Skip to main content
Log in

Effect of Alloying Elements, Phases and Heat Treatments on Properties of High-Entropy Alloys: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have attracted many researchers in the last few decades due to their remarkable properties like high strength, hardness, corrosion resistance, good formability, etc. The present review is based on the mechanical properties of HEAs, as it is important to know the relevant properties of any alloy before selecting it for any application. This review accentuates on the factors affecting the mechanical properties (tensile strength, compressive strength, hardness) of HEAs such as alloying elements, phases and heat treatment. Moreover, it is also endeavored to unfold research gaps pertinent to this domain. Consequently, it is deduced that there is very limited volume of literatures in the fields of vibration, hot tensile and creep incorporating potential alloying elements such as zinc and boron with HEAs. Also, there is scarcity of literature on determination of tensile properties of HEAs. Further, HEAs can be strengthened by implementing potential strengthening mechanisms like oxide dispersion strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen W, Fu Z, Fang S, Xiao H, and Zhu D, Mater Design 51 (2013) 854. https://doi.org/10.1016/j.matdes.2013.04.061.

    Article  CAS  Google Scholar 

  2. Sinha A K, Soni V K, Chandrakar R, and Kumar A, Trans Indian Inst Metals 74 (2021) 2953. https://doi.org/10.1007/s12666-021-02363-x.

    Article  CAS  Google Scholar 

  3. Guo S, Ng C, Lu J,and Liu CT J Appl Phys 103505 (2011) 109. https://doi.org/10.1063/1.3587228.

    Article  CAS  Google Scholar 

  4. Soni V K, Sanyal S, Rao K R, and Sinha S K, Proceed Inst Mech Eng Part C: J Mech Eng ScI 235 (2021) 6268. https://doi.org/10.1177/09544062211008935.

    Article  CAS  Google Scholar 

  5. Chen S,Tong Y, and Liaw P K, Entropy (2018). https://doi.org/10.3390/e20120937.

    Article  Google Scholar 

  6. Bashev V F and Kushnerov O I, Phys Metals Metallogr 115 (2014) 737. https://doi.org/10.1134/S0031918X14040024.

    Article  CAS  Google Scholar 

  7. Yang X and Zhang Y, Mater Chem Phys (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  Google Scholar 

  8. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y Adv Eng Mater (2004) https://doi.org/10.1002/adem.200300567.

    Article  Google Scholar 

  9. Yeh J W, JOM (2013). https://doi.org/10.1007/s11837-013-0761-6.

    Article  Google Scholar 

  10. King D J M, Middleburgh S C, McGregor A G , and Cortie M B, Acta Materialia 104 (2016) 172. https://doi.org/10.1016/j.actamat.2015.11.040.

    Article  CAS  Google Scholar 

  11. Hunn W P, and Widom M, JOM (2013). https://doi.org/10.1007/s11837-013-0772-3.

    Article  Google Scholar 

  12. Juan C C, Hsu C Y, Tsai C W, Wang W R, Sheu T S, Yeh J W, and Chen S K Intermetallics (2013) https://doi.org/10.1016/j.intermet.2012.09.008.

    Article  Google Scholar 

  13. Liu L, Zhu J B, Li L, Li J C, and Jiang Q, Mater Design (2013). https://doi.org/10.1016/j.matdes.2012.08.019.

    Article  Google Scholar 

  14. Ma S G, and Zhang Y, Mater Sci Eng A (2012). https://doi.org/10.1016/j.msea.2011.10.110.

    Article  Google Scholar 

  15. Wang X F, Zhang Y, Qiao Y, and Chen G L, Intermetallics (Barking) (2007). https://doi.org/10.1016/j.intermet.2006.08.005.

    Article  Google Scholar 

  16. Hsu C Y, Juan C C, Sheu T S, Chen S K, and Yeh J W, JOM (2013) https://doi.org/10.1007/s11837-013-0753-6.

    Article  Google Scholar 

  17. Salishchev G A, Tikhonovsky M A, Shaysultanov D G, Stepanov N D, Kuznetsov A V, Kolodiy I V, Tortika A S, and Senkov O N J Alloys Compd (2014) https://doi.org/10.1016/j.jallcom.2013.12.210.

    Article  Google Scholar 

  18. Tang Z, Gao M C, Diao H, Yang T, Liu J, Zuo T, Zhang Y, Lu Z, Cheng Y, Zhang Y, and Dahmen K A, JOM (2013). https://doi.org/10.1007/s11837-013-0776-z.

    Article  Google Scholar 

  19. Guo S, Ng C, and Liu C T, J Alloys Compd (2013). https://doi.org/10.1016/j.jallcom.2013.01.007.

    Article  Google Scholar 

  20. Kao Y F, Chen T J, Chen S K, and Yeh J W, J Alloys Compd (2009). https://doi.org/10.1016/j.jallcom.2009.08.090.

    Article  Google Scholar 

  21. Fan Q C, Li B S , and Zhang Y, J Alloys Compd 614 (2014) 203. https://doi.org/10.1016/j.jallcom.2014.06.090.

    Article  CAS  Google Scholar 

  22. Yurchenko N Y, Stepanov N D, Shaysultanov D G, Tikhonovsky M A , and Salishchev G A, Mater Charact (2016). https://doi.org/10.1016/j.matchar.2016.09.039.

    Article  Google Scholar 

  23. Zhu Z G, Ma K H, Wang Q, and Shek C H, Intermetallics (Barking) 79 (2016) 1. https://doi.org/10.1016/j.intermet.2016.09.003.

    Article  CAS  Google Scholar 

  24. Stepanov N D, Shaysultanov D G, Salishchev G A, Tikhonovsky M A, Oleynik E E, Tortika A S, and Senkov O N J Alloys Compd (2015). https://doi.org/10.1016/j.jallcom.2014.12.157.

    Article  Google Scholar 

  25. Li B S, Wang Y P, Ren M X, Yang C, and Fu H Z, Mater Sci Eng A (2008). https://doi.org/10.1016/j.msea.2008.08.025.

    Article  Google Scholar 

  26. Fu Z, Chen W, Chen Z, Wen H, and Lavernia E J, Mater Sci Eng A (2014). https://doi.org/10.1016/j.msea.2014.09.077.

    Article  Google Scholar 

  27. Liu W H, He J Y, Huang H L, Wang H, Lu Z P, and Liu C T, Intermetallics (Barking) (2015). https://doi.org/10.1016/j.intermet.2015.01.004.

    Article  Google Scholar 

  28. Fan Q C, Li B S, and Zhang Y, Mater Sci Eng A (2014). https://doi.org/10.1016/j.msea.2014.01.044.

    Article  Google Scholar 

  29. Zhu J M, Zhang H F, Fu H M, Wang A M, Li H, and Hu Z Q, J Alloys Compd (2010) https://doi.org/10.1016/j.jallcom.2010.03.074.

    Article  Google Scholar 

  30. Zhu J M , Fu H M, Zhang H F, Wang A M, Li H, and Hu Z Q, J Alloys Compd (2011). https://doi.org/10.1016/j.jallcom.2010.10.047.

    Article  Google Scholar 

  31. Zhu J M, Fu H M, Zhang H F, Wang A M, Li H , and Hu Z Q , Mater Sci Eng A (2010). https://doi.org/10.1016/j.msea.2010.07.049.

    Article  Google Scholar 

  32. Kumar V, Sanyal S, and Sinha S K, Vacuum 174 (2020) 109173. https://doi.org/10.1016/j.vacuum.2020.109173.

    Article  CAS  Google Scholar 

  33. Liu L, Zhu J B, Zhang C, Li J C, and Jiang Q, Mater Sci Eng A 548 (2012) 64. https://doi.org/10.1016/j.msea.2012.03.080.

    Article  CAS  Google Scholar 

  34. Li R, Zhang W, Zhang Y, and Liaw P K, Mater Sci Eng A 725 (2018) 138. https://doi.org/10.1016/j.msea.2018.04.007.

    Article  CAS  Google Scholar 

  35. Zhang L J, Zhang M D, Zhou Z, Fan J T, Cui P, Yu P F, Jing Q, Ma M Z, Liaw P K, Li G, and Liu R P, Mater Sci Eng A 725 (2018) 437. https://doi.org/10.1016/j.msea.2018.04.058.

    Article  CAS  Google Scholar 

  36. Shun T, Chang L, and Shiu M, Mater Charact 70 (2012) 63. https://doi.org/10.1016/j.matchar.2012.05.005.

    Article  CAS  Google Scholar 

  37. Salishchev G A,Tikhonovsky M A, Shaysultanov D G, Stepanov N D, Kuznetsov A V, Kolodiy I V,Tortika A S, and kov O N J Alloys Compd 591 (2014) 11. https://doi.org/10.1016/j.jallcom.2013.12.210.

    Article  CAS  Google Scholar 

  38. Shun T T, Chang L Y, and Shiu M H, Mater Sci Eng A 556 (2012) 170. https://doi.org/10.1016/j.msea.2012.06.075.

    Article  CAS  Google Scholar 

  39. Ai C, He F, Guo M, Zhou J, Wang Z, Yuan Z, Guo Y, Liu Y, and Liu L, J Alloys Compd 735 (2018) 2653. https://doi.org/10.1016/j.jallcom.2017.12.015.

    Article  CAS  Google Scholar 

  40. Nagase T, Kakeshita T, Matsumura K, Nakazawa K, Furuya S, Ozoe N, and Yoshino K, Mater Design 184 (2019). https://doi.org/10.1016/j.matdes.2019.108172.

    Article  Google Scholar 

  41. He F, Wang Z, Cheng P, Wang Q, Li J, Dang Y, Wang J, and Liu CT, J Alloys Compd 656 (2016) 284. https://doi.org/10.1016/j.jallcom.2015.09.153.

    Article  CAS  Google Scholar 

  42. Gu X Y, Dong Y N, Zhuang Y X, and Wang J, Metals Mater Int 26 (2020) 292. https://doi.org/10.1007/s12540-019-00328-w.

    Article  CAS  Google Scholar 

  43. Jiang L, Cao Z Q, Jie J C, Zhang J J, Lu Y P, Wang T M, and Li T J, J Alloys Compd 649 (2015) 585. https://doi.org/10.1016/j.jallcom.2015.07.185.

    Article  CAS  Google Scholar 

  44. Wu Y D, Cai Y H, Chen X H, Wang T, Si J J, Wang L, Wang Y D, and Hui X D, Mater Design 83 (2015) 651. https://doi.org/10.1016/j.matdes.2015.06.072.

    Article  CAS  Google Scholar 

  45. Jiang H, Jiang L, Qiao D, Lu Y, Wang T, Cao Z , and Li T , J Mater Sci Technol 33 (2017) 712. https://doi.org/10.1016/j.jmst.2016.09.016.

    Article  CAS  Google Scholar 

  46. Rogal Ł, Kalita D, Tarasek A, Bobrowski P, and Czerwinski F, J Alloys Compd (2017). https://doi.org/10.1016/j.jallcom.2017.02.274.

    Article  Google Scholar 

  47. Wang F J and Zhang Y, Mater Sci Eng A (2008). https://doi.org/10.1016/j.msea.2008.05.020.

    Article  Google Scholar 

  48. Lee C F and Shun T T, Mater Charact (2016). https://doi.org/10.1016/j.matchar.2016.02.018.

    Article  Google Scholar 

  49. Moravcik I, Cizek J, Kovacova Z, Nejezchlebova J, Kitzmantel M, Neubauer E, Kubena I, Hornik V, and Dlouhy I, Materials Sci Eng A (2017). https://doi.org/10.1016/j.msea.2017.06.086.

    Article  Google Scholar 

  50. Ge W, Wu B, Wang S, Xu S, Shang C, Zhang Z, and Wang Y, Adv Powder Technol (2017). https://doi.org/10.1016/j.apt.2017.07.006.

    Article  Google Scholar 

  51. Karpets M V , Myslyvchenko O M, Makarenko O S, Gorban V F and Krapivka M O, Powder Metall Metal Ceram 54 (2015) 344. https://doi.org/10.1007/s11106-015-9720-9.

    Article  CAS  Google Scholar 

  52. You D, Yang G, Choa Y H, and Kim J K, Mater Sci Eng A 831(2022). https://doi.org/10.1016/j.msea.2021.142039.

    Article  Google Scholar 

  53. Cao, Z H, Zhai G Y, Ma Y J, Ding, L P, Li P F, Liu H L, Lu H M, Cai Y P, Wang G J and Meng X K, Int J Plast 145 (2021). https://doi.org/10.1016/j.ijplas.2021.103081.

    Article  Google Scholar 

  54. Nong Z, Zhu J, Yang X, Yu H, and Lai Z, J Wuhan Univ Technology-Mater. Sci. Ed., 28 (2013) 1196. https://doi.org/10.1007/s11595-013-0844-9.

    Article  CAS  Google Scholar 

  55. Moravcik I, Cizek J, Gavendova P, Sheikh S, Guo S, and Dlouhy I, Mater Lett 174 (2016) 53. https://doi.org/10.1016/j.matlet.2016.03.077.

    Article  CAS  Google Scholar 

  56. Jiang L, Lu Y, Wu W, Cao Z, and Li T, J Mater Sci Technol 32 (2016) 245. https://doi.org/10.1016/j.jmst.2015.08.006.

    Article  CAS  Google Scholar 

  57. Zhuang Y X, Xue H D, Chen Z Y, Hu Z Y, and He J C, Mater Sci Eng A 572 (2013) 30. https://doi.org/10.1016/j.msea.2013.01.081.

    Article  CAS  Google Scholar 

  58. Jiang L, Jiang H, Lu Y, Wang T, Cao Z, and Li T, J Mater Sci Technol 31 (2015) 397. https://doi.org/10.1016/j.jmst.2014.09.011.

    Article  CAS  Google Scholar 

  59. Niu S, Kou H, Guo T, Zhang Y, Wang J, and Li J, Mater Sci Eng A 671 (2016) 82. https://doi.org/10.1016/j.msea.2016.06.040.

    Article  CAS  Google Scholar 

  60. Sheng H F, Gong M, and Peng L M, Mater Sci Eng A 567 (2013) 14. https://doi.org/10.1016/j.msea.2013.01.006.

    Article  CAS  Google Scholar 

  61. Shaysultanov D G, Stepanov N D, Salishchev G A, and Tikhonovsky M A, Phys Metals Metallogr 118 (2017) 579. https://doi.org/10.1134/S0031918X17060084.

    Article  CAS  Google Scholar 

  62. He F, Wang Z, Shang X, Leng C, Li J, and Wang J, Mater Design 104 (2016) 259. https://doi.org/10.1016/j.matdes.2016.05.044.

    Article  CAS  Google Scholar 

  63. Wang P, Wang Y, Cui F, Yang X, Pan A, and Wu W, J Alloys Compd 918 (2022) https://doi.org/10.1016/j.jallcom.2022.165602.

    Article  Google Scholar 

  64. Munitz A, Salhov S, Guttmann G, Derimow N, and Nahmany M, Mater Sci Eng A 742 (2019) 1. https://doi.org/10.1016/j.msea.2018.10.114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Institute of Technology Raipur for providing platform for this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnivesh Kumar Sinha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, V.K., Sinha, A.K. Effect of Alloying Elements, Phases and Heat Treatments on Properties of High-Entropy Alloys: A Review. Trans Indian Inst Met 76, 897–914 (2023). https://doi.org/10.1007/s12666-022-02777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02777-1

Keywords

Navigation