Skip to main content

Advertisement

Log in

On thermo-economic optimization effects in the balance price-demand of generation electricity for nuclear and fossil fuels power plants

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Several significant supply-and-demand models of electricity generation have been developed by applying optimization methodologies based on optimal decision variables. However, there has been little interest in the effect of the optimal thermodynamic operation modes of the main economic activity ratios that result in the sale and demand of electricity production. We perform a thermoeconomic analysis and identify an effect of heat transport parameters and internal irreversibilities of the non-endoreversible Novikov heat engine model on the efficiency of asset turnover and the change for returns to scale. In this work, we measure the cost-output elasticity of different operation regimes such as maximum power output, maximum efficient power, maximum ecological function, and timely investment in operation and maintenance. We conclude these could be used as classifying mechanisms to control the balance between price and demand quantified by the price-demand elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. European Commission: Mapping and analysis of the current and future (2020–2030) heating/cooling fuel deployment, Brussels. File at https://ec.europa.eu/energy/sites/ener/files/documents/Report%20WP2.pdf (2016)

  2. International Energy Agency: The Costs of Generating Electricity in Nuclear and Coal-fired Power Stations, Paris. File at https://www.iea.org/reports/world-energy-outlook-2019 (2019)

  3. Banbury, J.G.: Distribution-the final link in the electricity-supply chain. Electron. Power 21, 773–775 (1975)

    Article  Google Scholar 

  4. Ventosa, M., Baillo, A., Ramos, A., Rivier, M.: Electricity market modeling trends. Energy Policy 33, 897–913 (2005)

    Article  Google Scholar 

  5. Nuclear Energy Agency: The Costs of Generating Electricity in Nuclear and Coal-fired Power Stations. Paris, (1983)

  6. OECD Publishing: Projected Costs of Generating Electricity 2020. Paris, (2020)

  7. García-Martos, C., Rodríguez, J., Sánchez, M.J.: Modelling and forecasting fossil fuels, \(CO_2\) and electricity prices and their volatilities. Appl. Energy 101, 363–375 (2013)

    Article  Google Scholar 

  8. Hanson, D., Schmalzer, D., Nichols, C., Balash, P.: The impacts of meeting a tight \(CO_2\) performance standard on the electric power sector. Energy Econ. 60, 476–485 (2016)

    Article  Google Scholar 

  9. Wangsa, I.D., Wee, H.M.: The economical modelling of a distribution system for electricity supply chain. Energy Syst. 10, 415–435 (2019)

    Article  Google Scholar 

  10. Mari, C.: Power system portfolio selection under uncertainty. Energy Syst. 10, 321–353 (2019)

    Article  Google Scholar 

  11. Klæboe, G., Eriksrud, A.L., Fleten, S.E.: Benchmarking time series based forecasting models for electricity balancing market prices. Energy Syst. 6, 43–61 (2015)

    Article  Google Scholar 

  12. Alomoush, M.I.: Complex power economic dispatch with improved loss coefficients. Energy Syst. 12, 1005–1046 (2021)

    Article  Google Scholar 

  13. Krishnan, V., Ho, J., Hobbs, B.F., Liu, A.L., McCalley, J.D., Shahidehpour, M., Zheng, Q.P.: Co-optimization of electricity transmission and generation resources for planning and policy analysis: review of concepts and modeling approaches. Energy Syst. 7, 297–332 (2016)

    Article  Google Scholar 

  14. Habibian, M., Zakeri, G., Downward, A., Anjos, M.F., Ferris, M.: Co-optimization of demand response and interruptible load reserve offers for a price-making major consumer. Energy Syst. 11, 45–71 (2020)

    Article  Google Scholar 

  15. Tolis, A.I., Rentizelas, A.A.: An impact assessment of electricity and emission allowances pricing in optimised expansion planning of power sector portfolios. Appl. Energy 88, 3791–3806 (2011)

    Article  Google Scholar 

  16. Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)

    Article  Google Scholar 

  17. Velasco, S., Roco, J.M.M., Medina, A., White, J.A., Calvo-Hernández, A.: Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution. J. Phys. D Appl. Phys. 33, 355–359 (2000)

    Article  Google Scholar 

  18. Barranco-Jiménez, M.A., Angulo-Brown, F.: Thermoeconomic optimization of an endoreversible heat engine under a maximum modified ecological criterion. J. Energy Inst. 80(4), 232–238 (2007)

    Article  Google Scholar 

  19. Barranco-Jiménez, M.A.: Finite-time thermoeconomic optimization of a non endoreversible heat engine. Rev. Mex. Fis. 55(3), 211–220 (2009)

    Google Scholar 

  20. Sullivan, C.O.: Newton’s Law of cooling-A critical assessment. Am. J. Phys. 28, 956 (1990)

    Article  Google Scholar 

  21. Angulo-Brown, F., Páez-Hernández, R.T.: Endoreversible thermal cycle with a nonlinear heat transfer law. J. Appl. Phys. 74, 2216–2219 (1993)

    Article  Google Scholar 

  22. Wu, C., Chen, L., Chen, J.: Recent Advances in Finite-time Thermodynamics. Nova Publishers, Illinois, USA (1990)

    Google Scholar 

  23. Endoreversible Thermodynamics of Solar Energy Conversion. Oxford Univ. Press, New York, USA (1992)

  24. Hoffmann, K.H., Burzler, J.M., Schubert, S.: Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 22, 311–355 (1997)

    MATH  Google Scholar 

  25. De Vos, A.: Endoreversible thermoeconomics. Energy Convers. Magnag. 336, 1–5 (1995)

    Google Scholar 

  26. Ferguson, C.E., Gould, J.P.: Microeconomic theory. Richard D. Irwin Inc, Illinois, USA (1975)

  27. Kreps, D.M.: A course in Microeconomic Theory. Princeton University Press, New York, USA (1990)

    Book  Google Scholar 

  28. Barranco-Jiménez, M.A., Ramos-Gayoso, I., Rosales, M.A., Angulo-Brown, F.: A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models. Energies 2 (4), 1042–1056 (2009)

    Article  Google Scholar 

  29. Novikov, I.: The efficiency of atomic power stations. J. Nucl. Energ. 1, 125–128 (1958)

    Google Scholar 

  30. Fischer, A., Hoffmann, K.H.: Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? J. Non-Equilib. Thermodyn. 29, 9–28 (2005)

    MATH  Google Scholar 

  31. Yilmaz, T.: A new performance criterion for heat engines: efficient power. J. Energy Inst. 79, 38–41 (2006)

    Article  Google Scholar 

  32. Angulo-Brown, F.: An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69, 7465–7469 (1991)

    Article  Google Scholar 

  33. Angulo-Brown, F., Arias-Hernández, L.A.: Reply to Comment on A general property of endoreversible thermal engines. J. Appl. Phys. 89, 1520–1521 (2001)

    Article  Google Scholar 

  34. De Vos, A.: Endoreversible thermodynamics versus economics. Energy Convers. Magnag. 40, 1009–1019 (1999)

    Article  Google Scholar 

  35. De Vos, A.: Endoreversible economics. Energy Convers. Magnag. 38, 311–317 (1997)

    Google Scholar 

  36. Wu, C., Kiang, R.L.: Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility. Energy 17, 1173–1178 (1992)

    Article  Google Scholar 

  37. Ozcaynak, S., Gokun, S., Yavuz, H.: Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility. J. Phys. D Appl. Phys. 27, 1139–1143 (1994)

    Article  Google Scholar 

  38. Chen, J.: The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D Appl. Phys. 27, 1144–1149 (1994)

    Article  Google Scholar 

  39. Pacheco-Paez, J.C., Angulo-Brown, F., Barranco-Jiménez, M.A.: Thermoeconomic Optimization of an Irreversible Novikov Plant Model under Different Regimes of Performance. Entropy 19, 2–15 (2017)

    Article  Google Scholar 

  40. Valencia-Ortega, G., Levario-Medina, S., Barranco-Jiménez, M.A.: Thermal stability analysis of nuclear and fossil fuel power plants including the Dulong-Petit heat transfer law and economic features. Therm. Sci. Eng. Prog. 23, 1–12 (2021)

    Google Scholar 

  41. Boardman, B., Milne, G.: Making cold homes warmer: the effect of energy efficiency improvements in low-income homes. Energ. Policy 28 (6-7), 411–424 (2000)

    Google Scholar 

  42. Sorrell, S., Dimitropoulos, J.: The rebound effect: Microeconomic definitions, limitations and extensions. Ecol. Econ. 65(3), 636–649 (2008)

    Article  Google Scholar 

  43. Wirl, F.: The Economics of Conservation Programs. Kluwer Academic Publisher, Dordrecht, Netherlands (1997)

    Book  MATH  Google Scholar 

  44. Morris, S.W.: The Economics of Productivity. Edward Elgar Publishing Limited, Massachusetts, USA (2009)

    Google Scholar 

  45. Becker, G.S.: A theory of the allocation of time. Econ. J. 75(299), 493–517 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ares de Parga-Regalado.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Ortega, G., de Parga-Regalado, A.M.A. & Barranco-Jiménez, M.A. On thermo-economic optimization effects in the balance price-demand of generation electricity for nuclear and fossil fuels power plants. Energy Syst 14, 1163–1184 (2023). https://doi.org/10.1007/s12667-022-00537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-022-00537-0

Keywords

Navigation