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Abstract
The international community has largely recognized that the Earth’s climate is chang-
ing. Mitigating its global effects requires international actions. The European Union
(EU) is leading several initiatives focused on reducing the problems. Specifically,
the Climate Action tries to both decrease EU greenhouse gas emissions and improve
energy efficiency by reducing the amount of primary energy consumed, and it has
pointed to the development of efficient building energy management systems as key.
In traditional buildings, households are responsible for continuously monitoring and
controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system.
Unnecessary energy consumption might occur due to, for example, forgetting devices
turned on, which overwhelms users due to the need to tune the devices manually.
Nowadays, smart buildings are automating this process by automatically tuningHVAC
systems according to user preferences in order to improve user satisfaction and opti-
mize energy consumption. Towards achieving this goal, in this paper, we compare
36 Machine Learning algorithms that could be used to forecast indoor temperature in
a smart building. More specifically, we run experiments using real data to compare
their accuracy in terms of R-coefficient and Root Mean Squared Error and their per-
formance in terms of Friedman rank. The results reveal that the ExtraTrees regressor
has obtained the highest average accuracy (0.97%) and performance (0,058%) over
all horizons.

Keywords Smart buildings · Time series prediction · Energy efficiency · Machine
Learning · Internet of Things

B Sadi Alawadi
sadi.alawadi@mau.se

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12667-020-00376-x&domain=pdf
http://orcid.org/0000-0002-5380-4358


690 S. Alawadi et al.

1 Introduction

Climate change is one of the bigger challenges we face today, needing immediate and
long-term action. In general, climate change affects all regions of the world-posing a
threat to global economy, holding negative environmental effects, and bringing worry-
ing health implications. These growing threats require international action to mitigate
and minimize their negative effects. Initiatives such as the European Climate Action
outline the recorded negative effects of climate change and list urban infrastructure
as the key to effectively working towards the goals set forth by the European Union
(EU), who is currently responsible for 71% of global gas emissions and thus has a vital
role to play [60]. To achieve this, the European Climate Action initiative aims to both
decrease EU greenhouse gas emissions and improve energy efficiency by reducing the
amount of primary energy consumed. It also aims to find sustainable solutions from
an environmental as well as an economic standpoint.

Within smart buildings, the automation of existing residential as well as commercial
buildings (built prior to modern low- or zero-energy buildings) plays a significant role,
as such buildings make up the majority of energy consumption. The EU has pointed to
the development of efficient building energy management systems as key to achieving
the identified objectives due to the fact that buildings account for 40% of energy
consumption and 36% of total CO2 emissions within the EU [3,72]. The majority of
energy in those buildings is consumed by Heating, Ventilation, and Air Conditioning
(HVAC) systems, which have strong impact on households comfort as well as on the
environment [29].

Increasing affordability as well as rising temperatures have meant that HVAC sys-
tems are increasingly being used to improve comfort and thus quality of everyday
life. At the same time, such systems can quickly consume a considerable amount of
energy. Particularly for systems with limited intelligent behavior, energy efficiency
is not emphasized, and simple matters quickly add up to energy waste—such as a
household forgetting to turn off an air conditioner before going to work or systems
not adapting when the weather changes by, for instance, turning off when not needed.

In traditional (non-smart) buildings, users (residents) are responsible formonitoring
and controlling available devices. However, contemporary smart buildings are increas-
ingly equipped with Internet of Things (IoT) devices and objects such as sensors,
actuators, connected air conditioners, and heaters. In such buildings, unlike traditional
buildings, IoT devices collaborate to automatically adjust temperature and optimize
the use of HVAC systems, for instance, by forecasting the indoor temperature and
generating plans for tuning HVAC devices to optimize energy consumption.

Previous studies have shown that Machine Learning (ML) algorithms can be
exploited to model most of the systems in the smart buildings. In particular, ML
can be used to model the current HVAC systems [23] to improve energy efficiency
and reduce consumption in such buildings. ML is a sub-field of Artificial Intelligence
(AI) that combines a set of mathematical algorithms to give systems the ability to
learn automatically and improve the experience without being explicitly programmed
[4]. Nowadays, ML is widely used in many fields, including health care, public trans-
portation, and smart cities systems [2,16,45]. ML is divided into several categories
based on the learning method, such as supervised, semi-supervised, unsupervised, and
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enforced learning. In this paper we will be using supervised learning, which is divided
into two main branches; classification [7,28,62] and regression [1,27] depending on
the problem that needs to be solved. In our case we will be using regression to forecast
the indoor temperature.

In this paper, we describe an experiment that compares 36 offline ML algorithms
used for forecasting the indoor temperature for three consecutive hours in a smart
building. A real dataset was collected from the CiTIUS research center and the closest
weather station sensor measurements that belongs to different winter periods with
different weather conditions as reported in Table 1. All algorithms were evaluated
based on their accuracy, performance, and robustness to weather changes. The main
aim of this study is to find the most suitable ML algorithm in terms of the performance
and robustness that can be integrated into building management systems (BMS) to
improve building energy efficiency. Specifically to tune HVAC system parameters
taking into consideration user comfort levels and reduction of energy consumption.
We concluded that increasing the forecasting time does not decrease the accuracy of
the bestmodel.Moreover, we found that the difference between the obtained results for
three consecutive forecasting hours is insignificant (around 0.01) for bothR-coefficient
and RMSE; This means that the increase of the horizon does not rapidly affect the
accuracy of extraTrees.

The remainder of this paper is organized as follows. In the next Sect. 2, we review
existing studies to forecast the building’s indoor temperature using different ML algo-
rithms. In Sect. 3, we describe the dataset we used to develop the experiments and
explain theMLalgorithms used to develop the experiments. Section 4 shows the results
and discussion. Finally, Sect. 5 draws the conclusions and outlines of the future work.

2 Related research

Previous studies have determined that the HVAC systems have the highest energy
demand in a building. Therefore, managing HVAC systems in current buildings should
be addressed to improve energy efficiency by improving energy plans. In particular,
developing aMLmodel that considers the surrounding factors is necessary to configure
the best HVAC system parameters. Those parameters have a relevant impact on both
energy consumption and user comfort [23]. The ML model Artificial Neural Network
(ANN) is widely used for indoor temperature forecasting. Nivine et al. [8] proposed a
newapproach to forecast the indoor temperature up to4hbasedonANNbyconsidering
the outdoor parameters. Further, Kwok et al. [44]modulated the cooling load in a smart
building by incorporating a Neural Network (NN) into an intelligent model that allows
forecasting and examining the energydemandof the building aswell as determining the
critical factors that impact on energy consumption. The study reveals that the building
occupancy is a significant factor in forecasting the cooling load of the HVAC system.
In [54], the authors studied the impact of both users’ activities and their behaviors
on potential energy saving in smart buildings. The authors classified the user as the
most important factor and divided the user impact on energy demands into three main
subsystems: HVAC, light, and plug load systems.
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Moreover, Varick et al. [25] used real-time data to study building occupancy and
its influence on energy saving. They proposed an occupancy model that could be
successfully integrated into the HVAC system in the building throughMarkov Chains.
The study revealed that this model could annually save 42% of consumed energy.
Zhao [62] argued that external factors also have a significant influence on a building’s
energy performance through reviewing various energy forecast methods implemented
into ML algorithms and studying the engineering and statistical techniques utilized to
predict a building’s energy consumption [72].

In [48], a new model was developed based on Support Vector Regression (SVR) to
predict the hourly cooling load inside office buildings. The model’s hyper-parameters
were tuned to get the best temperature forecast. The study compared the developed
model with the classical multi-layer perceptron neural network (MLP) and showed
that the SVR outperforms the MLP in both accuracy and mean squared error (MSE).
In addition, Dong [21] examined the feasibility of forecasting building energy con-
sumption by applying SVR for regression and determined the impact of different
SVR parameters on the prediction accuracy. The study exposes that SVR obtained
the highest accuracy compared with other relevant research approaches using genetic
programming and neural networks. Previous studies addressed external weather con-
ditions and their influence on indoor temperature through autoregressivemodel (ARX)
and autoregressive moving average model (ARMAX). The selection of the suitable
structure of both models has been determined to obtain the best prediction accuracy.
These models can become a flexible controller because of their dynamic structure,
which permits to increase the user’s comfort level inside the building and to improve
the energy efficiency of HVAC systems [58]. The outcomes exhibited that the ARX
model achieved the best forecasting accuracy.

Sülo et al. [67] developed a deep learning model to predict the energy consumption
value of each building resides in the City University of New York (CUNY) campuses.
Each one of those buildings has different energy expenditures. Where, the optimal
conditions and forecasting the future energy usage of those buildings have been inves-
tigated to determine the loss of energy, using long short-termmemory (LSTM) Neural
Networks models. The experiments were conducted using time series data that were
collected from several campuses of CUNY. Furthermore, Xu et al. [18] used an LSTM
deep learning model to forecast the indoor temperature for 5 and 30 min in advance.
The LSTMmodel was compared to three standardMLmodels Back Propagation Neu-
ral Network (BPNN), Support Vector Machine (SVM) and Decision Tree (DT), which
it outperformed. In [42] Jin et al. used deep learning to forecast the optimal indoor
temperature with the aim to adjust the air conditioner automatically without any user
interference.

Abdullatif et al. [10] proposed a cooling load forecasting model for buildings, uti-
lizing the generalized regression neural network (GRNN) taking into consideration the
building orientational characteristics and occupancy in order to optimize the thermal
energy storage of the HVAC.

Catalina [14] developed polynomial regression models based on neural networks
to predict the monthly heating demand for residential buildings, considering the res-
idential constructional structure. Catalina used 270 different scenarios to validate
the developed models to find the best approach. Several other recent investigations
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proposed models using different ML algorithms for forecasting a building’s energy
consumption [24,53,61,72]. In these studies, various external factors were consid-
ered, such as building structure, orientation, isolation, and environmental variables.
The statistical results showed that these factors have a significant influence on indoor
temperature prediction and energy consumption in a building. Kangji et al. [47] devel-
oped a GA-ANFIS model to predict the indoor building temperature. This approach
obtained the optimal configuration of subtractive clusters, using a genetic algorithm
(GA) to optimize the fuzzy if-then rule base. The adaptive network-based fuzzy infer-
ence system (ANFIS) adjusted the premise and subsequent parameters to match the
training data. The results showed that GA-ANFIS obtained higher performance levels
compared to neural networks in terms of prediction accuracy.

Recently, Rodríguez-Mier et al. [59] used FRULER-GFS (fuzzy rule learning
through evolution for regression-genetic fuzzy system) to develop a rule-based model
for forecasting indoor temperature. The knowledge bases learned by FRULER include
Takagi-Sugeno-Kang fuzzy rules that correctly predict the temperature dynamicsmea-
sured by several different predictors obtained fromboth inside and outside the building.
The experiment results demonstrated that FRULER-GFS had the best accuracy rate
compared with ElasticNet and random forest regressors [59].

Further,Doukas et al. [22] developed an integrated decision support systembased on
rule sets. Their study aimed at improving the energymanagement system of a building.
Their system allowed central control over energy consumption in the building, which
made it exceptionally flexible. Furthermore, they created a reliable energy profile using
expert knowledge in the system. The HVAC control optimization (On/Off) provided
the system with the capability to recognize and discard any wrong decision. The study
confirmed that expert experience has a notable impact on improving the building
energy management system.

When reviewing previous studies on improving energy efficiency of HVAC systems
in smart buildings, none has compared a large set of ML algorithms to predict the
indoor temperature of buildings. This study provides a baseline for future studies
on forecasting the indoor temperatures in smart buildings using ML algorithms. All
models developed have been trained using the same settings for different weather
conditions to check the robustness and the performance of these algorithms.

3 Experiments

3.1 Experiments setups

As part of the EuropeanOPEREproject [26], which aims at improving the energyman-
agement system of the Universidade de Santiago de Compostela (USC), the USC has
deployed sensors in 45 university buildings. In this paper, we conducted experiments
considering one of those smart buildings, called Centro Singular de Investigación en
Tecnoloxías Intelixentes (CiTIUS), using a medium-sized sensor network. The net-
work collects and reports sensor readings as illustrated in Table 1. It produces 667
signals every 10 s.
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Table 1 Pattern features, where (*) represents features from CiTIUS, and (+) symbolizes features from
Meteogalicia

Features Abbr. Type Description

Underfloor Heating Status * UHS Binary Status of the underfloor heating
system (on/off) in the office

Underfloor Heating Temperature
*

UHT Continuous Temperature of the water linked to
the underfloor heating system

Air Condition Status * ACS Binary Status of the air conditioning system
(on/off) in the office

Air Conditioning Temperature* ACT Continuous The desired temperature of the
central air conditioning system.

Air Conditioning Humidity * ACH Continuous The percentage of the humidity
attached to central air conditioning
flow

Humidity + OutH Continuous Degree of the outdoor relative
humidity

Temperature + OutT Continuous Outdoor temperature

Solar radiation + SR Continuous Level of solar radiation

Indoor temperature * T Continuous Indoor temperature in one particular
office

Previous indoor temperature * T-1 Continuous The actual office temperature in a
specific time period (1, 2 and 3 h)

The dataset we used to develop the experiments composed both the sensor measure-
ments linked to the CiTIUS HVAC system and weather data collected from the closest
Meteogalicia weather station. The CiTIUS building has two functionality modes: win-
ter and summer modes. The dataset patterns were retrieved every 10 min during two
different time periods: from October 1, 2015, to March 31, 2016 (26,321 patterns),
and from November 1, 2016, to January 31, 2017 (13,083 patterns). Both periods cor-
respond to the HVAC winter working mode, which has the highest energy demand. It
must be noted that the second period corresponds to an unusually dry winter season
in Galicia. Thus, the weather conditions in both periods are different enough.

Each dataset pattern comprises 10 features, seven of them are provided by the
CiTIUS and the rest by Metogalicia weather station. Each variable indicates a mea-
surable phenomenon that can reduce the energy demand for heating and cooling the
building; these features are described in Table 1.

3.2 Machine learning algorithms

In this paper, we compared 36 batch learning algorithms belonging to 20 different
families (as listed in Table 2) [27]. All algorithms were selected based on the rec-
ommendation of the study conducted by Sirsat et al. [63]. The main purpose of the
experiment was to identify which of those algorithms is the most accurate to forecast
the indoor temperature of the studied building. The majority of the algorithms were
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selected from the Classification and Regression Training package1 in the statistical
computing language R.2

The experiments for each algorithm were repeated 10 times using different seeds
generated randomly. The data partitions were generated randomly in such a way that
70%, 15%, and 15% of the patterns were used for training, validating, and testing the
models, respectively. For each algorithm, the hyper-parameters were tuned using the
values reported in Table 3. The selected final values for the hyper-parameter are those
that maximize the average performance over the validation sets.

Furthermore, we implemented three more popular methods using other platforms:
support vector regression (SVR) using the LibSVM librarywas implemented in C++, 3

andGeneralized RegressionNeural Network (GRNN) and ExtremeLearningMachine
(ELM) with Gaussian kernels were both implemented in MATLAB.4 Moreover, we
trained the regressors by exploiting the values reported in Table 3, and stated in the R
package documentation to tune the algorithm hyper-parameters.

We then evaluated the tested algorithms’ performance using Pearson correlation (R-
coefficient) that falls between (+1,−1), shown in Eq. 1, and the Root Mean Squared
Error (RMSE), shown in Eq. 2.

ρ(Ŷ ,Y ) = 1

N − 1

N∑

i=1

⎛

⎝ Ŷi − μŶ

σŶ

⎞

⎠
(
Yi − μY

σY

)
(1)

where μŶ and σŶ are the mean and standard deviation of the predicted temperature

Ŷ , while μY and σY are the mean and the standard deviation of the real temperature
Y , and N is the number of test patterns.

RMSE =
√√√√ 1

N

N∑

i=1

(Ŷi − Yi )2 (2)

The final regressor performancematriceswere computed in the developed experiments
by taking the average of both RMSE and R-coefficient over the 10 repetitions.

4 Results and discussion

Satisfying users by achieving and maintaining their comfort levels and optimizing
energy consumption inside buildings should be core aspects when realizing smart
buildings. This requires developing accurate and reliable HVAC systems that are auto-
matically adaptable to different weather conditions. Towards achieving this goal, we
compared 36 ML algorithms, over a real data set, to predict the indoor temperature
in the CiTIUS office. The results can be utilized to generate energy plans that tune

1 http://topepo.github.io/caret/train-models-by-tag.html.
2 http://r-project.org.
3 https://www.csie.ntu.edu.tw/~cjlin/libsvm.
4 http://mathworks.com.
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Table 2 Regressors considered in this work, grouped by families

No. Family Regressors

1 Bayesian models Bayesian GLM (Bayesglm) [36]

Bayesian regularized neural network (Brnn) [30,49]

2 Bagging ensembles Bagging ensemble of conditional inference
regression trees (Bag) [11]

Bagged multivariate adaptive regression (BagEarth)
[6,43]

Bagging ensemble of regression trees (Treebag) [55]

3 Boosting ensembles RandomGLM [5,65]

4 Gaussian processes Gaussian processes regression with linear kernel
(GaussprLinear) [69]

5 Generalized additive models Generalized additive model (Gam) [70]

6 Generalized linear Generalized Linear Model (Glm) [20]

regression Penalized Linear Model (Penalized) [38]

7 Gradient boosting Gradient boosting machine with linear regressors
(BstLm) [9,32,50]

machines Gradient boosting with regression base trees
(BstTree) [9,50]

Generalized boosting model (Gbm) [32]

8 Independent Component Analysis Independent component regression (Icr) [41]

9 Least absolute shrinkage Least absolute shrinkage and selection operator
(Lasso) [73]

10 Least squares Non-negative least squares regression (NNLS) [46]

11 Linear regression Linear Model (Lm) [15]

12 Neural networks Multi-layer perceptron (MLP) [68]

Averaged neural network (AvNNet) [43]

Generalized regression neural network (Grnn) [66]

Extreme learning machine (Elm) [40]

Deep belief neural network (Dnn) [39]

Elm-kernel [40]

13 Other methods Multivariate adaptive regression (Earth) [31]

Projection pursuit regression (PPR) [33]

14 Partial least squares Sparse partial least squares regression (Spls) [17]

Statistically Inspired Modification of PLS (Simpls)
[19]

15 Prototype models Cubist [56]

16 Quantile regression Rqlasso regressor (Rqlasso) [52]

17 Random forests Random forest ensemble (Rf) [12]

Quantile regression forest (Qrf) [51]

Ensemble of extremely randomized regression trees
(ExtraTrees) [37]

123



A comparison of machine learning algorithms... 697

Table 2 continued

No. Family Regressors

18 Regression trees Recursive partitioning and regression tree (Rpart)
[13]

Multivariate linear tree-based model (M5) [57]

19 Ridge (or Tikhonov) regression Forward–Backward Greedy algorithm (Foba) [71]

20 Support vector regression Support vector machine for regression (Svr) [64]

Table 3 List of the regressors, with their tunable hyper-parameters (tried values and packages)

Regressor Hyperp. (values) Packages Regressor Hyperp. (values) Packages

AvNNet size (7) nnet Grnn spread(14) Matlab

decay (3)

Bag – caret Icr ncomp(10) fastICA

BagEarth nprune(10) caret Lasso – elasticnet

Bayesglm – arm Lm – MASS

BstLm mstop (10) bst, plyr M5 pruned (2) RWeka

smoothed (2)

rules (2)

BstTree mstop (4), maxdepth (5) bst, plyr MLP n.hidden (20) nnet

Brnn neurons (15) brnn NNLS – nnls

Cubist committees (3) Cubist Penalized λ1(5), λ2(4) penalized

neighbors (3)

Dnn layer1 (10) deepnet PPR nterms(10) stats

layer2 (10)

layer3 (10)

Earth nprune (15) earth Qrf mtry (2) quantregForest

Elm nhid (20) elmNN Rf mtry(10) randomForest

actfun (4)

Elm-kernel σ (25),C (25) Matlab RandomGLM maxInterationOrder (3) randomGLM

ExtraTrees mtry (10) extraTrees Rpart complexity (10) rpart

numRandomCuts (2)

Foba k (2),λ (10) foba Rqlasso λ (10) rqPen

Gam select (2) gam Simpls ncomp (10) pls

GaussprLinear – kernlab Spls K (3),η, κ (7) spls

Gbm n.trees (5) gbm, plyr Svr σ (5),C (4) kernlab

interaction.depth (5)

Glm – gbm, plyr Treebag – ipred, plyr

e1071

the HVAC system parameters and consequently both increase user satisfaction and
optimize energy consumption. We plan to address those aspects in our future work.
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Table 4 Friedman rank of the RMSE (left) and R-coefficient (right)

Order RMSE rank R-coefficient rank

Regressor Rank MSE Avg. Regressor Rank R-coefficient Avg.

1 extraTrees 1 0.05807 extraTrees 1 0.97052

2 rf 2 0.06046 rf 2 0.96916

3 cubist 4 0.06255 cubist 3.7 0.96801

4 avNNet 4 0.06382 avNNet 4 0.96727

5 bstTree 5.3 0.06362 bstTree 5.3 0.96738

6 elm-kernel 5.7 0.06484 elm-kernel 5.7 0.96673

7 brnn 7.7 0.06811 gbm 7.7 0.96595

8 gbm 7.7 0.06635 brnn 8.3 0.96506

9 svr 10.3 0.06832 svr 10 0.96505

10 qrf 10.7 0,06831 qrf 10.7 0.96503

11 ppr 11.7 0.07480 ppr 12 0.96154

12 bag 13.3 0.07721 bag 13.3 0.96023

13 grnn 14 0.07571 grnn 13.7 0.9614

14 penalized 14.3 0.08885 penalized 14.3 0.95398

15 simpls 17.7 0.09578 simpls 17.7 0.9503

16 mlp 18.3 0.09182 mlp 18.3 0.95268

17 earth 18.7 0.12496 earth 18.7 0.93754

18 rqlasso 18.7 0.09719 rqlasso 18.7 0.95003

19 bagEarth 19.3 0.16418 bagEarth 19.3 0.92212

20 nnls 20.7 0.10783 nnls 20.3 0.94505

21 BstLm 20.7 0.10757 BstLm 21.3 0.94431

22 lasso 21.7 0.10847 lasso 21.3 0.94468

23 bayesglm 25.3 0.12207 bayesglm 25 0.93695

24 elm 26 0.11665 glm 26 0.93687

25 glm 26.3 0.12224 gam 27 0.93687

26 spls 27.3 0.22177 spls 27.3 0.89188

27 gaussprLinear 27.3 0.12219 gaussprLinear 27.3 0.93688

28 gam 27.3 0.12224 elm 27.3 0.93927

29 M5 27.7 0.17291 M5 27.7 0.91652

30 lm 28.3 0.12224 lm 28 0.93687

31 treebag 29 0.12731 treebag 29 0.93359

32 rpart 29.3 0.13357 rpart 29.3 0.92993

33 icr 29.3 0.12732 icr 29.3 0.93426

34 randomGLM 29.7 0.35537 randomGLM 29.7 0.84641

35 foba 30 0.12355 foba 30 0.93617

36 dnn 35.7 0.53150 dnn 35.7 0.70223

Best algorithm amongst the whole group and has obtained the best results are shown in bold

In the performed experiments, we calculated the Friedman ranks [35] for both
RMSE and R-coefficient for all regressors (see Table 4). The Friedman test is a non-
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Table 5 The best R-coefficient
and RMSE are achieved by
extraTrees for the forecasting
horizon

1 h 2 h 3 h

RMSE 0.04041 0.06011 0.07370

R-coefficient 0.97958 0.96951 0.96245

parametric statistical test. Similar to the parametric repeated measures ANOVA, it
compares three or more matched or paired groups. It scores the values in eachmatched
row in ascending order, where each row is ranked individually. It then sums the ranks
in each column [34]. This test determined the actual position of each algorithm on
average over all the horizons. The regressorsmust be sorted in a descending order based
on their performance on each data set (e.g., by increasing RMSE or by decreasing R-
coefficient), and the Friedman rank of each regressor is its average position over the
horizons. Figure 1 illustrates the Friedman rank for both MSE and R-coefficient in
ascending order (i.e., by decreasing performance). The best results were achieved
by two regressors that belong to the random forest family (ExtraTrees and RF) in
both performance measurements. Generally, both figures are quite similar, with small
changes in some regressor positions. Table 4 summarizes the Friedman ranks of both
theMSEand theR-coefficient average for each regressor, and it clearly shows the small
change in the position over all three horizons. Namely, the algorithms fall between
the 24th and 28th positions and also between the Bayesian regularized neural network
(Brnn) and the generalized boosting model (Gbm).

Figure 2 shows the average R-coefficient of the most reliable 20 regressors over
the three prediction horizons, sorted decreasingly. The highest R-coefficients are
achieved by extremely randomized regression trees (ExtraTrees)—with the accuracy
R-coefficient (0.97) and the lowest RMSE average (0.058) as reported in Table 4—
followed by Rf, Cubist, BstTree, and AvNNet. The Figure also shows that all the
algorithms that appear in the top 10 list belong to random forest family, and the accu-
racy obtained by Qrf is quite similar to the Bayesian model (Brnn) and Support Vector
Regression (Svr). On the other hand, NNLS, Lasso, and Bstlm are at the bottom of
the top 20 list, with good performance in terms of R-coefficient (around 0.94 over all
horizons).

These results (ploted inFig. 2) are quite similar to theFriedman rankofR-coefficient
shown in Fig. 1. The BstTree is substituted with AvNNet, so they come in 4th and 5th
position, respectively. Moreover, Bag and Grnn algorithms swap positions, becoming
12th and 13th, respectively. Regarding the last three positions, NNLS has improved
its position. Unfortunately, Earth and Bagearth regressors disappeared from the top
20, while lasso and BstLm replaced them in the 19th and 20th position.

The outcomes of this comparative experiment are as follows: the extraTrees algo-
rithm achieved the highest accuracy for the three prediction horizons in terms of
Friedman rank, average values of RMSE, and R-coefficient (Table 5). ExtraTrees is
less sensitive to noise and outlier values while ANNmodels are more sensitive, which
means that extraTree is more robust. Moreover, the difference between the obtained
results for three consecutive forecasting hours is quite small (around 0.01) for both
R-coefficient and RMSE; this means the increase of the horizon does not rapidly
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Fig. 1 Friedman rank of R-coefficient (upper panel) and RMSE (lower panel) for the 20 best regressors

affect the extraTrees accuracy. Other regressors with good performance are random
forest, cubist, gradient boosting of regression trees (bstTree), average neural network
committee (avNNet), and kernel ELM (elm-kernel).

There is a high agreement between average values and Friedman ranks in the results.
This comparisonmight be useful for indoor temperature prediction for any smart build-
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Fig. 2 Averagevalues ofR-coefficient over the data sets of the 20best regressors to forecast three consecutive
hours

ing, which facilitates building a ML forecast model to improve the energy efficiency,
reduce energy consumption, and manage a building’s assets.

Threats to validity A potential threat is that our results may not be valid in all
HVAC systems. As we have not made any particular assumptions, and as the HVAC
does not have any unique features, we believe that our results can be generalized to
most other HVAC Systems. However, further research is needed to confirm this. Our
studymay have been internally biased from the settings of the experiments because the
data was collected during winter periods in two different years with different weather
conditions. Testing all algorithms using data collected during summer periods may
produce different results, however, based on previous studies, the ExtraTreewill obtain
the best results in all scenarios [63]. Moreover, the algorithm hyper-parameters values
were tuned according to the default settings shown in the Table 3 used in our study
and the results are quite good. However, if we search for the optimal values of those
parameters which will affect the learning process, we may get a slight improvement
in the accuracy of the algorithms. The experiments were repeated 10 times to make it
statistically significant, and the mean was calculated to ensure the result was correct
and avoid any execution errors.

5 Conclusions and future work

In this paper, we compared a set of 36 ML algorithms that belong to 20 different
families to forecast the indoor temperature for three consecutive hours using real
data collected from both a smart building and a weather station every 10 min. This
comparison showed that the ExtraTrees algorithm performs best in terms of both the
R-coefficient (0.97%) and RMSE (0,058%); it also ranks the highest according to the
Friedman test. Other algorithms performedwell are the random forest, averaged neural
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network (AvNNet), cubist, gradient boosted machines with regression trees, extreme
learning machine with Gaussian kernels, and support vector machine for regression.
The outcomes of this study show that the extraTrees is more robust to outliers and
data noise, while most of the algorithms such as ANN are highly sensitive to data
noise. Furthermore, increasing the forecasting time does not decrease the accuracy of
the best model. We found that the difference between the obtained results for three
consecutive forecasting hours is insignificant (around 0.01) for both R-coefficient and
RMSE; this means that the increase of the horizon does not rapidly affect the accuracy
of extraTrees. Finally, it is possible to use a standard ML algorithm to forecast the
indoor temperature with reasonable accuracy based onweather and sensors data linked
to the smart building.

However, more research efforts should be made in the future to optimize the HVAC
parameters based on the prediction of the indoor temperature. Researchers need to con-
sider the following: integrating an incremental training and online learning approach
to improve the accuracy and the robustness of the identified model. Real time user
feedback during the deployment phase (Interactive learning) for new data behavior
that will help in improving model efficiency. Raising the forecast horizon for longer
time periods (days ahead), considering user satisfaction (comfort level), and energy
consumption. Integrating the winner model (ExtraTree) with building management
systems and predicting in real-time. Validating the results in other buildings using
other sensor data. Finally, addressing possible noise or missing data linked to sensor
failure scenarios during the run time.
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