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Abstract
Following a global trend, intermittent sources, especially wind, have been experi-
encing accelerated growth in Brazil—in the last decade, wind power grew 13 times 
and became the second largest source in the electricity mix (12%), just behind 
hydropower (60%). Currently, although following regulatory guidelines, the rep-
resentation of wind power in the long-term operation planning model is done in a 
simplified way, based on the monthly average of the last five years of aggregated 
generation, thus demanding improvements. The objective of this work is to describe 
an approach to be used by the Brazilian power industry to represent the uncertainties 
of monthly wind power production in the SDDP algorithm applied in the long-term 
operation planning model, keeping the large-scale stochastic problem still computa-
tionally viable, when applied to large interconnected systems, especially with hydro-
electric predominance. The proposed methodology comprises statistical clustering 
of wind regimes and definition of equivalent wind farms; evaluation of monthly 
transfer functions between wind speed and power production; integrated generation 
of monthly multivariate synthetic scenarios of inflows and winds, considering asso-
ciated cross-correlations; and representing monthly wind power in the SDDP algo-
rithm. The application to real configurations of the Brazilian interconnected system, 
including case studies related to the monthly operation program and the calcula-
tion of the maximum amount of energy that can be traded in long-term power pur-
chase agreements, points to its effectiveness and the relevance of modeling the wind 
uncertainties in the long-term operation planning of large hydro-dominated systems.
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1  Introduction

Intermittent sources, especially wind, have experienced accelerated growth in 
Brazil—in the last decade, wind power grew 13 times, reaching today 22.3 GW 
of installed capacity in around 830 wind farms and became the second largest 
source in the electricity mix (12%), just behind hydropower (60%). According 
to the Ten-Year Energy Expansion Plan 2022–2031 [1], in 2031 the wind power 
installed capacity will increase 1.5 times, reaching 39,336 MW (14% of the coun-
try’s electricity mix). In turn, the current 6,230 MW of solar PV installed capac-
ity will reach 10,383 MW in 2031, accounting for 4.7% of the country’s electric-
ity mix.

Despite the advantages, the intermittency of hourly wind generation, constitutes 
a challenge for its integration into the system. Thus, it is essential to develop and 
improve methodologies to represent the uncertainties of intermittent renewable 
sources in the long, medium and short-term operation planning models [2–4].

In many countries, expansion and operation planning in systems with hydro-
electric power has been carried out by disaggregating the problems into specific 
horizons [5–7]. In the case of Brazil, this problem is divided into expansion plan-
ning (long-term), operation planning (medium and short term), and operation 
programming, being solved through a chain of computational models [6]. One of 
the key models is NEWAVE [8], based on the Stochastic Dual Dynamic Program-
ming—SDDP [9], which since 1998 has been used in official studies and real 
decision making regarding the Brazilian Interconnected Power System (BIPS). 
The NEWAVE model is used in expansion planning and in medium-term opera-
tion planning, providing expected cost-to-go functions for the short-term opera-
tion planning model as well as for computing probabilistic performance indices 
of the system’s operating conditions.

Currently, in accordance with the guidelines of the Electricity Regulatory 
Agency (ANEEL), the representation of wind power in the NEWAVE model is 
carried out in a simplified manner, based on the monthly average of the last five 
years of net generation of each individually wind farm (WF), aggregated by sub-
system and load level, for the entire planning horizon.

To overcome this problem, a methodology to consider monthly wind energy 
uncertainties in the NEWAVE model has been developed since 2020 [10, 11], and 
improved in methodological terms and computational efficiency through its appli-
cation in real BIPS configurations.

Due to the strategic uses of NEWAVE for the Brazilian power industry [8], its 
validation process starts at the Permanent Committee for the Analysis of Method-
ologies and Computational Programs for the Electricity Sector (CPAMP), estab-
lished by the National Council for Energy Policy, and coordinated by the Bra-
zilian Ministry of Mines and Energy. After successful initial tests regarding the 
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proposed methodology, CPAMP decided to continue the validation concurrently 
with the Validation Task Force on the NEWAVE model, jointly coordinated by 
the Brazilian National Electrical System Operator (ONS) and Electrical Energy 
Trading Chamber (CCEE), and under the supervision of ANEEL.

The objective of this work is to describe the main features of the approach that is 
being validated to be used by the Brazilian power industry to represent the uncer-
tainties of monthly wind power in the SDDP algorithm applied in the long-term 
operation planning model, keeping the large-scale stochastic problem still computa-
tionally viable, when applied to large interconnected systems, especially with hydro-
electric predominance, as is the case of the Brazilian system.

Case studies with the application of the proposed approach to actual configura-
tions of BIPS are presented and discussed.

2 � Long and medium‑term operation planning model in Brazil

In the NEWAVE model [8], the operation planning problem is represented as a mul-
tistage stochastic linear programming problem. The objective is to minimize the 
expected operation cost during the planning period considering risk aversion mecha-
nisms, given a known initial state of the system. Fuel costs and penalties for failure 
in load supply compose the operation cost. The solution of this problem results in an 
operation strategy.

The several hydropower reservoirs can be aggregated in energy equivalent reser-
voirs (EERs) [12–14] or represented by a hybrid modeling, allowing the NEWAVE 
model to represent the hydropower plants (HPPs) individually in entire or in part of 
its planning horizon [15]. In turn, the system state includes the energy storage level 
of the aggregated reservoirs and information about the “hydrologic trend”, as the 
last p energy or water inflows in each aggregated or individual reservoir.

The representation of the inflows to hydropower reservoirs in the NEWAVE 
model is stochastic, through a scenario tree, where each path in the tree is called a 
hydrological scenario, and each node represents a possible realization of the inflow. 
These sequences follow a multivariate stochastic process, temporally and spatially 
correlated, with statistical properties similar to the historical record, which are pre-
served during the tree construction. To generate the energy/water inflows scenarios 
for the optimization problem, a periodic autoregressive model of order p, PAR(p) 
[16–18] is used, that is, the value obtained for the random variable in a given period 
is a function of the inflows of the previous periods.

The solution strategy in the SDDP algorithm, without traversing the complete 
tree of inflow scenarios, consists of traversing a sub-tree of inflow scenarios, which 
is chosen from the original distribution of the random variable, iteratively through 
two steps: (i) forward simulation, from t = 1 to t = T traversing the entire sub-tree, in 
order to generate new states for which the expected cost-to-go function (FCF) will 
be evaluated and new cuts of Benders constructed in the next backward recursion; 
(ii) backward recursion, from t = T to t = 1, the Benders cuts that represent the FCF 
are built for all nodes of the subtree resulting from the last forward simulation. The 
dual variables associated with these linear programming subproblems are used to 
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construct the Benders cuts. The set of future cost functions represents the system 
optimal operating policy.

Once the operation strategy is calculated, a simulation of the system operation is 
performed by using 2000 multivariate synthetic inflows scenarios, or by considering 
historical record sequences. Thus, statistics of several system performance indica-
tors are provided, such as total operating cost, marginal operating cost, risk of defi-
cit, energy deficit, hydro and thermal generation, spills, etc.

The compact formulation of the medium and long-term operation planning prob-
lem represented in the NEWAVE model, in its recursive form, is presented in (1), 
whereas a more detailed formulation is presented in Sect. 7.

In (1), ct represents the system costs in time stage t, the decision variables xt , 
from the feasible set X, are associated with the reservoir levels xt

y
 and the allocation 

of water resources xt
gh

 and thermal resources xt
gt

 . The uncertainty of the inflows to 
the reservoirs is represented by the vector �t . The set of constraints is denoted by gt, 
which includes the system demand equation, water conservation equations in the 
reservoirs and operation constraints for the generation plants and interconnections. 
The recursive term �t+1 is the recourse function for the subproblem of time step t, 
which can be obtained iteratively by applying nested Benders decomposition 
approaches to solve the problem [19].

3 � Overview of the proposed aproach to represent the monthly wind 
and inflow uncertainties in the SDDP algorithm

The number of wind farms currently installed in Brazil is already high (around 
750) and it is expected that their growth will continue to accelerate over the next 
10 years. Therefore, it is necessary to investigate how to represent the wind farms in 
the NEWAVE model, so that the number of state variables of the SDDP algorithm 
does not become too high. In this sense, and similarly to what already occurs with 
the representation of HPPs individually or by EERs, one possibility is to represent 
them individually (WF) or through equivalent wind farms (EWFs)—in the latter 
case, statistical grouping techniques are employed in the present work. To simplify 
the notation, henceforth the terms EER and EWF will be used interchangeably to 
represent hydropower plants and wind farms individually or in an equivalent way, 
respectively.

(1a)
min
x1

c1x1 + E
�2

[
�2(x1, �2)

]

s.t. g1(x1) = b1
x1 ∈ X

(1b)

�t(xt−1, �t) = min
xt

ctxt + E
�t+1|�t ,...,�t+1−p

[
�t+1(xt, �t+1)

]

s.t. gt(xt) = bt(xt−1, �t−j,j=1,...,p)

xt ∈ X; t = 2,… ,T
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The existence of complementarity between the hydrological and wind speed 
regimes has been observed in Brazil, mainly in the Northeast region, where the 
greatest potential for wind generation in the country is concentrated [20]. Thus, 
when generating synthetic wind speed scenarios, it is interesting to consider the 
cross-correlation structure that may exist in the stochastic process of monthly aver-
age wind speeds and inflows to HPP reservoirs. In this way, this work proposes to 
extend the generation of inflows scenarios to make it an integrated model for the 
generation of monthly multivariate synthetic series of inflows and wind speeds, con-
sidering the correlations between wind speeds, between inflows and between wind 
speeds and inflows.

Once the synthetic scenarios of monthly wind speeds in the EWFs are obtained, 
it is necessary to estimate the associated wind power production to be considered 
in the SDDP algorithm’s monthly dispatch problem. The proposed approach con-
sists of constructing transfer functions (MTFs) between the monthly values of wind 
speeds and wind production, from EWF monthly probabilistic power curves. Then 
the MTFs are used in the operation dispatch problem of the SDDP algorithm.

As illustrated in Fig. 1, the proposed methodology consists of four main steps: 
(i) statistical clustering of wind regimes and definition of EWFs; (ii) an integrated 
model for the generation of monthly multivariate synthetic sequences of inflows and 
winds, considering the cross correlations between wind speeds, inflows, and wind 
speeds and inflows; (iii) evaluation of monthly transfer functions (MTFs) between 
wind speed and wind power production; and (iv) representing monthly wind power 
production in the SDDP algorithm.

Each step of the proposed approached is presented next, together with their appli-
cation to the BIPS.

4 � Aggregation of wind regimes into EWFs

The aggregation of wind regimes into EWFs is based on multivariate statistical 
methods and comprises two steps. Initially, the Exploratory Factor Analysis (EFA) 
[21] is applied to the covariance matrix between the wind speeds in the WFs in 
order to reduce the dimensionality of the data, from n WF to m (m < n) latent factors 
interpreted as wind regimes. Then, a cluster analysis algorithm (e.g., the K-Means or 

Clusteringwind farms
regimes

(equivalent wind farm)

Generation of
synthetic monthly

wind speed scenarios
correlated to inflows Representing

monthly wind power
production in SDDP

algorithm

1st Stage 2nd Stage

4th Stage

Computation ofmonthly probabilistic power curves
to constructmonthly transfer functions - MTFs
(wind speed versus wind power production)

3rd Stage

Hourly observed (or
reanalysis) paired

wind speed and power
production

Fig. 1   Schematic diagram of the proposed approach



	 M. E. P. Maceira et al.

1 3

Ward methods [21]) is applied to the coordinates of the WFs in m the latent factors 
in order to identify k groups of wind farms (EWFs).

For example, Fig. 2 presents a heatmap and associate dendrogram [21] of the 
correlation matrix between time series of monthly average wind speeds at 100 m 
height, from MERRA-2 (Modern-Era Retrospective analysis for Research and 
Applications from NASA) [22] for the period 2001–2017 at 79 municipalities in 
the Brazilian Northeast region. The 79 municipalities cover 498 wind farms with 
a total installed capacity of around 12,676 MW. The dendrogram on the heatmap 
of the correlation matrix in Fig. 2 indicates that wind regimes in the Northeast 
region can be grouped into 2, 3, 4 or 5 clusters. It is worth mentioning that in 
the past official expansion planning studies of BIPS considered 2 clusters for this 
region—coastal and inland [23]; more recently, [24] pointed out 3 clusters. More-
over, the diagonal blocks on the correlation matrix clearly show the existence of 3 
clusters, being possible to identify even a fourth or a fifth cluster.

Let X be the data matrix, where each column stores the wind speed time series 
in a locality with wind farm. So, for the case of n sites with a time series with q 
hourly records of wind speed, the matrix X has dimensions q x n. From the matrix 
X one can obtain the matrix of covariances S between the wind speeds in the n 
locations. The matrix S has dimensions n x n and each element Sij contains the 
covariance between wind speeds at locations i and j.

In EFA, it is assumed that the wind speed xi in the WF at a site i (out of a total 
of n) is expressed by its average value �i plus the sum of the effects of m (m < n) 
wind regimes (latent factors Fj ∀ j = 1, m) plus a residual term εi specific of the 
i-th site as shown in (2), where lij is the weight of the i-th site on the j-th latent 
factor Fj [21].

(2)xi = �i + li1F1 + li2F2 +⋯+limFm + �i∀i = 1, n

Fig. 2   Correlation matrix between monthly average wind speeds in 79 locations in Northeastern Brazil
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From the linear combination in (2) and the premise of independence between 
F1, F2,…, Fm and εi ∀i = 1,n the following decomposition of the covariance matrix 
S = LLT + Φ can be obtained, where L is a matrix with dimension of n x m, in 
which each row stores the weights of each location i in the m latent factors (wind 
regimes), i.e., each row is formed by the elements li1,…,lim, i = 1,n. The first term 
(LLT) is the commonality and correspond to the portion of the total variance of 
wind speeds at the n locations that is explained by the m wind regimes (latent fac-
tors). In turn, the term Φ is a diagonal matrix, whose elements capture the varia-
bility of wind speed in each location that is not explained by the m wind regimes.

The determination of the number of latent factors m and the formation of the 
matrix L consist in finding a value for m such that S = LLT. By the Spectral Decom-
position Theorem [21] the covariance matrix is expressed as a function of eigenval-
ues (λ) and respective eigenvectors (e):

Given that λ1 ≥ λ2 ≥ … ≥ λn the first eigenvalues concentrate the largest share of 
the total variance, then the first terms of the sum in (3) are the ones that most con-
tribute to the formation of the matrix S. Then, a good approximation of the matrix 
S is achieved by the sum of the first m (m < n) terms in (3) such that the eigenvalues 
satisfy the following condition [21]:

Given the number of factors m, the matrix L can be generated based on the eigenvec-
tors of S associated with the first m eigenvalues: L = [

√
�1e1

√
�2e2 …

√
�mem ]. 

If the condition in (4) is satisfied with less than three factors (m ≤ 3) it is possible to 
generate a visualization of the n locations with wind farms in a system of m factorial 
axes through of a map that allows the quick identification of groups of spatially cor-
related wind farms by a clustering algorithm, for example the K-Means and the Ward 
methods.

The application of EFA to the covariance matrix between the wind speeds in 
the 79 municipalities of Northeast Brazil revealed that 95% of the total variance is 
explained by the first 3 latent factors (m = 3), each one interpreted as a wind regime. 
The representation of the 79 municipalities in the space of the three latent factors 
is illustrated in Fig. 3a, where each point corresponds to one of the 79 sites. Fig-
ure 3a provides a good graphic representation of the correlation structure between 
the wind speeds in the 79 analyzed locations; the distances between the points in 
Fig. 3a reflect the correlations between the respective wind speeds, with close points 
indicating a greater correlation.

The dots (WFs) in Fig. 3a can be grouped into EWFs—visually or by using the 
K-Means method. In our case, 5 clusters captured about 90% of the data variability 
(measured by the ratio between the inertia between the clusters and the total inertia 
of the data). Figure 3b illustrates the classification of the 79 WFs into 5 EWFs, each 

(3)S = �1ei1e
T
i1
+ �2ei2e

T
i2
+⋯ + �neine

T
in
+ �i∀i = 1, n

(4)100%
(
�1 + �2 +⋯ + �m

)
∕(�1 + �2 +⋯ + �n) ≥ 80%
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indicated by a different color. In turn, the spatial representation of the 5 clusters is 
illustrated in Fig. 4, where it can observe the reduced overlap between the clusters.

Another possibility of WF aggregation could be to consider the substations 
that act as hubs to connect groups of wind farms (e.g., 37 in the Northeast and 12 
in the South regions of Brazil). The definition of the final granularity of the EWF 
clusters is underway by the Standing Committee for Analysis of Methodologies 

(a) (b)

Fig. 3   Diagram of the 79 evaluated municipalities in the three latent factors (a) and groupings of wind 
farms (b)

Fig. 4   Spatial representation of the wind farm clusters
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and Computational Programs of the Electric Sector—CPAMP, chaired by the 
Brazilian Ministry of Mines and Energy.

5 � Generation of monthly multivariate wind speeds and inflows 
scenarios

In the current SDDP implementation of the NEWAVE model, a periodic auto-
regressive model of order p—PAR(p) is used to generate the energy/water inflows 
scenarios that are used in the forward and backward passes of the algorithm and in 
the simulation of the system operation with the calculated operation policy [25, 26]. 
This model can be written as:

where EIt.i is a random variable of a stochastic process with s seasonal periods and 
corresponds to the energy inflow of EER or HPP i at time t, which is a function of 
the year T and the seasonal period m: t = (T—1) s + m; pm is the number of autore-
gressive terms in the model for the seasonal period m, pm < 12; μm,i and σm,i are the 
mean and standard deviation of the stochastic process of the seasonal period m cor-
responding to stage t, respectively. The time uncorrelated series at is independent of 
EIt, has zero mean and variance σ2(m)

a
 , and can be written as a function of the �m(k) 

autocorrelations of EIt and the periodic autoregressive coefficients � [17].
The purpose of this work is to extend the synthetic inflow generation model to 

make it an integrated model for the generation of monthly multivariate synthetic 
sequences of inflows and wind speeds. In this sense, the random variable of the sto-
chastic process with s seasonal periods that represents the monthly average wind 
speed in wind farm j at stage t is given by:

Or, rewriting (6):

If the objective of the proposed methodology is not to extend the number of state 
variables of the SDDP algorithm (currently 84, in the case of representation by 
EERs and considering pm = 6), the time correlation structure, which may exist in the 
stochastic process of the monthly average wind speeds in any EWF, could not be 
explicitly represented in the synthetic series generation model. In this case, it would 
be represented by the spatial correlation between wind speeds and inflows to EERs 
or HPPs, which can be high in several months of the year, for different wind farms 
considered in the Monthly Operation Program carried out by ONS.

(5)
(
EIt,i − �m,i

�m,i

)
=

pm,i∑

j=1

�t,j,i

(
EIt−j,i − �m−j,i

�m−j,i

)
+ at,i

(6)

(
Vt,j − �v

m,j

�v
m,j

)
= explanatory component + at,j

(7)Vt,j = explanatory component + �v
m
at,j
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Hence, the explanatory component could be the average monthly wind speed 
for the seasonal period m corresponding to stage t, �v

m
:

or could contain a portion related to inflows in a particular EER or HPP i from stage 
t, EIt,i, or even from stage t-1, EIt-1. The inclusion of this portion may contribute to 
the representation of the time correlation (lag 1) of Vt,j, if it exists. The process is 
then modeled by:

where θt,j,i is the correlation coefficient between Vt,j, and EIt,i, (or EIt-1,i).
If the inclusion of new state variables is computationally viable, the process 

could be modeled as a PAR(1) in every month, where the representation of the 
temporal correlation (lag 1) of Vt,j, is explicitly considered:

where �t,j is the correlation coefficient between Vt,j and Vt−1,j.
The developed scheme to generate monthly multivariate synthetic sequences of 

inflows and wind speeds comprises the following steps:

a.	 Obtain historical monthly EER incremental inflows;
b.	 Choose the order of the AR model for each seasonal period for each EER, by 

using the partial autocorrelation function [17];
c.	 Estimate the coefficients of the PAR(p) model using the Yule-Walker equation 

systems [17];
d.	 Generate a high cardinality sample (e.g., 100,000) of normal, time and spatially 

uncorrelated at residuals for both EERs and EWFs using simple random sampling, 
where they are considered to be equiprobable [25, 26];

e.	 Apply the K-Means method [21] to reduce the cardinality of the original sample; 
the resulting residuals then become non-equiprobable;

f.	 To generate multivariate monthly inflows and wind speeds, it is assumed that the 
standard normal residuals not spatially correlated, at, can be transformed into 
spatially correlated residual, et, through the following relationship:

where the matrix D is obtained by decomposing the covariance matrix Û 
between the residuals at [27]:

(8)Vt,j = �v
m,j

+ �v
m,j
at,j

(9)Vt,j = �v
m,j

+ �t,j,i�
v
m

(
EIt,i − �m,i

�m,i

)
+ �v

m
at,j

(10)Vt,j = �v
m,j

+ �t,j�
v
m

(
Vt−1,j − �v

m−1,j

�v
m−1,j

)
+�v

m
at,j

(11)et = Dat

(12)DDT = Û
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In practice, the behavior of the residuals does not follow the behavior of inflows 
and wind speeds: the residuals are not spatially correlated. However, in order to 
preserve the spatial dependencies of the stochastic processes of inflows and wind 
speeds, the spatial correlations between inflows to EERs, between wind speeds in 
EWFs and between inflows and wind speeds are employed, replacing the spatial cor-
relations between the residuals.

g.	 A three-parameter Lognormal distribution is fitted to spatially correlated clus-
tered residuals in order to better reproduce the skewness observed in this type 
of stochastic process [28]. However, unlike the inflow residuals, the monthly 
wind speed residuals can present positive as well as negative skewness in several 
months (see Fig. 6), which prevents, in the latter case, the use of the Lognormal 
distribution. In this case, one alternative is to use the Weibull distribution [29], 
which is quite flexible, allowing to deal with left or right skewness. In addition, 
the residuals have, by construction, negative values, which implies the need to 
use Weibull distributions with 3 parameters;

h.	 The synthetic monthly inflow scenarios are obtained by applying (5), while the 
monthly wind speed scenarios are obtained by (8), (9) or (10);

i.	 In each time period and scenario, the total inflows are calculated by the sum of 
the incremental inflows along the cascade of hydraulically coupled EERs.

Regarding step (g), several methods are available in the literature to estimate the 
shape (γ), scale (β) and location (α) parameters of tri-parametric Weibull distribu-
tions, most of them based on modifications of the method of moments (MoM) or 
maximum likelihood estimators (MLE) [30]. For example, the three basic statistics 
(central moments) of the Weibull distribution, i.e., expected value, standard-devia-
tion and skewness, are respectively given by:

where:

and Γ(z) is the gamma function, defined as:

(13)E(x) = � + �Γ1

(14)Var(x) = �2(Γ2 − Γ2

1
)

(15)Sk(x) =
Γ3 − 3Γ2Γ1 + 2Γ3

1

(
Γ2 − Γ2

1

)3∕2

(16)Γk(�) = Γ(1 + k∕�)

(17)Γ(z) = ∫
∞

0

tz−1e−tdt
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If the sample mean, standard-deviation and skewness are available, the 3 parame-
ters can be estimated by, e.g., the MoM [30], solving sequentially Sk(x) for the shape 
γ (15), then Var(x) for the scale β (14) and, finally, E(x) for the location α (13).

However, as these estimations involves higher order statistics, both MoM and 
MLE may present difficulties and unsatisfactory results when considering the 
three Weibull parameters [31]. Indeed, we observed that the quality of estimates of 
these methods applied to the monthly average speeds of Brazilian wind farms var-
ies greatly depending on the month of the year and the location of the wind farms, 
with the worst performances being associated with months with high negative 
asymmetries.

In this way, an approach for modeling residuals of monthly wind speeds through 
tri-parametric Weibull distributions was developed, seeking to preserve the mean, 
standard-deviation and skewness of monthly historical wind speeds, being espe-
cially suitable in situations of high asymmetries [32].

As described in [32], when the position parameter α is known, the estimates of 
the other two parameters can be calculated by MoM in a simpler way, since there 
is no need to use the skewness Eq.  (14): the shape parameter γ can be estimated 
based on the coefficient of variation obtained from (13) and (14), however replac-
ing the population mean and variance by the respective sample values; then the 
scale parameter β is obtained from (13). The approach starts from an initial value to 
estimate the position parameter, which can be obtained, e.g., through linear regres-
sions; calculate estimates of other parameters using the method of moments; and, 
iteratively, updates the initial estimate in order to reduce the difference between the 
skewness of synthetic and sample (historical) monthly wind speeds. This proposal 
was applied to several EWFs, considering different months and skewness (positive 
and negative), presenting, in all cases, better performances than several methods 
available in the literature [32].

6 � Transfer functions between monthly wind speed and power 
production

As the long and medium-term operation planning model adopts a monthly time 
step, the computed synthetic scenarios of monthly wind speeds for each EWF (stage 
2 of Fig. 1) should be converted into monthly power production to be considered 
in the dispatch problem of the SDDP algorithm implemented in NEWAVE. This 
is achieved by obtaining mathematical functions, called monthly transfer functions 
(MTFs), that relate the monthly averages of wind speed with the monthly averages 
of energy production in each wind farm.

For this, it is necessary to use paired data of wind speed and wind power. How-
ever, due to the unavailability in Brazil of a public database of measured data, a 
procedure was proposed in [33] that uses the predicted values of wind speed and the 
respective wind power, on a half-hourly basis, made available since 2018 by ONS 
through the Sintegre system [34], for a set of hub substations. In addition to fore-
casts, this system provides 48 power curves, one for each half-hourly interval, used 
in converting wind speed forecasts into wind power. In order to expand the dataset, 
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it became necessary to consider hourly data from reanalysis, e.g., from MERRA-2 
or ERA-5 (Reanalysis v5 from ECMWF) [35] for the geographic coordinates of the 
wind farms of each substation.

Reanalysis data is among the most commonly used datasets for studying weather 
and climate, and is produced by assimilating data, a technique for building long-
term datasets that is widely used in climate studies, in a process known as retro-
spective analysis, or reanalysis. Reanalysis involves performing data assimilation for 
earlier periods using a current Numerical Weather Prediction model and data that is 
now available for those earlier periods. Thus, long and comprehensive sequences of 
atmospheric condition values are produced, forming a reanalysis dataset [36, 37].

For each EWF, the procedure consists of applying the power curves available in 
Sintegre to the hourly time series of wind speed reanalysis of each hub substation, 
to transform them into hourly estimates of wind power. Then, these hourly estimates 
are integrated, obtaining the time series of the monthly averages of wind speed and 
wind power, arranged in monthly probabilistic power curves. Finally, the MTFs are 
obtained through linear regression models—simple or piecewise [21]—adjusted to 
the monthly probabilistic power curves of each wind farm or hub substation.

7 � Representation of wind power in the sddp algorithm of NEWAVE 
Model

As previously mentioned, currently, in accordance with ANEEL guidelines, the rep-
resentation of wind, solar and biomass technologies in the NEWAVE model is car-
ried out in a simplified way, based on the monthly average of the last five years of 
net generation of each individually plants, aggregated by subsystem and load level 
(pqusi—see (18.b)). In this way, pqusi is directly subtracted from the demand in the 
load supply equations. As in this work the monthly wind energy uncertainties in the 
SDDP algorithm will be explicitly represented, the term pqusi will no longer refer 
to wind energy, that is, it will only consider the amounts of solar and biomass power 
production.

Once the wind power synthetic productions of individualized or aggregated wind 
farms are obtained (see Sects. 5 and 6), they can be represented in the dispatch prob-
lem as an available generation source, but with null operating cost.

The formulation of the subproblem of each node of the subtree (t,s), in each stage 
t, and forward scenario s and backward scenario ω, described in (1), is presented 
in detail, also modifying or adding constraints in which the wind power production 
must explicitly appear, according (18a)-(18d) plus the expected cost-to-go func-
tion (18e); for ease of viewing, modified/added terms are shown in bold. Table  1 
describes the variables and parameters used in the mathematical formulation. For 
simplicity, the subscripts s and ω are omitted as well as the equations related to 
risk aversion mechanisms and dispatch of liquefied natural gas (LNG) thermal plant 
constraints. For details about risk aversion mechanisms and LNG constraints see 
[38–42].

The objective function (18a) is composed by fuel costs, penalties for failure in 
load supply and possible violations of operational constraints (minimum outflow, 
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Table 1   Variables and parameters used in the mathematical formulation in the SDDP algorithm of 
NEWAVE model

T Time stage
m Subsystem index
j Thermal plant index
idef Deficit level index
v Operational constraints violation index
K, i EER indices
c Load level index
u EWF index
l Autoregressive term index
z optimal value
cterm Fuel costs
CDEF Penalties for failure in load supply
DEF Load supply deficit
NPDF Number of deficit levels
NUT Number of thermal plants in a subsystem
cv Penalties for violations of operational constraints
viol Operational constraints violation
nviol Number of violations in each EER of a subsystem
β Monthly discount rate
α Expected cost-to-go function
NREE Number of EERs
NPMC Number of load levels
NSBM Number of subsystems
GH Controllable hydro generation
fpeng Share of generation dispatch in a load level
GFIOL Generation in run-of-river hydro plants
GT Thermal generation
INT Interchange energy between subsystems
EXC Generation surplus
GW Wind power production
NPEE Number of EWFs
merc Load to be supplied
submot Generation of HPPs that have not yet reached their assured energy [43]
pqusi Energy provided by non-dispatchable plants (constant power production), that is, solar and 

biomass technologies
gtmin Minimum thermal generation
EA Storage energy in the EER at the beginning of the stage
FDIN When a new HPP start operating from stage t on, the storage capacity of the corresponding 

EER changes; the approach to reflect this on the storage energy at the beginning of the stage t 
is by applying a correction factor FDIN [44]

FC Correction factor related to the initial state of EER as the energy inflows are previously calcu-
lated assuming that all HPPs of a EER are at 65% storage level

EC Controllable energy inflow to HPP with regulation capability
EFIOL Uncontrollable energy inflow to run-of-river HPP
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water diversion, minimum hydraulic generation, etc.). The main constraints in 
each stage are the load balance equation in each load level and subsystem (18b), 
the controllable energy balance in each EER (18c) and the Benders cuts that rep-
resent the FCF (18e).

Objective Function

Load supply equation in subsystem m in the load level c and stage t

Controllable energy balance equation in EER k and stage t

Wind power production through the MTFs in WF/EWF u and period t

(18a)

zt = min
NSBM
∑

m=1

(NPMC
∑

c=1

(NUTm
∑

j=1
ctermt,m,j ⋅ GTt,m,j,c

)

+
NPDF
∑

idef=1
CDEFt,idef ⋅ DEFt,m,idef ,c

)

+
nviol
∑

v=1
cvt,v.violt,m,k,c +

1
1 + �

⋅�t+1

(18b)

∑

k∈NREEm

(GHt,c,k + fpengt,cGFIOLt,c,k) +
∑

j∈NUTm

GTt,c,j +

NSBM∑

j=1,j≠m
(
INTt,c(i, k) − INTt,c(k, i)

)

+

NPDF∑

idef=1

DEFt,m,idef ,c − EXCt,c,m +
∑NPEEm

u=1
GW

t,u,c

= merct,m,c −
(
submott,m + pqusit,m +

∑
j∈NUTm

gtmint,m,j

)
. fpengt,c

(18c)
EAt+1,k = FDINt.kEAt,k + FCt,kECt,k − GHt,c,k − EVTt,k − EVPt,k − EDVCt,k

Table 1   (continued)

EI Energy inflow to an EER. The sum of EC and EFIOL results on EI in a specific EER
EVT Spillage in an EER
EVP Evaporation in an EER
EDV Energy taken from an EER to meet multiple water use constraints
V Average monthly wind speed of an EWF
a Angular coefficient of the regression line that represents the associated MTF in an EWF
b Linear coefficient of the regression line that represents the associated MTF in an EWF
�EA Average partial derivative of the objective function related to state EA in an ERR at the begin-

ning of the stage
�EAF Average partial derivative of the objective function related to state EI in an ERR at the previous 

stages
p Number of autoregressive terms in the PAR(p) model of an ERR
� Independent term of each Bender´s cut
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Set of multivariate linear constraints (Bender´s cut) representing the cost-to-go 
function

Other constraints considered in the problem are: (i) for each EER—uncontrollable 
(run-of-river) energy balance equation; losses in uncontrollable (run-of-river) inflows; 
minimum and maximum hydropower generation per load level; minimum outflow; 
water deviation for other uses, such as irrigation and water supply; storage capacity; 
minimum operational storage; (ii) for subsystems—minimum and maximum energy 
interchange limits between subsystems per load level; limits in a group of energy inter-
changes between subsystems; energy interchange balance in subsystems with no load 
nor generation capacity; (iii) for each thermal plant—minimum and maximum gen-
eration; (iv) for LNG power plants—total anticipated thermal generation in each load 
level.

In this formulation, a new constraint must be added that provides the wind power 
production through the MTFs (18d). The left-hand side of the power balance equation 
in each subsystem m, for each load level c, by stage t receives a new term that repre-
sents the sum of the wind power of the EWFs belonging to subsystem m, as shown in 
(18b); as mentioned before, the term pqusi now considers only the amounts of solar 
and biomass power production.

In the integrated model proposed in (6), the explanatory component can be the aver-
age of the wind speed stochastic process of the seasonal period m, or contain a portion 
related to the inflows of stage t, EIt,i, or of stage t-1, EIt-1,i. or also the monthly wind 
speed process could be represented by a PAR(1) model. As a result, each of these mod-
eling options has a distinct impact on the construction of the Benders cuts relative to 
the state variable inflow to the EERi in period t-1:

•	 if the explanatory component is the mean itself, there is no change in the Benders 
cuts;

•	 in the case that EI is included, the calculation of the Benders cut coefficient associ-
ated with EIt-1,i should be reviewed. A portion given by the partial derivative of the 
objective function with respect to EIt-1,i. in (18d), must be added;

•	 if the monthly wind speed process is represented by a PAR(1) model, a new state 
variable must be included in stage t, Vt-1,j,and the calculation of the associated 
Benders cuts coefficient is given by the partial derivative of the objective function in 
relation to Vt-1 in (18d).

(18d)
NPMC∑

c=1

GW
t,u,c ≤ b

W

t,u
+ a

W

t,u
V

t,u

(18e)�t+1 −
∑

k∈NREE

�EA1,t+1,k
EAt+1,k +

p∑

l=1

�EI1,j,t+1,k
EIt−l+1,k ≥ �1,t+1
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8 � Application of the proposed methodology

The developed methodology was applied in real configurations of BIPS consider-
ing two key activities in the Brazilian power sector: (i) the operation planning, i.e., 
the Monthly Operation Program (MOP), carried out by ONS and CCEE; and (ii) 
auction for purchase new energy 4 years in advance (A-4), i.e., the calculation of 
the maximum amount of energy that can be traded in long-term Power Purchase 
Agreements (PPAs), carried by the Ministry of Mines and Energy (MME) together 
with the Energy Research Company (EPE) and the Electricity Regulatory Agency 
(ANEEL). In official studies, BIPS is divided in 4 interconnected subsystems/price 
zones and the hydropower configuration is represented by 12 EERs. Figure 5 shows 
a schematic representation of BIPS.

Initially, results from the integrated model for the generation of monthly mul-
tivariate synthetic sequences of inflows and winds as well as the evaluation of 
monthly transfer functions (MTFs) between wind speed and wind power production 
are presented and discussed. Then, case studies related to the impact of considering 
wind power uncertainties through the proposed methodology on the monthly opera-
tion program and on the calculation of the maximum amount of energy that can be 
traded in long-term PPAs are also presented and discussed.

8.1 � Generation of monthly synthetic multivariate sequences of wind speeds 
and inflows

The approach described in Sect. 4 is illustrated by considering five EWFs (substa-
tions) located in five macro-regions (clusters) of wind regimes in Brazil, three of 

Fig. 5   Schematic representation of the Brazilian electric energy system
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them in the Northeast (NE Interior, NE PE and NE Litoral) and two in the South 
(Sul Interior and Sul Litoral). In this case, a sample of 37 years of monthly aggre-
gated wind speeds measurements was considered together with normal correlated 
residuals with cardinality 2000.

Figure  6 shows the histograms of the historical and synthetic residuals of the 
average monthly wind speeds for two situations of high asymmetries, in two EWFs: 
(a) NE PE, in the month of August, with a skewness coefficient equal to 1.23; and 
(b) NE Interior, in June, with a skewness coefficient equal to -1.39. A successful 
fit of the Weibull distribution to the random residuals can be observed through the 
developed approach.

In turn, Fig. 7 compares, for the five EWFs, the monthly averages, standard devi-
ations and skewness coefficients of the historical wind speeds with the ones pro-
duced by the synthetic series of wind speeds obtained with the proposed approach, 
using (8). Again, an excellent performance is observed, even for the skewness coef-
ficients, thus confirming the successful fit of the Weibull distribution to the random 
residuals using the developed approach; this is mainly due to a special feature of the 
algorithm aiming to preserve in particular the skewness coefficient of the historical 
monthly wind speeds.

8.2 � Monthly transfer functions

The procedure described in Section V was applied to each one of the 45 hub sub-
stations comprised in Sintegre system, obtaining hourly and monthly probabil-
istic power curves and estimating the associated MTFs. In this sense, time series 
of hourly wind speed reanalysis data from MERRA-2 were utilized, covering the 
period from 1980 to 2019 (40 years). Thus, the set of power curves available in Sin-
tegre was applied for each hour h of each day d of the year 2019 (8760 curves) to the 
corresponding values of the wind speed reanalysis (i.e., at the same hour h and day 
d), in each year of the period 1980–2019.

Figure 8 shows the dispersion diagrams obtained with the Sintegre data (in red) 
and with the procedure developed (in blue) for the same five EWFs (substations) 
located in the Northeast (NE Interior, NE PE and NE Litoral) and South (Sul Inte-
rior and Sul Litoral) of Brazil. The Sintegre samples are the hourly wind power fore-
casts given by the system operator based on a set of numerical weather prediction 
providers which showed to be more disperse than those obtained from reanalysis 
data; furthermore, the developed procedure applies a power curve to the wind speeds 
from MERRA-2. As a consequence, the hourly probabilistic power curves obtained 
with the developed procedure are found within the Sintegre scatter diagrams, show-
ing that the procedure using reanalysis data is reasonable.

The hourly values are then integrated to construct the monthly probabilistic 
power curves presented in Fig.  9. The scatter diagrams reveal high correlations 
(above 98.5%) between the monthly averages of wind speed and wind production 
in the analyzed EWFs—a typical behavior observed in other hub substations. This 
feature allows the construction of MTFs between monthly winds and power pro-
ductions using linear regression models. The regression lines and corresponding 
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equations are also shown in Fig. 9, where GW and V are the wind power production 
and the average monthly wind speed, for each EWF. It is important to check the sea-
sonal behavior to see if there is a need to define, for each EWF, a single MTF valid 
for the whole year, or a set of MTFs, e.g., for each month of the year. For the set of 
EWFs presented, it was found that a single MTF would already be adequate.

By applying this procedure to all 45 Sintegre hub substations, we obtain the set of 
35 and 12 monthly probabilistic power curves represented in Fig. 10 for the North-
east and South regions, respectively. Again, linear regressions showed to be ade-
quate to construct the associated MTFs.

The definition of the final granularity of the EWF clusters and thus MTFs is 
underway by the Standing Committee for Analysis of Methodologies and Computa-
tional Programs of the Electric Sector—CPAMP.

In the case of adopting a smaller granularity, for example, considering the group-
ing of wind regimes in regions with large geographic coverage, it is also necessary 
to aggregate the MTFs of the EWFs belonging to each of these macro-regions. If the 
MTFs of each substation are represented by linear regressions, the aggregation of 
MTFs can be done by the sum of the angular and linear coefficients of the MTFs of 
each EWF.

8.3 � Application to the operation planning

In this session, three cases based on the Monthly Operation Program (MOP) are 
studied, which will be described below. The MOP configuration comprises 162 
hydropower plants disposed in 12 EERs, 121 thermal power plants distributed in 4 
subsystems and price zones. Table 2. shows the installed hydro and thermal capac-
ity for each subsystem. The operation planning horizon is 5 years and considers the 
evolution of the system configuration and demand along these years. MOP is carried 

(a) (b)

Fig. 10   Monthly probabilistic power curves for all 45 hub Sintegre hub substations (EWFs): 35 for the 
Northeast (a); 12 for the South subsystem (b)
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out by ONS and CCEE using NEWAVE every month, and weekly reviewed using a 
short-term operation planning model, followed by a daily operation programming.

The wind power is concentrated in Northeast and South subsystems. The tempo-
ral correlation structure that can be verified in the stochastic process of the monthly 
average wind speeds in any EWF will not be explicitly considered in the synthetic 
series wind generation model, and are represented indirectly, through of the spatial 
correlation verified between the stochastic processes of winds in EWFs and inflows 
in EERs, i.e., (8) is applied here. Consequently, no state variable will be added to the 
SDDP algorithm, so there is no addition of the FCF cardinality.

8.3.1 � Comparison between cases considering and not considering wind uncertainty

The reference case (without_uncertainty) seeks to emulate the current procedure 
approved by the Regulator (ANEEL), where the average wind power is represented 
in NEWAVE as non-dispatchable plants, i.e., with constant power production. In 
this sense, the average monthly wind power productions of the Northeast (NE) and 
South (Sul) subsystems were determined by applying the MTFs of the 5 referred 
EWFs to their respective historical monthly wind speeds. The results are presented 
in Table 3.

In the case called wind_uncertainty, the information in Table 3 was suppressed. 
The wind power uncertainties were modeled by using the proposed approach. Ini-
tially, synthetic sequences of monthly average wind speeds in the EWFs are gen-
erated for the backward and forward passes of the SDDP algorithm, and for the 

Table 2   Total installed capacity 
for each subsystem / price zone

Hydropower (MW) Thermal 
power 
(MW)

SE 60,842 10,503
South 15,144 2957
NE 10,831 7009
North 22,074 4117
Total 108,890 24,586

Table 3   Monthly wind power production average, obtained from the MTFs (MWmonth)

Jan Feb Mar Abr May Jun Jul Aug Sep Oct Nov Dec

NE Interior 2086 2411 2183 2591 2706 3012 3232 3442 3456 3093 2344 1927
NE PE 278 258 225 215 233 276 300 312 335 347 343 314
NE Litoral 2146 1743 1223 1296 1967 2801 3411 4193 4443 4230 3773 3067
Subsystem NE 4509 4412 3631 4102 4907 6089 6943 7947 8234 7670 6460 5308
Sul Interior 94 94 95 98 101 107 116 116 119 112 106 98
Sul Litoral 611 533 537 565 536 544 621 639 747 738 713 641
Subsystem Sul 705 627 632 663 637 650 737 755 866 850 819 739
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final simulation. Then they are transformed into synthetic sequences of wind power 
through the MTFs, which are also explicitly used in each operation dispatch prob-
lems, according to Sect. 7.

a)	 Expected total operation cost, annual deficit risk and annual EENS

For the without_uncertainty and wind_uncertainty cases, Table  4 shows the 
expected total operating costs, the annual deficit risks and expected energy not sup-
plied (EENS) for the first 2 years of the planning horizon.

It is observed that there was a reduction in the expected total operation cost of 
2.2% (i.e., R$ 556 million), when the uncertainty of wind speeds and associated 
wind power are explicitly modeled as proposed. On the other hand, the annual defi-
cit risks were a little higher, but with lower expected values of EENS. The explicit 
consideration of the variability of the wind power source together with the com-
plementarity between the hydro and wind power production allows the NEWAVE 
model to better optimize the operation strategy, thus reducing the operating cost and 
reflecting in the decrease in EENS. On the other hand, those sequences presenting 
very low wind power contribute to the increase of the annual risk of deficit, a rel-
evant result for the system operator.

b)	 Frequency distributions of the synthetic wind power production

The aspects mentioned above are corroborated by Fig. 11. This figure shows, for 
the months of March and September (corresponding to wet and dry hydrological 
seasons, respectively), the frequency distributions of power production resulting 
from the synthetic sequences of wind speeds, which presents reasonable dispersion. 
Additionally, the single value of wind power considered in the current procedure 
(without_uncertainty case) is depicted.

c)	 Time evolution of the expected hydropower production

Figure  12 illustrates the evolution, over the planning horizon, of the expected 
hydropower generation of EERs NE and SE (the first located in the Northeast (NE) 
subsystem and the other in the Southeast (SE) subsystem). It is noted that the con-
sideration of wind uncertainties impacts the optimization of the system, leading to 
differences in the expectation of hydroelectric generation, reaching values of up to 
2,500 MW/month.

d)	 Frequency distributions of hydro and thermal power production

To better identify differences in the behavior of hydro and thermal power produc-
tion, Fig. 13a, b, e, f present the cumulative frequency distributions of hydro and 
thermal power generation in EERs SE and NE on March and September for both 
case studies. For example, although there are differences in the histograms, they are 
not so high, which is in line with the difference in the expected value of the total 
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Fig. 11   Frequency distributions of the synthetic wind power production

Fig. 12   Time evolution of EER-NE and EER-SE expected hydro generation
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operation cost of 2%. In the SE subsystem, in March, there is a slight increase in the 
frequency of higher generation values; in September, there is a slight increase in the 
frequency of lower generation values, which implies reaching higher reservoir levels 
at the end of the dry season.

Regarding the thermal generation (Fig. 13c, d, g, h), in September, a month with 
low inflows in the Southeast and Northeast subsystems, a slightly higher frequencies 
of lower values of thermal generation are observed, when representing the uncer-
tainty in the winds. This behavior justifies the decrease in the expected total opera-
tion cost. In March, a month with high inflows in these two subsystems, the same 
behavior is observed, but more attenuated. This variation is not so significant, since 
the thermal generation in BIPS is of the base load type, presenting little variation 
between the minimum and maximum values.

e)	 Operation marginal costs

Figure  14a, d shows the evolution, over the planning horizon, of the expected 
operation marginal costs (OMC) for the Southeast and Northeast subsystems; it can 
be observed that in general, the expected OMC is lower when wind speed uncertain-
ties are taken into account, and this difference is more prominent in dry months. In 
turn, Fig. 14b, c present the OMC frequency distribution in March and September 
for the Southeast (SE) subsystem while Fig. 14e, f) show the same figures for the 
Northeast subsystem. As the month of September belongs to the dry hydrological 
season, the amplitude of OMC values is greater than that of the month of September 
(wet season) in both subsystems and in all case studies. However, for both subsys-
tems and analyzed months, it can be seen that the frequency of lower OMC values 
increased in the wind_uncertainty case compared to the without_uncertainty case, 
proving the benefits of considering uncertainty in wind speeds and, therefore, in the 
wind power production.

8.3.2 � Sensitivity analysis

To analyze the impact of a more accelerated penetration of wind energy, a sensitiv-
ity analysis was carried out, considering a third case study, where a 20% increase 
in the installed capacity of wind power was implemented, being denoted as wind_
uncertainty + 20% in capacity case.

a)	 Expected total operation cost

The expected total operating costs in the wind_uncertainty + 20% in capacity case 
was R$ 23.555 billion, that is, 10.6% (R$ 2.735 billion) less than the wind_uncer-
tainty case or 5 times greater than the reduction obtained in the without_uncertainty 
case. Thus, it is to be expected that the impacts on hydro and thermal generation, 
and also on OMCs, will be pronounced.
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b)	 Frequency distributions of hydro and thermal power production

Figure  15 presents the cumulative frequency distributions of hydropower and 
thermal generation in EERs SE and NE on March and September for the without_
uncertainty and wind_uncertainty + 20% in capacity cases. In general, the conclu-
sions obtained for the without_uncertainty and wind_uncertainty + 20% in capacity 
case are the same as those for the wind_uncertainty case, but with much more pro-
nounced differences in relation to the without_uncertainty case.

When analyzing Fig. 15a, b, e, f, one aspect worth highlighting is the increase in 
the frequency of high hydropower generation values for the NE subsystem in Sep-
tember (hydrologically dry season); this is probably due to the predominance of wind 
power capacity and the negative correlation between the hydrological regime and the 
wind speed in this region, meaning that when reaching lower reservoir levels at the 
end of the hydrological dry season (ie., storing energy in other subsystems) minimize 
the chances of spillage in the following season (wet), where wind speeds are lower.

Regarding the thermal generation (Fig. 15c, d, g, h), in September, a month with 
low inflows in the Southeast and Northeast subsystems, higher and meaningful fre-
quencies of lower values of thermal generation are observed, when representing the 
uncertainty in the winds and considering a 20% increase in wind power installed 
capacity. This behavior justifies the greater decrease in the expected total operation 
cost.

c)	 Operation marginal costs

Figure  16a, d shows the evolution, over the planning horizon, of the expected 
operation marginal costs (OMC) for the Southeast and Northeast subsystems. It 
can be observed that, in general, the expected OMC in the wind_uncertainty + 20% 
capacity case is smaller than in the without_uncertainty case, and that this difference 
is much larger when compared to the wind_uncertainty case; again, the greatest dif-
ferences occur in the dry months.

In turn, Fig. 16b, c present the OMC frequency distribution in March and Sep-
tember for the Southeast subsystem while Fig. 16e, f show the same figures for the 
Northeast subsystem. Again, for both subsystems and analyzed months, it can be 
seen that the frequency of lower OMC values increases when wind speed uncer-
tainties are considered, and that this increase is much higher in case wind_uncer-
tainty + 20% in capacity, compared to wind_uncertainty case.

These results highlight the importance of considering wind speed uncertainties 
in the long-term operation planning and points out that the representation of such 
uncertainties becomes more relevant with the more intense penetration of the wind 
power into the system.

8.4 � Application to the long‑term commercialization

The introduction of competition for the long-term market in the Brazilian 2004 Elec-
trical Sector Reform was a milestone towards the creation of a more stable investment 
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environment for new generation capacity. Loads have to be 100% contracted and two 
environments for electricity trading were established: (i) a Free Contracting Environ-
ment, where free consumers can procure their energy needs as they wish, as long 
as they are 100% contracted; and (ii) a Regulated Contracting Environment, where 
generators must participate in centralized public auctions to be able to sign power 
purchase agreements (PPAs) with the regulated (captive) consumers supplied by the 
distribution companies, which must provide self-declaration of its forecasted loads 
for the next five years. In addition, the differences between the production and con-
sumption of energy in relation to the contracts held are settled on the spot market by 
the spot prices (called Settlement Prices for Differences—PLDs) [45].

A question that arises is what is the maximum amount of energy that a power plant 
can trade in the long-run. In Brazil this is called assured energy and is calculated by a 
specific procedure taking into account the overall system optimization [43], summarized 
as follows. Initially, the total assured energy of BIPS (TAE), that corresponds to the maxi-
mum energy demand that the system could supply, is obtained through a simulation of 
the system operation provided by NEWAVE where the hydroelectric plants configuration 
is represented by EERs. The total system assured energy is the result of a procedure in 
which the energy demand is changed iteratively until the energy supply adequacy cri-
teria are met. These criteria are defined by the Brazilian National Energy Policy Coun-
cil (CNPE) and comprises the following requirements [46, 47]: (a) the annual expected 
value of the marginal operation cost (MOC) = the marginal expansion cost for each sub-
system; (b) the conditional value at risk of the energy not supplied at 99% confidence 
level (CVaR99%(ENS)) ≤ 5% annual energy demand for BIPS and subsystems; and (c) the 
conditional value at risk of the monthly marginal operation cost at 90% confidence level 
(CvaR90%(MOC)) ≤ R$ 800/MWh, for each subsystem.

At the end of the iterative process, the total assured energy is divided in two 
parts—a hydro block and a thermal block, based on the expected generation of the 
EERs and thermal plants, respectively. Then the hydro block is further allocated 
among individual HPPs using a specific approach [43].

In this section, the application is focused on the impact of considering wind speed 
uncertainties on the total assured energy calculation. To achieve this, two case stud-
ies were considered: a reference case (TAE-without_uncertainty) that seeks to emu-
late the current approved procedure, where the average wind power is represented 
in NEWAVE as non-dispatchabled plants; and the TAE-wind_uncertainty case, in 
which the wind power uncertainties were modeled by using the proposed approach.

The time horizon of this study is 5 years and a single future hydrothermal system 
configuration, considering new hydroelectric and thermal generators, is considered 
for the calculation of the total assured energy. The seasonality of demand is taken 
into account and a period of 10 years is added before the planning period so that the 
system loses memory of the initial stores in the EERs and the initial hydrological 
conditions. The marginal expansion cost for these case studies was R$ 90.38/MWh.

In the TAE-without_uncertainty case, the total assured energy to attain the 
CNPE criteria was 86,200 MWaverage/month. When considering the wind speed 
uncertainties, although criteria (b) e (c) were met, the expected MOC (R$ 81.17/
MWh) was below the marginal expansion cost, meaning that there is room for 
BIPS meet a higher energy demand, i.e., for a higher total assured energy. As 
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a consequence, the iterative procedure is applied until the three criteria are 
achieved, resulting in a total assured energy for the TAE-wind_uncertainty case 
equals to 86,631 MWaverage/month, i.e., an increase of 0.5% (431 MWaver-
age/month) with respect to the TAE-without_uncertainty case. At first glance, 
this increase appears to be small. However, if we consider that the amount of 
assured energy can be traded in the long-term, with PPAs from 20 to 35 years, 
the economic benefit may not be negligible. For example, considering a 30-year 
contract priced at the marginal cost of expansion (R$ 90.38/MWh), 450 MWa-
verage/month represents the value of approximately US$ 24 billion. If the sale 
prices of the last auction for purchase electricity for wind power and hydropower 
are considered, the financial values become US$ 31 billion and US$ 47 billion 
respectively.

9 � Conclusions

Following a world trend, Brazil is experiencing an accelerated growth of wind 
energy. The current representation of wind power production in the expansion and 
operation planning should be improved to consider the wind power uncertainties.

The objective of this work was to describe an approach to be used by the Brazil-
ian power industry to represent the uncertainties of monthly wind power production 
in the SDDP algorithm applied in the medium and long-term operation planning 
model in Brazil. Due the dimensions of the Brazilian interconnected power system 
and to the hydropower predominance, attention is paid to keeping the large-scale 
stochastic problem computationally viable.

The proposed methodology comprises statistical clustering of wind regimes 
and definition of equivalent wind farms; evaluation of monthly transfer functions 
between wind speed and power production; integrated generation of monthly multi-
variate synthetic scenarios of inflows and winds, considering associated cross-corre-
lations; and representing monthly wind power in the SDDP algorithm.

Each step of the proposed approach was applied in real configurations of the Bra-
zilian interconnected power system including case studies related to the impact of 
considering wind power uncertainties on the monthly operation program and on 
the calculation of the maximum amount of energy that can be traded in long term 
power purchase agreements. The results obtained so far points to effectiveness of the 
proposed methodology and the relevance of modeling the wind uncertainties in the 
long-term operation planning of large hydro-dominated systems.

Further developments include the extension of the described approach to consider 
the uncertainties of photovoltaic solar energy production, which also has a high 
growth in the Brazilian system.
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