ I, n ∈ N, t ∈ T

(21)
∑

i

PCRi,n,bp = prn ∀bp ∈ BP, n ∈ N

(22)
∑

i

SCR
pos

i,n,bs
= srpos

n
∀bs ∈ BS, n ∈ N

(23)
∑

i

SCR
neg

i,n,bs
= srneg

n
∀bs ∈ BS, n ∈ N

(24)

0 ≤CLstl,n,t,CMstm,n,t,CURTres,n,t,Gi,n,t,FLOWn,nn,t,

Pon
i,n,t

,PCRi,n,bp, SCR
neg

i,n,bs
, SCR

pos

i,n,bs
, SHEDn,t, SLstm,n,t, SUi,n,t

∀bp ∈ BS, bs ∈ BS, i ∈ I, n ∈ N, t ∈ T
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5.1 � Improved load data and achieved error reduction

In the following, we quantify the TSO forecast error improvement model described 
in Sect. 4.1. Therefore, we compare the improved load forecast L̂∗ and the TSO load 
forecast L̂ with actual load data L. For the error improvement model, we use a roll-
ing window width of 1 year (i.e., lw = 8760 ), which yields the lowest (out of sam-
ple) error measures compared with a width of three months and six months. For 
this reason, the prediction of the forecast error, and thus the out-of-sample period, 
begins on January 1st, 2017. Table 2 shows the mean and standard deviation of the 
TSO load forecast error and the enhanced load forecast error, the error measures 
MSE, RMSE and MAE of the TSO load forecast and of the enhanced load forecast, 
as well as the percentage improvement.

While the load was severely underestimated in the TSO forecast with a mean of 
656.0 MWh, it is slightly overestimated in the improved model with −98.9 MWh. 
Looking at the individual annual mean values, the high negative value in 2017 is par-
ticularly striking. The reason for this is the very strong underestimation of the TSO 
load forecast in 2016, with an average deviation of 1555.4 MWh (see Sect. 3.1). The 
influence of errors from the year 2016 has a large impact due to the rolling window 
period of 365 days, especially on the model estimates of the first days and months 
of 2017. A shorter window period of three months sinks the annual mean value of 
2017 but has a minor improvement in error measures (see 6).

The standard deviation of the improved load forecast is lower than the standard 
deviation of the TSO load forecast across all years.

The error measures MSE and MAE given in Table 2 show a significant improve-
ment of the load forecast. With an RMSE of 2224.6 MWh, we achieve a 21.48% 
improvement over the TSO load forecast for the period from January 1st, 2017, 

Table 2   Means, standard deviations and error measures (MSE, RMSE, MAE) for the original TSO day-
ahead load forecast (TSO) and the improved day-ahead load forecast (Impr.)

MSE is given in [MWh2 ], and all other variables in [MWh]

year all 2017 2018 2019

Mean TSO 655.98 446.50 298.60 1222.84
Impr −98.89 −229.06 −36.32 −31.29

Std TSO 2125.72 1746.54 2341.68 2128.55
Impr 1743.89 1465.74 2043.67 1665.56
TSO 4,948,990.80 3,249,416.14 5,572,010.71 6,025,545.56

MSE Impr 3,050,928.19 2,200,617.23 4,177,415.90 2,774,751.43
% Improvement 38.35 32.28 25.03 53.95
TSO 2224.63 1802.61 2360.51 2454.70

RMSE Impr 1746.69 1483.45 2043.87 1665.76
% Improvement 21.48 17.71 13.41 32.14
TSO 1691.37 1396.45 1726.67 1951.00

MAE Impr 1253.95 1106.12 1372.55 1283.17
% Improvement 25.86 20.79 20.51 34.23
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to December 31st, 2019. The most considerable improvement can be observed in 
2019 with 32.14%. A breakdown of the improvement among the components (sea-
sonal and remaining) of the model shows that both the seasonal and remaining 
components account for a large share of the improvement, and neither component 
dominates.

Reference [39] also improve the TSO load forecast. From October 1st, 2016, to 
September 30th, 2019, they achieve an enhancement in RMSE over 365 days from a 
minimum of 23.71% to a maximum of 34.38%. Comparing both, achieving a slightly 
higher improvement also means using a multivariate modelling framework with six 
different rolling window widths, and consequently six model estimates and six point 
forecasts for each hour of the forecast period. Our approach is intended to allow a 
user with less modelling expertise and computational capacity to enhance the com-
monly used TSO forecast of load. With a less complex, univariate model, we still 
achieve substantial improvement and thus error measurements that are comparable 
with error measurements in the literature [e.g., in 10, 68, 35].

To better attribute and understand the effect of load improvement on price, we 
also determine the percentage improvement in MSE for the hours of a day, and the 
days of the week, as shown in Fig.  5. The observed daytime and weekday struc-
tures in the TSO load forecast error are also evident in the improvement. During the 
day, hours 2 through 5 and 16 through 20 achieve the most considerable percent-
age improvement. Weekdays can be improved more than weekends; Tuesdays and 
Wednesdays show an especially strong improvement. In the TSO load forecast, these 
are the hours and days that have the largest mean error. Therefore, hours and days 
that have a sizeable mean error are the ones that have the most potential for improve-
ment. Enhancing the load forecast by reducing this error is the primary goal of mod-
elling and predicting the error of the TSO load forecast.

5.2 � Impact of improved load data on an energy system model

In the previous Sect.  5.1, we proved that with a relatively straightforward 
approach, the ENTSO-E load data can be significantly improved. Thus, this 

Fig. 5   Average percentage MSE improvement for the day-ahead load forecast for each hour of a day 
(left) and for each weekday (right)



	 T. Möbius et al.

1 3

approach is particularly suitable for energy system modelers to enhance critical 
input data. In the following, we quantify the impact of the improved load forecast 
on day-ahead wholesale price forecasts based on the em.power dispatch model. 
To do this, we run the model twice, first using the original TSO-based load fore-
casts L̂ and second, using the improved load forecasts L̂∗ presented in Sect. 5.1. 
For both cases, we derive estimates of the day-ahead wholesale prices and cal-
culate error measures comparing the results to actual observed day-ahead prices.

Using the improved load data set, we see an overall reduction in the error of 
the price estimator. For the entire time horizon, Table 3 states a reduction of the 
MSE by 1.75%, the RMSE by 0.88% and the MAE by 0.42%.

Comparing our results with those of other models in the same modelling class, 
we find that our model generates very good price estimates. In [49], for example, 
report an MAE of 9.44 €/MWh for 2017, 8.88 €/MWh for 2018 and 6.69 €/MWh 
for 2019.

Table 3 further shows disaggregated error measures by year. It can be seen that 
an improvement in the error measure is achieved in all three years. However, the 
magnitude of this improvement varies; the relative error reduction is largest in 
2019 and smallest in 2018. This observation correlates with the magnitude of the 
annual improvement in the load forecast, shown in Fig. 5.

Furthermore, we analysed whether the improvement of the load estimator and 
the price estimator correlate with the hour of the day. Figure 6 shows the average 
percentage improvement of the MSE of the day-ahead load prediction per hour 
of the day (left) and of the day-ahead price estimators (right). It can be seen that 
an hour’s load and hour’s price improvement do not correlate. Depending on the 
respective hour of the day, improvement of load prediction seems to have a differ-
ent impact on the resulting price estimator.

The reasoning for this discrepancy is two-fold: i) the model is more sensitive in 
one hour than in another hour, depending on the respective position in the merit 
order, and ii) an improvement in the load forecast in one hour may affect another 
hour due to temporal interdependencies such as storage operation and unit com-
mitment decisions.

Table 3   Error measures for the price estimator of the em.power dispatch model comparing the improved 
load forecasts (Impr.) by original load forecasts (Orig), given in [MWh2 ] for MSE, in [MWh] for RMSE 
and MAE

All years 2017 2018 2019

Impr Orig Impr Orig Impr Orig Impr Orig

[1] MSE 89.15 90.73 133.13 135.29 72.47 73.22 61.84 63.70
[2] RMSE 9.44 9.53 11.54 11.63 8.51 8.56 7.86 7.98
[3] MAE 5.94 5.96 6.75 6.80 5.98 6.04 5.09 5.28
Reduction [1] 1.75% 1.62% 1.04% 3.01%
Reduction [2] 0.88% 0.81% 0.52% 1.49%
Reduction [3] 0.42% 0.85% 1.02% 3.65%
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Having shown that the impact of better load forecasts on price forecasts derived 
in an energy system model is positive on average but varies between hours, we 
now examine the extent of error reduction at different points in time, starting with 
differentiation between high (Peak) and low demand (Off-Peak) periods. Figure 7 
states the error reduction of the price estimator and that of the load forecast for 
the entire time period and time categories peak, off-peak, weekdays and weekend 
days. The most considerable error reduction of the price estimator is observed in 
peak hours and on weekdays in general. In the hours between 8 p.m. and 8 a.m. as 
well as on weekends, the effect on the price estimator is relatively low. On week-
ends, this observation correlates with the improvement of the load data, both of 
which are at their minimum. However, in off-peak hours, the impact on the price 
estimator is negligible, despite the great improvement in the load forecast.

As such, the model benefits significantly from improved load input data during 
peak hours and in total on weekdays, where demand and price levels are generally 
higher than off-peak hours and especially on weekends.

Based on the observation that price forecasts improve more during peak peri-
ods than in off-peak periods, we analyse the relation between wholesale price and 
forecast improvement. Figure 8 shows the improvement of the price estimator for 
five different price segments where electricity prices are equally separated in 20% 
quantiles based on their level. The first quantile (q1) represents the lowest 20% 

Fig. 6   Average percentage MSE improvement of day-ahead load prediction (left) and day-ahead price 
estimators (right) for each hour of a day

Fig. 7   Percentage error reduc-
tion of the price estimator and 
the load in different time periods
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quantile and the last quantile (q5) the highest 20% quantile of electricity prices of 
the respective year between 2017 and 2019.

It can be seen that the error reduction of the price estimator is most relevant 
in hours with high and medium prices. Overall, the largest improvement can be 
observed in 2018 and 2019 with an MSE reduction of nearly 15%, here at times with 
the 60–80% highest prices. In contrast, the improved load forecast data does not lead 
to a better price estimator in low-price periods. In all years, we even observe an 
increasing error in these price ranges. In summary, the improved load forecast is 
most beneficial for the model in the hours when the market equilibrium is found on 
the right side in the merit order, i.e., where changes or errors in the demand have the 
highest price impact.

Hence, our analysis shows that the price forecasts are generally better when (a) 
demand is high and (b) prices are high. As traded volumes (in monetary terms) 
are the product of prices and volumes, it is interesting to note that price forecast 
improvement is highest when it matters the most.

6 � Conclusion

We confirm the results from previous studies that input data for energy system mod-
els, especially day-ahead load forecast data, are biased and inaccurate. Nevertheless, 
many modellers use them unfiltered. Therefore, we show to what extent load fore-
casts can be improved. We also show how improved input data affect the quality of 
energy system models’ results. Our paper is thus aimed at energy system modellers 
who want to provide empirically meaningful results and therefore need large and 
accurate data sets.

We present a simple time series model to improve the TSO-based load forecast 
data provided by ENTSO-E. The model captures and removes systematic biases and 
autoregressive structures present in the load forecast errors. Answering the research 

Fig. 8   Relative error reduc-
tion of the price estimator in 
different price segments of the 
respective year from 2017 to 
2019, starting with the lowest 
20% quantile of electricity 
prices (q1) to the highest 20% 
quantile (q5)
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question, we find that it can be straightforward to improve input data. Using the 
example of German day-ahead load forecasts we were able to reduce the RMSE of 
the error by 22.5%. Since the model is applied to observed forecast errors rather 
than to the load data itself and does not include load-specific external variables, it 
can be easily transferred to the pre-processing of other quantities of interest.

To analyse the effect of enhanced load forecasts on electricity system models, we 
feed the improved load forecast data into the em.power dispatch model. The model 
is used to generate price estimates for the German day-ahead electricity market, and 
we present the structure, assumptions, and optimisation equations of the model in 
detail. Concerning the effect of sequentially preprocessed inputs, we find that the 
benefits of sequentially improved load forecasts strongly depend on the respective 
price level, with more extensive benefits for higher price levels. This is a univer-
sal result in line with fundamental theory since in merit order markets, the impact 
of load changes on price changes increases with the overall level. We find that in 
phases of relatively high prices, as in 2018 and 2019, the continuous and sequential, 
i.e., day-by-day, load data pre-processing leads to an average reduction of em.power 
dispatch’s prices forecast mean squared error by nearly 15%. Hence, as the value of 
traded energy is the product of prices and volumes, our analysis shows that forecasts 
are generally better when (a) demand is high and (b) prices are high, i.e., when it 
matters the most. With this analysis, we proved that the quality of the model results 
benefits from better data input.

Based on these findings, we recommend energy system modelers to carefully 
analyse not only the structure and equations of their models but also the quality of 
input data. This paper demonstrated in the empirical setting of the German whole-
sale electricity market that input data can be improved significantly and that these 
improvements can be achieved with straightforward time-series models. Further-
more, we demonstrate that the results of the energy system model benefit from the 
improved input data.

Although our results are generalised, further research should extend our analy-
sis by evaluating the impact of better load forecasting using different energy system 
models and models that focus on other markets than Germany. Furthermore, schol-
ars may investigate the quality of other input parameters, such as generation fore-
casts from wind and photovoltaics. Modelers focusing on, for example, CO2 emis-
sions or the use of power plants and energy storage can also use our approach and 
analyse how the quality of their results can be improved.

Appendix A: Descriptive statistics for various time resolutions

See Tables 4 and 5.
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Table 4   Weekday wise averaged descriptive statistics of TSO load forecast errors for the years 2016 to 
2019

All variables are given in [MWh]

Day Mean Median Minimum Maximum 5%-Q 95%-Q Std

Mon 1517.71 1436.63 −6277.00 12,930.75 −1895.75 5111.45 2159.26
Tue 1685.17 1581.50 −4867.25 11,469.00 −1473.05 5126.95 1984.32
Wed 1601.81 1516.00 −7868.50 9053.75 −1242.65 4667.90 1874.89
Thu 1361.43 1365.25 −17,543.50 9520.25 −1372.88 4330.47 1896.08
Fri 944.31 990.75 −10,596.88 9772.25 −2060.85 3911.48 1892.38
Sat −102.26 −43.63 −7661.75 7809.00 −2967.80 2380.13 1696.76
Sun −378.19 −340.13 −7752.50 7522.00 −3378.53 2458.15 1859.72

Table 5   Hourly averaged descriptive statistics of TSO load forecast errors for the years 2016 to 2019

All variables are given in [MWh]

Hour Mean Median Minimum Maximum 5%-Q 95%-Q Std

1 699.64 742.75 −5710.00 6594.75 −2270.28 3509.15 1713.19
2 652.07 696.75 −6302.25 6701.50 −2290.58 3460.69 1711.79
3 646.41 657.75 −6558.25 6882.75 −2246.04 3535.18 1739.51
4 690.28 687.50 −8539.00 6888.25 −2269.38 3635.30 1760.22
5 855.45 852.75 −15,353.75 7617.25 −2298.63 3959.94 1991.04
6 943.53 1032.50 −17,543.50 9113.00 −2658.48 4335.81 2295.79
7 946.49 1075.75 −20,358.00 11,469.00 −2896.14 4688.48 2515.40
8 912.14 1011.00 −19,681.75 11,152.25 −2795.23 4529.93 2461.27
9 908.80 959.00 −16,540.25 11,658.25 −2692.56 4594.01 2387.68
10 902.67 900.00 −15,234.63 12,930.75 −2836.34 4707.63 2417.03
11 916.34 926.75 −14,149.88 10,484.25 −2791.68 4646.26 2401.02
12 923.30 951.00 −14,261.88 10,471.25 −2818.44 4782.05 2414.55
13 907.81 982.00 −15,839.88 9777.25 −2980.00 4740.98 2446.60
14 785.04 882.75 −15,116.63 9306.75 −2963.74 4549.70 2412.79
15 718.73 807.50 −15,220.38 9510.50 −2933.24 4477.88 2396.13
16 900.33 895.50 −14,434.38 9520.25 −2777.48 4756.91 2323.86
17 1080.73 1051.50 −13,068.00 9951.25 −2526.88 4832.60 2285.24
18 1172.53 1128.00 −12,133.38 10,094.50 −2110.33 4819.08 2140.34
19 1180.48 1161.25 −11,652.75 9409.75 −1985.76 4610.81 2078.72
20 1061.99 1071.00 −9940.75 8430.50 −1956.98 4248.70 1978.27
21 875.01 909.25 −8443.13 7422.00 −2121.79 3943.60 1888.30
22 877.85 872.75 −6668.50 6932.25 −2032.00 3853.51 1821.24
23 863.47 806.00 −5642.38 6947.25 −1928.34 3706.63 1726.26
24 729.88 763.25 −5607.88 7011.50 −2262.01 3560.98 1701.36
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Appendix B: Nomenclature

Nomenclature

Sets and indices

BP	� Time blocks for primary control power
BS	� Time blocks for secondary control power
RES(I)	� Intermittent renewables [Subset of I]
STL(I)	� Long-term storage [Subset of I]
STM(I)	� Mid-term storage [Subset of I]
tfirst(T)	� First hour of a rolling window
tlast(T)	� Last hour of a rolling window
I	� Electricity generation capacity cluster
N,NN	� Node
T	� Time steps

Parameters

�i	� Efficiency rate of a generation technology
afi,n,t	� Availability factor for generation capacities
capi,n,t	� Installed generation capacity [ MWel]
chpi,n,t	� Minimum electricity output of combined heat power units [ MWhel∕h]
curtc	� Costs for RES curtailment [€∕MWhel]
epf 	� Energy-power factor for mid-term storage plants [ MWhel∕MWel]
gmin
i,n,t

	� Minimum generation of a running unit
ntcn,nn,t	� Net transfer capacities [ MWhel∕h]
outi,n,t	� Power plant outages [ MWel]
sci,n,t	� start-up costs [€∕MWel]
vcFL

i,n,t
	� Variable generation costs at full load [€∕MWhel]

vcML
i,n,t

	� Variable generation costs at minimum load [€∕MWhel]
voll	� Value of lost load [€∕MWhel]
wvi,n,t	� Water value for hydro reservoirs and long-term storage [€∕MWhel]
dn,t	� Electricity demand [ MWhel∕h]
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Variables

CLi,n,t	� Charging activity for long-term storage [ MWhel∕h]
CMi,n,t	� Charging activity for mid-term storage [ MWhel∕h]
CURTi,n,t	� RES curtailment [ MWhel∕h]
FLOWn,nn,t	� Electricity flow from node n to node nn [ MWhel∕h]
PCRi,n,t	� Primary control reserve [ MWel]
SCR

neg

i,n,t
	� Negative secondary control reserve [ MWel]

SCR
pos

i,n,t
	� Positive secondary control reserve [ MWel]

SHEDn,t	� Load shedding [ MWhel∕h]
SLi,n,t	� Storage level of PSP [ MWhel]
SUi,n,t	� Start-up activity of a generation unit [ MWel]
TC	� Total system costs [€]
Gi,n,t	� Electricity generation [ MWhel∕h]
Pon
i,n,t

	� Running capacity [ MWel]

Appendix C: Error measures for different rolling window lengths

See Tables 6 and 7.

Table 6   Error measures 
(MSE, RMSE, MAE) for the 
the improved day ahead load 
forecast with a rolling window 
length of three month

MSE is given in [MWh2 ], RMSE and MAE in [MWh]

All 2017 2018 2019

MSE 4,948,990.80 2,272,350.07 4,575,637.58 3,133,176.51
RMSE 2224.63 1507.43 2139.07 1770.08
MAE 1691.37 1132.86 1462.48 1377.82

Table 7   Error measures 
(MSE, RMSE, MAE) for the 
the improved day ahead load 
forecast with a rolling window 
length of six month

MSE is given in [MWh2 ], RMSE and MAE in [MWh]

All 2017 2018 2019

MSE 4,016,010.14 4,896,546.88 4,355,814.17 2,795,669.38
RMSE 2004.00 2212.81 2087.06 1672.03
MAE 1304.12 1200.16 1411.57 1300.63
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