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Abstract
Landslides have harmful effects not only on buildings but also on infrastructure and the natural environment. While they 
are typically triggered by natural events, such as heavy rainfalls and earthquakes, landslides can also be induced by anthro-
pogenic activities, such as excavation and blasting. In certain regions, gigantic paleo-landslides exist, but triggering them is 
extremely difficult. However, triggering secondary landslides in gigantic paleo-landslides is relatively easy compared to the 
main corpus. The main purpose of this study was to produce a susceptibility map in a region in southeastern Türkiye and 
to discuss the impact of petroleum seismological investigation concerning the trigger of the landslides. For this purpose, 
a landslide inventory was compiled using geospatial data sets and field observations and used for landslide susceptibility 
mapping with the Random Forest algorithm. The accelerations sourced from blasting were also measured and the run-out 
distances were determined. A run-out distance map was produced using inverse distance weights. The study presents com-
prehensive insights by integrating a landslide susceptibility map and run-out distance map. It evaluates the impact of blasting 
on landslides through in-situ measurements and slope stability analyses. Findings indicate that no triggering effect on land-
slides was observed if the dynamite quantity remains below 4 kg and the blasting distance exceeds 10 m from the landslide.
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Introduction

Petroleum seismology as a specialized branch of seismol-
ogy was developed in parallel with the growing demand for 
hydrocarbons, particularly oil and gas (Ikelle and Amund-
sen 2005). Thanks to the advancements in petroleum seis-
mology, the exploration and identification of hydrocarbon 
reserves, evaluation of their properties, and monitoring of 
hydrocarbon production from reservoirs have become much 
easier. The use of seismic waves has enabled geologists and 
engineers to draw detailed images of the subsurface. These 
images provide critical information about the location, size, 
and characteristics of hydrocarbon deposits, such as trap 
geometry, degree of maturation, holding capacity, etc. (Liner 
and McGilvery 2019). During these studies, a systematic 
blasting process uses explosives such as dynamite to cre-
ate the seismic waves required to interpret the subsurface. 
The seismic effects of blasting can resemble the shocks of 
a small earthquake (Dvorak 1978), thus making blasts trig-
gering factors in materials susceptible to mass movements. 
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In the literature, several examples of instabilities caused by 
blasting and damage to infrastructures can be found.

Cui et al. (2022) reported a catastrophic landslide in a 
karstic area in Nayong (Guizhou, China) that resulted in 
the death of 35 people. The main triggering factor for this 
landslide was the blasting in a coal mine operated by an 
underground mining system near the area of mass movement 
(Xiong et al. 2022). The seismic waves produced by blast-
ing activities caused the karstic discontinuities to enlarge 
and extend. Consequently, the bedrock on the slope was 
deformed, making the mass movement inevitable (Cui et al. 
2022). During the construction of the subway line in Nan-
ning, Guangxi, a blast occurred, resulting in the rupture of 
the main water supply pipeline. This caused nearby residen-
tial areas and streets to be submerged (Jiang et al. 2021). It 
is known that the landslides in Kattmarka (Norway, 2009), 
La Romaine (France, 2009), and Hawkesbury (Canada, 
1955) were triggered by explosives used during excavation 
of highway slopes (Bouchard et al. 2016). Another striking 
example of landslides triggered by explosions occurred as a 
result of the operation carried out to distribute stacked logs 
in the Toulnustouc River, which yielded the loss of nine 
lives. Although the literature often discusses slope instabili-
ties triggered by activities, such as mining and tunneling, as 
well as explosions in highway slopes, no studies have been 
found regarding instabilities resulting from explosions dur-
ing seismic surveys conducted for oil exploration purposes.

The literature contains a large number of articles on the 
assessment and mapping of landslide susceptibility. Gok-
ceoglu and Sezer (2009) predicted a rising trend in regional 
landslide susceptibility and hazard assessments. In line with 
this, numerous studies have been published reflecting the 
development of the methodologies used for producing land-
slide susceptibility maps. In the early stages of landslide 
susceptibility studies, simple map overlay approaches and 
statistical methods were commonly used (e.g., Gupta and 
Joshi 1990; Mehrotra et al. 1991; Pachauri and Pant 1992; 
Guillande et al. 1993; Gokceoglu and Aksoy 1996; Baeza 
and Corominas, 2011; Lee and Min 2001; Donati and Turini 
2002). After this period, more advanced algorithms and 
methodologies such as logistic regression (i.eGorum et al. 
2008; Lombardo and Mai 2018; Li et al. 2019; Xing et al. 
2021; Das and Lepcha 2019), artificial neural networks (i.e. 
Choi et al. 2010; Poudyal et al. 2010; Nefeslioglu et al. 2012; 
Tsangaratos and Benardos 2014; Chen and Song 2023a, b), 
fuzzy and neuro-fuzzy algorithms (Ercanoglu and Gokceo-
glu 2002; Pradhan et al. 2010; Akgun et al. 2012; Pourgha-
semi et al. 2012; Ozer et al. 2020) and the other machine 
learning algorithms (i.e. Hong et al. 2019; Shirvani 2020; 
Dang et al. 2020; Can et al. 2021; Zhao et al. 2021; Kara-
kas et al. 2022; Chen et al. 2023; Kaya Topacli et al. 2024; 
Karakas et al. 2024) have been utilized. Consequently, this 
brief literature survey revealed that the regional landslide 

susceptibility assessment studies represent an essential and 
ongoing research area.

In recent years, rapid exploration of new resource areas 
has continued to meet the growing energy demand. Petro-
leum reserves have been discovered in the coastal areas of 
synclines in the sedimentary basins located in the South-
eastern Anatolia Region of Turkiye (Alparslan and Koca 
2012). At the time of this writing, there are active oil wells 
in Batman, Diyarbakır, and Siirt provinces located in the 
Southeastern Anatolia Region, and these wells are oper-
ated by Turkish Petroleum Corporation (TPAO) and private 
companies. In addition, various licensed areas are actively 
conducting seismic surveys to continue the exploration 
of oil reserves. Çalık Petrol Corporation plans to start oil 
exploration in one of these licensed areas, Tillo, Siirt, where 
seismic studies are scheduled to take place. In addition to a 
number of small settlements, the area also contains impor-
tant engineering structures, such as the Alkumru Dam and 
the Kirazlık Regulator. The dam and the regulator produce 
electricity. However, there are extra-large extending paleo-
landslides around these engineering structures. In these huge 
paleo-landslides, some small- or moderate-sized actual land-
slides have developed.

The main objectives of this study were to prepare a land-
slide susceptibility map indicating the areas prone to land-
slides, to identify the seismic triggering thresholds, and to 
determine the run-out distances in the event of landslides in 
the region. To achieve these goals, a landslide inventory of 
the study area was compiled using aerial photographs, sat-
ellite images, and field observations. The statistical param-
eters related to landslides (slope, altitude, aspect, lithology, 
etc.) were derived and a landslide susceptibility map was 
produced using the random forest (RF) method. In addi-
tion, in-situ measurements were conducted to determine the 
accelerations and particle velocities that may occur during 
the blasting. Consequently, this study has the potential to 
provide new insights into the regional assessment of the 
extremely complex natural hazard, such as landslides.

In the following, the regional characteristics were pre-
sented followed by the seismic investigations and in-situ 
measurements. The landslide susceptibility mapping and the 
run-out distance computation and mapping approaches were 
discussed in Sects. "Landslide Susceptibility Mapping" and 
"Discussion". The final section highlights the main findings 
and conclusions of the study.

General characteristics of the study area

The study area is located in the southeastern part of Türkiye 
near the city of Siirt (Fig. 1). Botan River, tributary of the 
Dicle River flows through the study area and involves the 
Alkumru Dam and Kirazlık Regulator. The Alkumru Dam 
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has a crest elevation of 542 m and a height of 110 m. The 
Alkumru hydroelectric power plant, which has a total capac-
ity of 280 MW, has an annual average generation capacity of 
1 billion kWh. In 2017, the plant generated 720 million kWh 
(Limak Energy, 2022). The Kirazlık Regulator, a small-scale 
regulating dam, is located 8 km from the Alkumru Dam 
(Fig. 1).

The study area is located on the Pütürge–Bitlis–Zagros 
suture zone, which is one of the main tectonic structures 
of Türkiye. While the Pütürge–Bitlis–Zagros Suture Zone 
extends to the north of this belt, there is a metamorphic-
based Arabian platform to the south (Fig. 2). Depending 
on the interplate compression regime, the metamorphic 

basement subducted under the Anatolian plate, while the 
Tertiary–Quaternary sedimentary units above it hit the 
suture zone and turned backward (south) and formed folds 
(Özgen et al. 2005). According to the geological map of Tür-
kiye, Paleozoic, Mesozoic and Cenozoic aged sedimentary, 
metamorphic and magmatic rocks crop out in the Alkumru 
dam and its immediate vicinity (Fig. 2). There are nine dif-
ferent geological units in the region: Paleozoic and Juras-
sic marbles, Upper Cretaceous–Paleocene aged clastic and 
carbonate rocks, Triassic schists, calcschists, Eocene aged 
neritic rocks, continental clastics and volcanics (Fig. 1). 
The oldest geological unit in the vicinity of the study area 
is the Germav Formation (Maxon 1936), which is of the 

Fig. 1  Location and geological map of the study area  (Modified from Şenel 2007)
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Upper Cretaceous–Paleocene age. The Germav Forma-
tion, representing a deep sea slope environment, typically 
includes units composed of an alternation of grey-colored 
sandstone, marl, and shale, with intercalations of limestone 
(Güven et al. 1991). The Gercüş Formation, which is of the 
Paleocene–Early Eocene age and consists of a sequence of 
reddish mudstone, sandstone, and claystone, conformably 
overlies the Germav Formation. Gercüş Formation consists 
of reddish marl, sandstone, and conglomerate sequences, 

followed by reddish, occasionally greenish-gray, sandy, and 
clayey units (Duran et al. 1988). The Hoya Formation, which 
consists of deep-sea limestones of the Middle–Late Eocene 
age, overlies the Gercüş Formation. This geologic unit was 
deposited in a shallow sea, shelf edge, and/or fore-shelf envi-
ronment (Duran et al. 1988). The Germik Formation, which 
is Oligocene-aged, is located on top of the Hoya Forma-
tion and consists of shallow marine deposits that transition 
both vertically and laterally with this formation. The Germik 

Fig. 2  General tectonic map of the East Anatolian Plateau (modified after Yilmaz et al. 2014)
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Formation exhibits a depositional sequence that starts with 
a conglomerate in gentle slope areas, followed by fine- and 
coarse-grained detrital rocks, and occasionally ends with 
a top conglomerate (Özgen and Karadoğan 2013). Upper 
Miocene–Lower Pliocene aged Şelmo Formation uncon-
formably overlies the Germik Formation and consists of a 
conglomerate, sandstone, and siltstone sequence (Dinç and 
Keskin 2017). The depositional environment of the Şelmo 
Formation has been determined as beach sands, transitional 
tidal flats, playa, and terrestrial (fluvial) (Duran et al. 1989).

The study area covers an area of approximately 662 
 km2 and includes seven land use land cover (LULC) types. 
According to the WorldCover v2 product (ESA-WorldCover 
2021) of European Space Agency (ESA), the areal percent-
ages of these classes are as follows: tree cover (6.08%), 
shrubland (0.07%), grassland (79.65%), cropland (5.40%), 
built-up area (0.44%), bare/sparse vegetation (6.51%), and 
permanent water bodies (1.83%).

The geomorphology of the study area is affected by 
landslides and a typical hummocky topography is dominant 
(Fig. 3). After the initial great slope failures, the gigantic 
landslides stabilized. However, the actual landslides devel-
oped in the displaced and disturbed slope material due to 
large landslides and they are active (Fig. 4). The actual land-
slides are typical circular failures and depths of the failure 
surfaces are between 1 and 10 m.

The landslide inventory used here was also compiled 
in this study through visual interpretation of digital eleva-
tion model (DEM), aerial orthophotos, and satellite images 
freely provided on the Google Earth platform. In addi-
tion, in-situ assessments were carried out. The DEM was 
obtained from the EU-DEM v1.1 (CLSM 2023), which 
was freely available, and has 25 m spatial resolution and 
approximately 7 m vertical accuracy. A total of 364 land-
slides were inventoried in the study area. The surface areas 
of the largest and smallest landslide were 3.05  km2 and 

0.00064  km2, respectively. The distribution of the land-
slides in the study area is shown in Fig. 5.

The size distribution of landslides is important when 
quantifying their occurrence and magnitude (Guzzetti 
et al. 2002; Malamud et al. 2004; Qiu et al. 2021). For 
this reason, several researchers, such as Tanyas et  al. 
(2018), Fan et al. (2019), Huang and Yao (2021), Kara-
kas et al. (2021), Ju et al. (2023) assessed the landslide 
frequency–area distributions for different regions. In this 
study, the power-law relationship for the identified land-
slides was derived, as shown in Fig. 6. The rollover effect 
and fractal dimension were determined as 0.0004  km2 and 
– 1.416, respectively.

Fig. 3  Overview photo of a part of the study area

Fig. 4  View from a landslide observed in the study area

Fig. 5  Distribution of the landslides in the study area
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Seismic investigations and in‑situ 
measurements

For the oil investigation, seismic measurements along 
200 km lines (Fig. 7) were planned in the study area. During 
the seismic measurements, blasting was utilized with very 
low amounts of dynamite (1–4 kg) placed in plastic casings 
of 30–40 cm in length and 3–5 cm in diameter, inserted into 
wells approximately 11 cm in diameter and up to 20 m in 
length. A high particle speed was achieved (5800–6300 m/s) 
with the study aimed at creating minimum phase seismic sig-
nals. The Vibro, which is used as a vibrating seismic source, 
generates a zero-phase seismic signal with controllable 

frequency content and provides a controlled energy source 
(Calik Energy 2020). To determine the horizontal accelera-
tion and its attenuation, in-situ trial blastings and seismic 
measurements were performed by experts. Four locations 
were selected for trial blasting. The plan involved placing 
seismic measurement devices at intervals of 10 m, 50 m, and 
100 m along two perpendicular lines, adhering to this rule as 
much as possible within the constraints of field conditions.

Landslides are frequently triggered by rainfall and seis-
mic activity. Hence, we focused on investigating the accel-
eration, velocity, and their variations with distance during 
the planned blasting within the scope of seismic studies. 
Considering the size of the area and the large number of 
landslides (364), conducting detailed stability analyses for 
each landslide individually was not feasible due to time and 
financial constraints. Therefore, relevant seismic parameters 
were obtained to perform a general assessment. Accordingly, 
the data obtained from the measurements were evaluated. 
The maximum particle velocity–distance graph obtained 
from trial blastings is given in Fig. 8, illustrating all the 
data. As can be seen in Fig. 8, there is an exponential attenu-
ation relationship between maximum particle velocity and 
distance. When 5 kg of dynamite was used, a velocity of 
202.6 mm/s was measured within the first 10 m, while 
201.4 mm/s was measured at the same distance as 6 kg of 
dynamite. On the other hand, the maximum amount of dyna-
mite to be used in seismic studies is 4 kg, and the highest 
velocity measured for this amount is 182.1 mm/s. However, 
as can be seen in Fig. 8, these amounts rapidly drop below 
25 mm/s in the first 15 m distance. According to the classi-
fication given by Oriard and Emmert (1980), 25 mm/s is the 
upper limit of discomfort. Therefore, no damage is expected 
at speeds lower than 25 mm/s. In addition, maximum hori-
zontal acceleration, which is an important parameter for the 
stability of slopes during blasting, was also measured. The 
highest acceleration during the trial blasts was obtained 
when 2 kg of dynamite was used at the Test 4 station. This 

Fig. 6  Relationship between area (size) and frequency values of land-
slides in the study area

Fig. 7  Seismic investigation lines (planned) Fig. 8  Relationship between maximum particle velocity and distance
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value is 4.5 gal (0.0045 g) and was obtained at a point, where 
the ground was extremely loose. As can be seen from Fig. 9, 
the acceleration value drops to 0.002 g in the first 15 m and 
loses its effect in a short distance.

As stated previously, rotational types of landslides are 
typical in the study area. However, it is impossible to apply 
slope stability analysis on all landslides. Hence, an in-depth 
analysis of a chosen landslide (please see Fig. 5 for its loca-
tion) was conducted to comprehend the impact of accelera-
tion resulting from blasting. A slope resembling one of the 
landslides found in the field was utilized for this purpose. 
The unit weight, cohesion, internal friction angle, and pore 
water pressure  (ru) of the material forming the slope were 
taken as 18 kN/m3, 25 kPa, 8 degrees, and 0.3, respectively. 
Under static conditions, the factor of safety was obtained as 
1.125 (Fig. 10a). When the same slope was analyzed with 
0.14 g, which is half of the highest ground acceleration for 
the field, 0.287 g, the factor of safety decreases to 0.761 and 
the slope loses its stability (Fig. 10b). When the same slope 
was reanalyzed using the highest horizontal ground accelera-
tion measured during blasting in the field, the factor of safety 
drops to 1.109 (Fig. 10c). In other words, the decrease in the 
factor of safety is around 1.5% due to blasting.

Landslide susceptibility mapping

In this section, the conditioning factors and the methods 
used for the landslide susceptibility map (LSM) production 
were explained. The results were discussed accordingly.

Landslide conditioning parameters

In the present study, the predictors used for the production 
of LSMs for the landslides can be categorized as topo-
graphic (altitude, aspect, slope, plan and profile curvature, 
stream power index, topographic wetness index, drainage 

density) and geological (lithology, see Fig. 1). The predic-
tors and their base data sources used are given in Table 1. 
The predictors were chosen based on expert opinion, the 
regional characteristics of the study area, and an analysis 
of the literature. The topographic predictors were extracted 
using ArcGIS software from ESRI, Redlands, CA, USA, 
and open-source System for Automated Geoscientific 
Analyses (SAGA) tool (Conrad et al. 2015). The slope, 
aspect, plan, and profile curvatures, drainage density, top-
ographic wetness index (TWI), and stream power index 
(SPI) from topographic predictors were computed from 
the 25 m resolution EU-DEM v1.1 (CLSM, 2023) (see 
Fig. 5). The lithology parameter, one of the most crucial 
factors in landslide formation, was obtained by digitizing 
the 1/100,000 scale geological maps published by Şenel 
(2007). After the digitization process, identifier (ID) num-
bers were assigned to the vector polygons defining the 
lithological units in preparation for the rasterization pro-
cess. A rasterized lithology map was produced according 
to the ID values ranging between 1 and 10. The litho-
logical units and their corresponding areas are provided 
in Table 2. The most frequently observed lithological unit 
in the study area is the Midyat group (undifferentiated), 
followed by Selmo formation, Cüngüs formation, Cergus 
formation and Maden formation.

Slope, as the first derivative of altitude, is an essential 
parameter in the LSM production, as landforms with higher 
slope angles are more susceptible to landslides. It is deter-
mined by the rates of change of the surface in both hori-
zontal and vertical directions from the central cell. Aspect 
defines the direction of the downhill slope for each loca-
tion. The aspect values represent the compass direction of 
the surface facing at that particular location, expressed in 
positive degrees between 0 and 360 measured clockwise 
from the north. Plan and profile curvatures as the second 
derivatives of altitude express the magnitude of the change 
in aspect and slope. The profile curvature parallel to the 
slope indicates the direction of the maximum slope, while 
the plan curvature is perpendicular to the direction of the 
maximum slope. The TWI is used to express the location 
and size of water-saturated areas. The formula proposed by 
Moore et al. (1991) (see Eq. 1) was used for calculating 
the TWI. The SPI (see Eq. 2) is a measure of the erosive 
power of flowing water. The places where the flow power 
index value is high indicate potential areas for high-velocity 
flows (Gokceoglu et al. 2005). The As and β values given in 
Eqs. 1 and 2 denote the basin area and slope, respectively. 
Drainage density, the ratio of the total length of rivers in the 
basin to the basin area, indicates the degree of surface flow, 
with higher drainage density suggesting greater surface flow 
(Nagarajan et al. 2000). Hydrology tool in ArcGIS software 
from ESRI, Redlands, CA, USA was used for producing the 
drainage density map from EUDEM v1.1 data:Fig. 9  Relationship between horizontal acceleration and distance
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Fig. 10  Results of the slope 
stability analyses a under static 
conditions; b under dynamic 
conditions for expected earth-
quake; c under dynamic condi-
tions for blasting
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The maps of eight conditioning factors are given in 
Fig. 11 (the lithology map was given in Fig. 1). When the 
LULC classes in the study area were analyzed, it was evi-
dent that the area primarily consists of the grassland class, 
constituting approximately 80% of the total area, as stated 
in Sect. "General Characteristics of the Study Area". In a 
study conducted by Karakas et al. (2022) in a neighboring 
site, it was found that the LULC feature did not significantly 
affect model accuracy. Since approximately 80% of the area 
consists of the grassland class and its impact on model accu-
racy was negligible, the LULC feature was not included in 
the model training for this study. Statistical parameters were 
derived for all predictors for the whole study area (Table 3) 
and for the landslide inventory polygons (Table 4) based 
on pixel values. While the study area has a mean altitude 
of 1120.3 m, the landslide regions have a mean altitude 
value of 925.3 m. The mean slope inside the landslides was 
18.17° with a standard deviation (σ) of 8.97°. The mean 

(1)TWI = ln

(

As

tan

)

(2)SPI = Asxtan�.

aspect (154°) and its σ (119°) indicate that the majority of 
landslides face east, south–east, south, and south–west direc-
tions. The statistical values can serve as additional measures 
for charactering landslides.

Landslide susceptibility mapping and performance 
assessment approach

The RF classifier (Breiman 2001) has been frequently 
employed for the LSM production due to its outstanding per-
formance. It generates multiple decision trees during param-
eter training and selects the highest score among many inde-
pendent trees. The most significant predictors were chosen 
from all trees for classification also by avoiding the correla-
tion. Parameter optimization is crucial in the implementation 
so that the model can be trained as effectively as possible 
from the learning data set. Here, the RandomizedSearch 
technique was implemented for optimization (Randomized 
Search CV 2023). A number of RF parameters, such as n_
estimators, max_depth, max_features, min_samples_split, 
min_samples_leaf, criterion and class_weight were tuned 
here using Python scikit-learn library (Scikit-learn 2023). 
The optimal values obtained from the RandomizedSearch 
are presented in Table 5.

Table 1  Landslide predictors and their data sources used in the study

Category Predictors Sources Resolution/Scale Data type (Format)

Topographical
Predictors

Altitude EUDEM v1.1 by the Copernicus programme 25 m Grid
Slope Derived from EUDEM v1.1 25 m Grid
Aspect
Plan and profile curvature
TWI
SPI
Drainage density

Geological Predictor Lithology Geological maps published by Şenel (2007) 1/100,000 Polygon

Table 2  Lithological units and areas in the study area

ID Symbol Lithological unit Area  (km2)

1 Tema Maden formation:Conglomerate, sandstone, claystone, limestone, basalt, spillite 39.70
2 Tms Selmo formation:conglomerate, sandstone, claystone (continental) 72.62
3 Teom Midyat group (undifferentiated): Limestone, dolomite, clayey limestone, locally continental 

sandstone at the bottom
312.33

4 Tog Germik Formation: Gypsum, shale, marl, dolomite 0.71
5 Tc Cüngüs Formation: Sandstone, claystone, siltstone 71.98
6 JKg Guleman Ophiolite: Serpentinite, serpentinized harzburgite and dunite, gabbro 0.43
7 PzMzbs Schist, phyllite, quartzite, quartz schist 3.83
8 JKg Guleman Ophiolite: Serpentinite, serpentinized harzburgite and dunite, gabbro 0.43
9 Teg Gercus Formation: Marl, sandstone, claystone, conglomerate 69.20
10 KTg Germav Formation: Shale, marn, sandstone 15.60
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The training and test data sets encompass all pixels inside 
the landslide polygons in the study area for landslide samples, 
while non-landslide samples were chosen at random locations 
outside of the inventory. A total of 721,872 pixels, comprising 
32,083 landslide and 48,125 non-landslide pixels for each of 
the 9 predictors, were used in training. 80/20 ratio was utilized 
to split training and test samples. The performance of the RF 
classifier was then assessed using the test data set. The receiver 
operating characteristic curve (ROC), the area under ROC 
curve (AUC), and further statistical measures were computed 

to evaluate the performance of the model. In addition, feature 
importance was assessed based on mean decrease in impurity 
(MDI) value obtained from the method. Finally, the landslide 
susceptibility values for the study area were computed from 
the trained RF model. A further data classification was per-
formed using the natural breaks classification (Jenks) method 
(ArcGIS) to produce the LSM from the landslide susceptibility 
values. With this method, five susceptibility classes, such as 
very low, low, moderate, high, and very high, were formed 
based on the groups inherent in the data.

Fig. 11  Maps of predictors used for the LSM production: (a) altitude, (b) aspect, (c) slope, (d) plan curvature, (e) profile curvature, (f) drainage 
density, (g) SPI, (h) TWI
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Landslide susceptibility map and the accuracy 
results

The predictive performance result of this study is illustrated 
in Fig. 12. The model accuracy was evaluated with the AUC 
values, visual interpretation of the ROC, and the widely used 
statistical measures (precision, F1 score, recall). The AUC 
and the overall accuracy (OA) values obtained from the 

model were 0.95 and 0.89, respectively. Table 6 shows the 
accuracy measures of landslide and non-landslide classes 
separately. The results indicate higher accuracy of the non-
landslide class, which can be expected due to their greater 
existence.

Figure 13 shows the LSM produced with the RF model. 
As can be seen in Fig. 13, the areas around the Alkumru 
Dam are highly susceptible to landslides. In addition, the 

Fig. 11  (continued)
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distribution and percentages of landslide probabilities for 
each class are given in Table 7. The area percentage of 
the landslide susceptibility classes of "very low”, "low", 
"moderate", “high” and "very high" were 52.73%, 21.47%, 
11.76%, 7.82%, and 6.22%, respectively. 25.8% of the 
study area was found prone to landslides at moderate to 
very-high levels.

The bar plot in Fig. 14 depicts the relationships between 
the model prediction and the predictors. The horizontal 
axis denotes the mean impurity value decrease for each 
predictor feature that is listed on the vertical axis. The 
predictors were ordered according to their importance val-
ues obtain from the MDI. In model prediction, the predic-
tor with the greater percentage value is more significant. 
Thus, altitude (23%), lithology (14%), slope (13%), aspect 
(11%) and TWI (9%) were found to be more important 
than the other predictors.

Table 3  Statistical summary 
of the predictors for the whole 
study area

Predictor Min Max Mean Std. Dev Median

Altitude (m) 500.84 2055.77 1120.32 308.90 1082.25
Slope (°) 0 74.841 14.549 9.176 12.806
Aspect (°) 0 360 181.797 100.501 191.802
Plan curvature – 0.040 0.032 5.29E–05 0.001 4.41E–05
Profile curvature – 0.040 0.029 – 5.38E–05 0.001 – 2.10E–05
TWI 1.972 23.489 7.243 2.221 6.693
SPI 0 11,014,790 5,270.530 38,764.990 370.680
Drainage density 0 58.227 1.498 4.377 0

Table 4  Statistical summary 
of the predictors within the 
landslide inventory area

Predictor Min Max Mean Std. Dev Median

Altitude (m) 513.33 1830.51 965.28 262.25 949.82
Slope (°) 0 69.437 18.168 8.972 16.879
Aspect (°) 0 360 154.042 119.012 119.510
Plan curvature – 0.029 0.021 – 0.0001 0.001 – 0.0001
Profile curvature – 0.028 0.021 – 0.0001 0.001 – 0.0001
TWI 2.543 23.209 7.445 1.745 7.177
SPI 0 11,014,790 11,419.964 90,635.702 556.258
Drainage density 0 42.513 1.367 3.922 0

Table 5  Optimized parameter values for the implemented RF algo-
rithm

Algorithm Parameters Best value

Random forest n_estimators 434
max_depth 50
max_features ‘sqrt’
min_samples_split 2
min_samples_leaf 1
criterion ‘gini’
class_weight ‘balanced’

Fig. 12   RF model prediction performance illustrated as a ROC curve

Table 6  Accuracy measures obtained from the RF classifier

Class Precision Recall F1 Score

Non-landslide 0.92 0.89 0.90
Landslide 0.84 0.88 0.86
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Run‑out distances of landslides

Assessing landslide risk remains a challenging task, requir-
ing evaluations of both susceptibility and hazard. While 
landslide susceptibility assessment has been conducted in 
this study, hazard assessment requires determining trig-
gering mechanisms and thresholds. In this study, blasting-
induced acceleration during seismic investigations was con-
sidered a possible trigger. However, the seismic acceleration 
values observed in the study area are insufficient to trigger 
a landslide.

Another crucial aspect of landslides is estimating run-
out distances, as illustrated in a general sketch (Fig. 15) 
published by van Westen et al. (2005). The significance of 
run-out becomes apparent when considering the potential 
impact of landslides. One of the primary factors influencing 
landslide run-out is volume. Therefore, the volume of land-
slides was determined using the empirical formula (Eq. 3) 
proposed by Guzzetti et al. (2009), which is based on land-
slide area. In the initial stage, the areas of 364 landslides 
in the study area inventory were calculated. The histogram 
depicting landslide areas is presented in Fig. 16. The surface 
areas of the landslides in the study area range from 0.09 to 
0.03  km2. The volume of the smallest landslide was calcu-
lated to be 873  m3, while the volume for the largest landslide 
was approximately 187 million  m3.

where VL is the volume of landslide  (m3), and AL is the area 
of landslide  (m2).

For the determination of the maximum landslide run-out 
distances, the empirical formula proposed by Legros (2002) 
was employed (Eq. 4). The maximum run-out distance was 
935.5 m while the minimum run-out distance was calculated as 

(3)VL = 0.074A1.450

L
,

Fig. 13   LSM produced with the RF model

Table 7  Ranges (class break values) of the landslide occurrence prob-
abilities

Classes Probability 
range (%)

Area  (km2) Percentage (%)

Very high 71–100 41.17 6.22
High 47–71 51.75 7.82
Moderate 26–47 77.76 11.76
Low 9–26 142.00 21.47
Very low 0–9 348.77 52.73

Fig. 14  Predictor importance obtained from the RF model

Fig. 15  Importance of run-out determination when assessing land-
slide risk (van Westen et al. 2005):
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43.5 m. The average value of the run-out distances computed 
from all landslides was 161.5 m. The run-out distance map for 
the study area was produced using the inverse distance weight-
ing (IDW) method, and is shown in Fig. 17:

where Lmax is the maximum run-out distance (m), and VL is 
the volume of the landslide  (m3).

(4)Lmax = 8V0.25

L
,

Discussion

In the present study, a comprehensive case study on land-
slides and their potential harmful effects is presented. An 
important aspect of the geomorphology in the study area is 
controlled by huge paleo-landslides. While these paleo-land-
slides have stabilized, some of the displaced material due to 
displacement was transported by the Botan River. However, 
numerous secondary landslides have developed in the dis-
placed material along the slopes of the Botan River. The 
area was also subject to a petroleum seismic investigation, 
which involved the use of explosives, such as dynamite. In 
the initial phase of this study, the potential triggering effect 
of the explosions was analyzed. Subsequently, the effects of 
landslides if triggered were explored through susceptibility 
and run-out assessments. As can be seen from Fig. 17, the 
Alkumru Dam Body remains unaffected by the landslides. 
However, if triggered, the landslides have the potential to 
adversely affect the eastern parts of the dam reservoir. In 
addition, the Tosuntarla, Medreseköy, and Akmeşe villages 
in the southeastern part of the study area are under the land-
slide threat (Fig. 17). In the central part of the study area, the 
villages of Meydandere and Akyayla are also affected by the 
harmful effects of landslides. The roads connecting Koçlu 
and Meydandere, Alkumru dam–Meydandere, Tatlı–Pirin-
çli–Yaylacı–Tosuntarla–Medreseköy–Akmeşe are threatened 
by landslides (Fig. 17).

The presented study demonstrated the effective and safe 
petroleum seismic investigation in a landslide-prone area. 
Prior to the seismic investigation, an extensive landslide 
inventory study was performed, and in-situ geophysical 
measurements were taken to determine seismic param-
eters produced by the explosions. In addition, an LSM was 
produced, and the run-out distances of the landslides were 
determined and mapped. These maps and information were 
effectively utilized during the investigations, ensuring their 
safe completion. However, the study has limitations. The 

Fig. 16  Surface area distribu-
tion of landslides in the study 
area

Fig. 17  Run-out distance map of the study area
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main limitation is the determination of the threshold value of 
seismic acceleration for each landslide, which would require 
exhaustive geotechnical investigations and slope stability 
analyses for each landslide, making it infeasible given the 
number of landslides. Furthermore, the empirical determi-
nation of run-out distances for each landslide poses another 
limitation. Nevertheless, these limitations are acceptable as 
the study results were utilized during the investigation phase. 
Moreover, the results can be applied to select landslide-free 
areas for petroleum well locations. However, if a preferred 
location for a petroleum well is found to have landslides or is 
in a high landslide susceptibility class, additional geotechni-
cal investigation and slope stability analyses are necessary.

Conclusions

This study presents an interesting case that investigates the 
possible harmful effects of seismic studies for oil exploration 
in an area with gigantic landslides. With numerous active 
landslides in the study area, the potential impacts on the 
natural environment, villages, agricultural areas, roads, and 
infrastructure such as dams and regulators are significant. 
The study aims to describe these potential harmful effects 
and propose necessary precautions. Based on the study out-
comes, the following conclusions can be derived:

(a) An accurate landslide inventory was compiled through 
field investigations and by utilizing aerial and satellite 
images, and a DEM. A total of 364 landslides were 
inventoried with the largest and smallest areas of 3.05 
 km2 and 0.00064  km2.

(b) The inventory was employed for the landslide suscep-
tibility map production with a widely used machine 
learning technique, the RF. An OA value of 89% was 
achieved from the test data set with an AUC value of 
95%. These results indicate high quality of the LSM.

(c) The run-out distances of all landslides were computed 
with empirical methods and a run-out map for the study 
area was produced. Both maps may serve for site selec-
tion and taking the necessary precautions.

(d) An exponential attenuation relationship between maxi-
mum particle velocity and distance was observed. For 
instance, when 5 kg of dynamite was used, a velocity of 
202.6 mm/s was measured within the first 10 m, while 
201.4 mm/sec was measured at the same distance with 
6 kg of dynamite. In addition, the highest acceleration 
during the trial blasts was recorded when 2 kg of dyna-
mite was used at the Test 4 station. This value is 4.5 
gal (0.0045 g) and was obtained at a point, where the 
ground was extremely loose. However, the acceleration 
value dropped to 0.002 g in the first 15 m and lost its 
effect in a short distance.

(e) A series of slope stability analyses were applied to 
understand the triggering effect of the measured accel-
erations on the landslides. Consequently, it was deter-
mined that if the amount of dynamite does not exceed 
4 kg and the distance between the blasting point and 
landslide is at least 10 m, no triggering effect of blast-
ing on the landslides occurs..

(f) This study provides a case discussing the effects of 
blasting on landslides. Blasting creates seismic accel-
eration, which can trigger landslides near the blasting 
point. Further research and additional data on this topic 
can enhance our understanding of the relation between 
blasting and landslides.
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