Skip to main content
Log in

Study on Pre-oxidation of a High-Arsenic and High-Sulfur Refractory Gold Concentrate with Potassium Permanganate and Hydrogen Peroxide

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

For arsenic-containing refractory gold concentrate, gold recovery by leaching is extremely difficult due to the encapsulation of gold in arsenopyrite and pyrite. In this work, the pre-oxidation of a high-arsenic and high-sulfur refractory gold concentrate in the acidic potassium permanganate or hydrogen peroxide solutions has been investigated. The studied parameters include pre-oxidation time, acidity, pre-oxidation temperature, ethylene glycol addition and oxidant concentration. When potassium permanganate of 0.25 mol/L is used as oxidant, 61.4% of arsenic and 51.8% of iron can be removed, respectively. The results of kinetics analysis indicate that the oxidative dissolution of arsenopyrite during the pre-oxidation process is controlled by the product layer diffusion, with an activation energy of 7.92 kJ/mol. The stability of hydrogen peroxide can be significantly improved by increasing both sulfuric acid concentration and ethylene glycol addition when hydrogen peroxide is used as oxidant. Under optimum conditions, arsenic removal ratio of 57.2% and iron removal ratio of 51.9% have been achieved with hydrogen peroxide of 2.5 mol/L, sulfuric acid of 0.75 mol/L and ethylene glycol of 30 mL/L. The gold extraction of refractory concentrate is only 11.5% in the copper–ammonia–thiosulfate leaching solutions without pre-oxidation. A gold extraction of 71.8% and significant decrease in thiosulfate consumption from 28.2 to 5.7% have been observed for the concentrate after pre-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Singh N K, Gupta G, Upadhyay A K, and Rai U N, Springer (2018) p 257.

  2. de Souza A C M, de Almeida M G, Pestana I A, and de Souza C M M, Arch En Con Tox76 (2019) 357.

    Article  Google Scholar 

  3. Shakoor, M B, Riza M, Niazi N K, Ali S, Rizwan M, Arif M S, and Arif M, Elsevier (2019) p 385.

  4. Rahman M M, Dong Z, and Naidu R, Chemosphere139 (2015) 54.

    Article  CAS  Google Scholar 

  5. Singh, N K, Raghubanshi A S, Upadhyay A K, and Rai U N, Ecotox Environ Safe130 (2016) 224.

    Article  CAS  Google Scholar 

  6. Waqas H, Shan A, Khan Y G, Nawaz R, Rizwan M, Rehman S, Shakoor M B, Ahmed W, and Jabeen M, Hum Ecol Risk Assess23 (2017) 836.

    Article  CAS  Google Scholar 

  7. Azevedo L S, Pestana I A, Meneguelli-Souza A C, Ramos B, Pessanha D R, Caldas D, Almeida M G, and de Souza C M M, Environ Sci Pollut Res25 (2018) 35471.

    Article  CAS  Google Scholar 

  8. Afenya P M, Miner Eng4 (1991) 1043.

    Article  Google Scholar 

  9. Li Q, Li D, and Qian F, Hydrometallurgy97 (2009) 61.

    Article  CAS  Google Scholar 

  10. Fleming C A, Miner. Metall. Process.27 (2010) 81.

    CAS  Google Scholar 

  11. Corrans I J, Angore J E, Miner Eng4 (1991) 763.

    Article  Google Scholar 

  12. Marchbank A R, Thomas K G, Dreisinger D, and Fleming C, US Patent 5536297A, (1996).

  13. Brittan M, Miner Eng42 (1995) 145.

    Google Scholar 

  14. Nanthakumar B, Pickles C A, and Kelebek S, Miner Eng20 (2007) 1109.

    Article  CAS  Google Scholar 

  15. Sajjad W, Zheng G, Din G, Ma X, Rafiq M, and Xu W, Trans Indian Inst Met72 (2019) 559.

    Article  CAS  Google Scholar 

  16. Auwalu A, and Yang H, Trans Indian Inst Met (2019) 1.

  17. Liu X, Li Q, Zhang Y, Jiang T, Yang Y, Xu B, and He Y, Minerals7 (2017) 80.

    Article  Google Scholar 

  18. Li Q, Zhang Y, Liu X, Xu B, Yang Y, and Jiang T, Metall Mater Trans B7 (2019) 1.

    Article  Google Scholar 

  19. Thomas K G, and Cole A P, Elsevier, (2016) p 373.

  20. Eary L E, Metall Trans B16 (1985) 181.

    Article  Google Scholar 

  21. Dimitrijevic M, Antonijevic M M, and Dimitrijevic V, Miner Eng12 (1999) 165.

    Article  CAS  Google Scholar 

  22. Antonijevic M M, Dimitrijevic M, and Jankovic Z, Hydrometallurgy46 (1997) 71.

    Article  CAS  Google Scholar 

  23. Dimitrijevic M, Antonijevic M M, and Jankovic Z, Hydrometallurgy42 (1996) 377.

    Article  CAS  Google Scholar 

  24. Zhai Y J, Li D X, Wang J, and Yan Z X, Min Metall Eng30 (2010) 66.

    CAS  Google Scholar 

  25. Xu B, Yang Y, Li Q, Jiang T, Liu S, and Li G, Miner Eng89 (2016) 138.

    Article  Google Scholar 

  26. Tang D, Chu C, and Wang Y, Nonferrous Met8 (2013) 29.

    Google Scholar 

  27. Kumar R, Trans Indian Inst Met70 (2017) 253.

    Article  Google Scholar 

  28. Wang J, Wang W, Dong K, Fu Y, and Xie F, Miner Eng137 (2019) 232.

    Article  CAS  Google Scholar 

  29. Ruiz-sanchez A, Lapidus G T, Hydrometallurgy169 (2017) 192.

    Article  CAS  Google Scholar 

  30. Huckaba C E, and Keyes F G, J Am Chem Soc70 (1948) 1640.

    Article  CAS  Google Scholar 

  31. Nazari A M, Radzinski R, and Ghahreman A, Hydrometallurgy174 (2017) 258.

    Article  CAS  Google Scholar 

  32. Levenspiel O, Chemical Reaction Engineering, (2ed), Wiley, New York, (1972).

    Google Scholar 

  33. Han C, Wang W, Xie F, and Zhang T, Sep Purif Technol177 (2017) 223.

    Article  CAS  Google Scholar 

  34. Mahajan V, Misra M, Zhong K, and Fuerstenau M C, Miner Eng20 (2007) 670.

    Article  CAS  Google Scholar 

  35. Yang Y, Zhang X, Xu B, Li Q, Jiang T, and Wang Y, Trans Nonferrous Met Soc China25 (2015) 3454.

    Article  CAS  Google Scholar 

  36. Xu Y, Schnoonen M A A, Geochim Cosmochim Acta59 (1995) 4605.

    Article  CAS  Google Scholar 

  37. Chu C K, Breuer P L, and Jeffrey M I, Miner Eng16 (2003) 265.

    Article  CAS  Google Scholar 

  38. Jeffrey M I, Watling K, Hope G A, and Woods R, Miner Eng21 (2008) 443.

    Article  CAS  Google Scholar 

  39. Chen J, Deng T, Zhu G, and Zhao J, Trans Indian Inst Met49 (1996) 841.

    CAS  Google Scholar 

  40. Lu M, Sun L, Li Q, Jiang H, and Yin S, in IOP Conference Series: Earth and Environmental Science, IOP (2019), p 012102.

  41. Min X B, Liao Y P, Chai L Y, Yang Z H, Xiong S, Liu L, and Li Q Z, Trans Nonferrous Met Soc China25 (2015) 1298.

    Article  CAS  Google Scholar 

  42. Jahromi F G, and Ghahreman A. J Hazard Mater360 (2018) 631.

    Article  CAS  Google Scholar 

  43. Otgon N, Zhang G, Zhang K, and Yang C, Hydrometallurgy186 (2019) 58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Fund of China (Grant Nos. 51434001 and 51574072), and the Opening Fund of State Key Laboratory of Pressure Leaching, Kunming (No. yy2016005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Feng Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, W., Bai, Y. et al. Study on Pre-oxidation of a High-Arsenic and High-Sulfur Refractory Gold Concentrate with Potassium Permanganate and Hydrogen Peroxide. Trans Indian Inst Met 73, 577–586 (2020). https://doi.org/10.1007/s12666-020-01863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01863-6

Keywords

Navigation