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Abstract
The main goal of this study was to estimate inflows to the Maranhão reservoir, southern Portugal, using two distinct modeling 
approaches: a one-dimensional convolutional neural network (1D-CNN) model and a physically based model. The 1D-CNN 
was previously trained, validated, and tested in a sub-basin of the study area where observed streamflow values were available. 
The trained model was here subject to an improvement and applied to the entire watershed by replacing the forcing variables 
(accumulated and delayed precipitation) to make them correspond to the values of the entire watershed. The same way, the 
physically based MOHID-Land model was calibrated and validated for the same sub-basin, and the calibrated parameters 
were then applied to the entire watershed. Inflow values estimated by both models were validated considering a mass balance 
at the reservoir. The 1D-CNN model demonstrated a better performance in simulating daily values, peak flows, and the wet 
period. The MOHID-Land model showed a better performance in estimating streamflow values during dry periods and for a 
monthly analysis. Hence, results show the adequateness of both modeling solutions for integrating a decision support system 
aimed at supporting decision-makers in the management of water availability in an area subjected to increasing scarcity.
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Introduction

The IPCC 2022 report (Pörtner et al. 2022) projects an 
increase in the frequency and severity of low flows in 
Southern Europe, resulting from increasing drought and 
water scarcity conditions. Population exposed to at moder-
ate water scarcity will grow by 18% and 54% for a raise of 
1.5°C and 2°C in air temperature, respectively. The ground-
water resources will be affected by an increase in abstraction 
rates and a decrease in recharge rates. Agriculture, which 
represents the main water use in the region, may be seri-
ously limited by water availability. Thus, there is a need 
to improve water management at different scales to cope 
with the increasing scarcity. At the regional scale, this means 
the construction of dams and reservoirs to increase water 

storage, desalination, water reuse, and the adoption of water 
conservation measures. At the plot scale, that means real-
location to crops more resistant to drought conditions, the 
improvement of water use efficiency and performance of 
irrigation systems, and the implementation of soil water 
conservation practices (Jovanovic et al. 2020; Pereira et al. 
2009).

Decision-support systems (DSSs) have been developed 
over the last few decades to improve water resource man-
agement at different spatial and temporal scales (Teodosiu 
et al. 2009). These tools commonly consist of interactive 
software-based systems where useful information from 
raw data sources, documents, simulation models, and other 
sources is aggregated to identify and solve problems and 
support decision-making. Considering the plot scale, Smart 
Irrigation Decision Support System (SIDSS, Navarro-
Hellín et al. 2016) and IrrigaSys (Simionesei et al. 2020) 
are examples of DSSs for irrigation water management sup-
port. SIDSS estimates weekly irrigation needs based on data 
from soil sensors and/or weather stations using two machine 
learning techniques. IrrigaSys also estimates weekly irriga-
tion needs using a physically based model fed by weather 
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forecast and hindcast data. When considering larger scales, 
Zhang et al. (2015a) designed and developed a prototype of a 
DSS for watershed management by integrating open-source 
web-based geographical information systems, a modeling 
component, and a cloud computing platform. Ashrafi and 
Mahmoudi (2019) presented a DSS to assist decision-makers 
in examining the impacts of different operating policies at 
the basin scale. DSSs are also applied to reservoir flood con-
trol operations (Delaney et al. 2020) and to early warning 
and detection, follow-up, and early response to flood events 
and hazmat pollution occurrences in inland and transitional 
waters (HAZRUNOFF Project - Layman’s Report 2020).

As proposed by Miser and Quade (1985), one of the steps 
to design a DSS is the building of models to predict conse-
quences. A good hydrological and/or hydraulic model with 
reliable results and proved forecast capacity is of paramount 
importance for water management DSSs. Their results can 
then feed other models in the DSS. For instance, modeled 
groundwater levels can be used to estimate irrigation needs, 
or the simulation of river flows can help in flood forecast. 
However, modeling results can also be directly used to sup-
port decision-making.

Concerning models’ classification, they can be divided 
into three main groups according to their complexity: (i) 
empirical models; (ii) conceptual models; and (iii) physical 
models (Sitterson et al. 2017). Empirical models are based 
on linear and non-linear equations that relate inputs and out-
puts ignoring the physical processes. These types of models 
are considered the simplest models. Conceptual models are 
based on simplified equations to describe the hydrological 
processes and are characterized by an intermediate level of 
complexity. Physical-based models, also known as process-
based models, are the most complex and rely on physical 
principles, being suitable to provide insights into physical 
processes. Usually, physical models use finite difference 
equations and state variables that can be measured and are 
time- and space-dependent (Devia et al. 2015; Fatichi et al. 
2016). However, their weakness relies on the large number 
of parameters required to describe the physical characteris-
tics of the watershed, which leads to high complexity levels 
that make their correct implementation difficult and labori-
ous calibration and validation processes (Devia et al. 2015; 
Abbott et al. 1986a, b; Ranatunga et al. 2016; Zhang et al. 
2015b; Mehr et al. 2013).

The study presented here is included within the frame-
work of a larger work aimed at developing a DSS for sup-
porting water management in the Maranhão and Montar-
gil reservoirs, in southern Portugal. These reservoirs store 
water that is used mainly for irrigation of the Sorraia Valley, 
which comprehended a cultivated area of 21,280 ha and an 
irrigated area of 18,754 ha (ARBVS 2023) in 2021. With 
a 52% increase in the irrigated area over the last 2 decades 
(ARBVS 2023) and facing predictions of river flow decrease 

between 54 and 94% due to climate change (Almeida et al. 
2018), accurate forecast of streamflow is of extreme impor-
tance to improve the management of water availabilities in 
the region. Taking as example the Maranhão reservoir, the 
work presented here makes use of two different types of 
models to estimate the daily inflow to the reservoir and dis-
cusses the advantages and weaknesses of both approaches. 
The applied models were the physically based MOHID-
Land model (Trancoso et  al. 2009; Canuto et  al. 2019; 
Oliveira et al. 2020) and a convolutional neural network 
(CNN) (Oliveira et al. 2023), i.e., a data-driven model. In 
both cases, the models were calibrated/trained and validated 
using data from a hydrometric station that corresponds to 
30% of the Maranhão watershed. Because there are no sta-
tions monitoring the entire watershed despite the importance 
of this information for the sustainability of the irrigation 
district, this study also aims to analyze the capacity of both 
approaches to represent streamflow generation in the entire 
watershed. That analysis comprehended the expansion of 
models results from the referred sub-basin to the full basin 
scale through the extension of the calibrated parameters in 
MOHID-Land, or through the replacing of the forcing vari-
ables in the CNN model. The results were then validated 
with a monthly reservoir mass balance. Therefore, this study 
provides sophisticated modeling tools for streamflow cal-
culation in the Maranhão watershed, which were developed 
using two distinct modeling approaches. The ultimate aim is 
their integration into the DSS for supporting water managers 
in the decision-making of water availabilities in the region.

Materials and methods

Description of the study area

The Maranhão dam is located at Ribeira da Seda, southern 
Portugal (39° 0′ 53.846″ N; 7° 58′ 33.149″ W). The cor-
responding reservoir has a total capacity of 205  hm3 and 
drains an area close to 2300  km2. The minimum, average, 
and maximum altitudes are 122, 261, and 723 m, respec-
tively (EU-DEM 2019) (Fig. 1).

The climate is classified as Mediterranean hot-summer 
(Csa) according to Köppen–Geiger climate classification 
(Agencia Estatal de Meteorología (España) 2011). The 
average annual precipitation is 608 mm. The minimum and 
maximum average monthly precipitation are 4 mm in July 
and August and 84 mm in December. The average monthly 
air temperature ranges from 24 °C in July and August, and 
9°C in January, while the annual average is 16 °C. The 
main soil reference groups are Luvisols (67%), Regosols 
(18%), and Cambisols (11%) (Panagos et al. 2012). The 
main land uses are non-irrigated arable land and agro-
forestry areas, both representing 28% of the watershed, 
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broad-leaved forest, occupying 15%, and olive groves, with 
a representation of 11% (CLC 2012 2019).

The Maranhão watershed has four hydrometric stations 
(Fig. 1), with all measuring daily streamflow in natural 
regime. Table 1 presents a brief characterization of those 
stations.

Figure 2 shows the monthly patterns considering the 
daily streamflow values at the four stations. In accordance 
with the meteorological characterization, streamflow pat-
terns show higher values between November and April, 
while lower values occur between May and September, 
with August presenting the lowest value.

The water stored in the Maranhão reservoir is mainly for 
irrigation of the Sorraia Valley (ARBVS 2023). Other uses 
include energy production, industrial supply, and recreation. 
The stored volumes normally increase during the wet period 
and decrease in the dry period as expected in hydroagricul-
tural reservoirs (Fig. 3).

Convolutional neural network model description

A one-dimensional convolutional neural network (1D-
CNN) was used to estimate daily streamflow at Ponte Vila 
Formosa. This 1D-CNN model was created, developed, 
optimized, and tuned in Python language (version 3.8.10) 

Fig. 1  Maranhão watershed: location, delineation, elevation, main rivers, and hydrometric stations

Table 1  Characteristics of 
hydrometric stations: drained 
area, period of records and 
percentage of records within 
this period, minimum (Min), 
maximum (Max), median 
(Med), and average (Ave) 
streamflow values (source: 
SNIRH 2021)

Station Drained 
area  (km2)

Period of records % of records Streamflow  (m3  s−1)

Min Max Med Ave

Couto de Andreiros 244.5 1 Oct 1963–15 Sep 2021 71 0 131.1 0.05 1.6
Figueira e Barros 889.8 20 Dec 1985–30 Sep 1990 100 0 147.3 0.13 2.3
Monforte 141.5 1 Oct 1961–20 Oct 2020 62 0 121.7 0.03 0.9
Ponte Vila Formosa 664.8 1 Nov 1979–6 Mar 2019 54 0 272.8 0.63 3.8
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using public and free tools (Keras, Chollet et al. 2015; Ten-
sorFlow, Abadi et al. 2016; KerasTuner, O’Malley et al. 
2019; Pandas, McKinney 2010; Scikit-learn, Pedregosa 
et al. 2011). A detailed description about the develop-
ment of the 1D-CNN model is presented in Oliveira et al. 
(2023). In that study, the authors carried out a set of exper-
iments where three different neural network models were 
tested for streamflow estimation, as well as several com-
binations of precipitation and air temperature values. The 
models’ structures and hyper-parameters were optimized 
and tuned using six different training algorithms. Also, the 
batch size and the number of epochs were optimized. The 
best solution for streamflow estimation was obtained with 
a 1D-CNN model composed of one input 1D convolutional 
(1D-Conv) layer with 16 filters, a kernel size equal to 1, 
and an output dense layer activated by a linear function. 
Between them, two 1D-Conv layers, each having 32 filters 
and a kernel size of 8, were applied. After each 1D-Conv 
layer, a MaxPooling1D layer with pool_size set to 2 was 
placed. The Nadam optimizer was the training algorithm 
with the best performance combined with a learning rate 
of 1 ×  10–3 and a ε (constant used for numerical stability) 
of 1 ×  10–8. The batch size and the number of epochs were 
20 and 200, respectively. Finally, the input variable was 

the daily precipitation values accumulated in 1, 2, 3, 4, 
5, and 10 days and delayed in 1, 2, 3, 4, 5, 6, and 7 days.

The CNN model was tuned, trained, and validated consid-
ering the streamflow values available in Ponte Vila Formosa 
station (30% of the Maranhão watershed) for the period 
from 01/01/2001 to 01/01/2009. The model performance 
was considered good, reaching a Nash–Sutcliffe Efficiency 
(NSE) of 0.86, a coefficient of determination  (R2) of 0.87, 
a percent bias (PBIAS) of 10.5%, and a root-mean-squared 
error (RMSE) of 4.2  m3  s−1 for the test dataset. Thus, in this 
study, the same 1D-CNN model was used by considering the 
precipitation of the entire Maranhão watershed instead of the 
sub-basin’s data as in the original version.

Input variables for 1D‑CNN model

The precipitation data used to train the 1D-CNN model were 
obtained from the ERA5-Reanalysis dataset (Hersbach et al. 
2017). This is a gridded product with a resolution of 31 km 
and an hourly timestep, making it an appropriate option for 
the implementation of the physically based model, which 
requires sub-daily precipitation in small watersheds like 
Maranhão. Precipitation data were extracted from the dataset 
considering all the cells within the limits of the watershed. 

Fig. 2  Monthly distribution of 
streamflow in the four hydro-
metric stations (source: SNIRH 
2021)

Fig. 3  Monthly pattern of stored 
volume in Maranhão reservoir 
(source: SNIRH 2021)
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Precipitation hourly values were then averaged within the 
watershed area and accumulated each day from 01/01/2001 
to 31/12/2009. The daily precipitation values in the water-
shed accumulated in 1, 2, 3, 4, 5, and 10 days and delayed 
in 1, 2, 3, 4, 5, 6, and 7 days were considered. The average 
annual precipitation for the period considered in this study 
was 575 mm, with July (3 mm) and August (8 mm) present-
ing the minimum monthly values, and October (104 mm) 
and November and December (both with 67 mm) the months 
when more precipitation was registered.

Estimation of Maranhão inflow with 1D‑CNN

The Maranhão reservoir’s daily inflow was estimated consid-
ering the daily precipitation in the corresponding watershed 
and the trained 1D-CNN model. However, because of the 
intrinsic random behavior verified in randomly initialized 
neural networks (Duan et al. 2020; Alzubaidi et al. 2021), 
the 1D-CNN model was trained 100 times. Those 100 runs 
were performed using the same dataset and division into 
training, validation, and test datasets presented in Oliveira 
et al. (2023). After each run, the results were compared and 
evaluated considering the observed streamflow in Ponte 
Vila Formosa station. Based on the statistical evaluation, 
the model with the best performance was selected.

The selected 1D-CNN model was then exposed to Mara-
nhão watershed daily precipitation, with results represent-
ing the daily surface flow generated in the watershed and 
flowing to the Maranhão reservoir. Those daily values were 
then aggregated by month and transformed into volume. The 
estimated monthly volume that reached Maranhão reservoir 
was incorporated into the reservoir mass balance to estimate 
the stored volume in the following month. The validation of 
inflow values was made through the comparison of estimated 
stored volumes and the corresponding observed values.

MOHID‑Land model description

MOHID-Land is an open-source hydrological model, with 
the code available in an online repository (github.com/
Mohid-Water-Modelling-System/Mohid). MOHID-Land 
(Trancoso et al. 2009; Canuto et al. 2019; Oliveira et al. 
2020) is a fully distributed and physically based model. Con-
sidering the mass and momentum conservation equations 
and a finite volume approach, the model simulates the water 
movement between four main compartments: atmosphere, 
porous media, soil surface, and river network. To avoid 
instability problems and save computational time, the model 
time step is variable being higher during dry seasons and 
lower in wet periods when water fluxes increase.

According to his finite volume approach, the domains 
in MOHID-Land are discretized by a regular grid in the 
surface plane and by a Cartesian coordinate system in the 

vertical direction. The land surface considers a 2D domain 
to simulate the water movement, while the porous media 
is represented by a 3D domain, which includes the same 
surface grid and is complemented with the vertical grid 
with variable thickness layers. Additionally, a 1D domain 
representing the river network can be derived from a digi-
tal terrain model represented in the horizontal grid. The 
water lines of the river network are then delineated by 
linking surface cell centers (nodes).

The four compartments referred to before are all 
explicitly simulated, except the atmosphere which is only 
responsible for providing the data needed for imposing 
surface boundary conditions. The atmospheric data can 
be space and/or time variant, and include precipitation, air 
temperature, relative humidity, wind velocity, solar radia-
tion, and/or cloud cover.

The amount of water precipitated in each cell is divided 
into surface and subsurface flow considering the infiltration 
process and according to the soil saturation state. In this 
study, the infiltration rate (i,  LT−1) was computed according 
to the Darcy’s law

where  Ksat is the saturated soil hydraulic conductivity 
 (LT−1), h is the soil pressure head (L), and z is the vertical 
space coordinate (L).

The movement of infiltrated water in porous media was 
simulated using the Richards’ equation, which is applied to 
the whole subsurface domain and simulates saturated and 
unsaturated flow using the same grid

where θ is the volumetric water content  (L3L−3), xi repre-
sents the xyz directions (–), K is the hydraulic conductivity 
 (LT−1), and S is the sink term representing root water uptake 
 (L3L−3  T−1). The soil hydraulic parameters were described 
using the van Genuchten–Mualem functional relationships 
(Mualem 1976; van Genuchten 1980). When a cell reaches 
saturation, i.e., when soil moisture in a cell is above a thresh-
old value defined by the user, the model considers the satu-
rated conductivity to compute flow and pressure becomes 
hydrostatic, corrected by friction. The ratio between the 
horizontal and vertical hydraulic conductivities is defined 
by a factor (fh = Khor/Kver) that can also be tuned by the user.

The root water uptake was estimated considering the 
weather conditions and soil water contents. The reference 
evapotranspiration  (ETo) rates were computed following 
the FAO Penman–Monteith method (Allen et al. 1998). The 
crop evapotranspiration  (ETc) rates were then estimated by 
multiplying the  ETo first with a crop coefficient (Kc). The Kc 
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values were made to vary as a function of the plant develop-
ment stage, as follows:

where GFr, GFr1, GFr2, and  GFrLAISen are the plant growth 
fractions in the simulated instant, the initial stage, the mid-
season stage, and when the LAI senescence starts, respec-
tively, and Kc,ini, Kc,mid, and Kc,end are the crop coefficients 
during the initial, mid-season and end-season stages, respec-
tively. The plant growth stages are represented as a percent-
age of maturity heat units, and the values for GFr1, GFr2, 
and  GFrLAISen are defined in the plant growth database of 
MOHID-Land.  ETc values are then partitioned into potential 
soil evaporation  (Es) and crop transpiration  (Tc) as a function 
of the simulated leaf area index (LAI), which is computed 
using a modified version of the EPIC model (Neitsch et al. 
2011; Williams et al. 1989) and considering the heat units 
approach for the plant to reach maturity, the crop develop-
ment stages, and crop stress (Ramos et al. 2017). Following 
the macroscopic approach proposed by Feddes et al. (1978), 
root water uptake reductions (i.e., actual crop transpiration 
rates,  Ta) are computed by distributing water extractions 
along the root zone domain and are estimated considering 
the presence of depth-varying stressors, such as water stress 
(Šimůnek and Hopmans 2009; Skaggs et al. 2006). Finally, 
the actual soil evaporation is calculated from potential soil 
evaporation by imposing a pressure head threshold value 
(ASCE 1996).

The amount of water that is not able to infiltrate is trans-
formed into surface flow which is computed by solving the 
Saint–Venant equation in its conservative form, accounting 
for advection, pressure, and friction forces

where Q is the water flow  (L3T−1), A is the cross-sectional 
flow area (L2), g is the gravitational acceleration  (LT−2), 
ν is the flow velocity  (LT−1), H is the hydraulic head (L), 
n is the Manning coefficient  (TL−1/3), Rh is the hydraulic 
radius (L), and subscripts u and v denote flow directions. 
The Saint–Venant equation is solved on a 2D domain con-
sidering the directions of the horizontal grid except for the 
river network, where it is solved considering the 1D domain 
comprehending the water lines. There, the cross-section for 
each node of the river network is defined by the user.

The water changes between the river network and the soil 
surface are estimated according to a kinematic approach, 
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neglecting bottom friction, and using an implicit algorithm 
to avoid instabilities. The water fluxes between the river 
network and the porous media are driven by the pressure 
gradient in the interface of these two mediums.

Model set‑up

The MOHID-Land model was implemented using a constant 
horizontal spaced grid with a resolution of 0.006º in longitu-
dinal and latitudinal directions (⁓520 × 666 m). To cover the 
modeled domain, the grid had 140 columns and 110 rows, 
with its origin located at 38° 45′ 16.5" N and 8° 03′ 12.4" W.

Elevation data were interpolated to the MOHID-Land 
grid from the digital elevation model (DEM) provided by 
the European Environment Agency (EU-DEM 2019) and 
have a resolution of approximately 30 m (0.00028°). The 
watershed’s minimum and maximum elevations after the 
interpolation process were 107 m and 725 m, respectively 
(Fig. 4a). The delineation of the watershed and the river 
network was performed considering the cell where the dam 
of Maranhão reservoir is located as the outlet. The mini-
mum area to consider the existence of a waterline (mini-
mum threshold area) was 10  km2. Additionally, a rectangular 
geometry was chosen to represent the river cross-sections 
with width and height defined according to Andreadis et al. 
(2013). The cross-section dimensions were related to the 
drained area and were assigned to the river network accord-
ing to Table 2. For the nodes where the drained area relied 
between the values presented on the table, the cross-section 
dimensions were linearly interpolated based on the given 
information.

The CORINE Land Cover 2012, with a resolution of 
100 m (CLC 2012, 2019), was interpolated to the MOHID-
Land’s grid and was used for representing land use in the 
watershed. Each land-use class was associated with: (i) a 
Manning coefficient, which was defined according to Pestana 
et al. (2013) (Fig. 4b), and (ii) a vegetation type class con-
sidering MOHID-Land’s database (Fig. 4c).

The Kc values were defined according to Allen et al. 
(1998) for agriculture (summer and winter crops), orchard, 
pasture, and brush, while pine, oak, and forest crop coeffi-
cients were defined based on the values proposed by Corbari 
et al. (2017) (Table 3).

The Mualem–van Genuchten hydraulic parameters were 
obtained from the European Soil Hydraulic Database (EU 
Soil Database, Tóth et al. 2017). Although the database 
provides information at 7 different depths, with a resolu-
tion of 250 m, the present application only considered data 
from 0.3, 1.0 and 2.0 m depths. The porous media was 
divided into 6 layers, with a thickness of 0.3, 0.3, 0.7, 0.7, 
1.5, and 1.5 m from surface to bottom (vertical grid), with 
the maximum total soil depth of 5.0 m. These layers were 
organized according to 3 different horizons characterized 
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by the soil hydraulic properties acquired from the selected 
depths of EU Soil Database. The 2 surface layers (0–0.6 m) 
were associated with the data at 0.3 m depth, the 2 middle 

layers (0.6–2.0 m) acquired the values at 1.0 m depth, and 
the information at 2.0 m depth was representative of the 2 
bottom layers (2.0–5.0 m) (Table 4). The spatial variation of 

Fig. 4  MOHID-Land inputs for Maranhão watershed: a digital terrain 
model and watershed and river network delineation; b Manning coef-
ficient values; c types of vegetation; d identification number of the 

types of soil in surface horizon; e identification number of the types 
of soil in middle horizon; and f identification number of the types of 
soil in bottom horizon
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soil properties in the surface, middle, and bottom horizons 
are shown in Fig. 4.d, e and f, respectively, with each ID cor-
responding to a different combination of soil hydraulic data. 
The  fh parameter relating horizontal and vertical hydraulic 
conductivities was set to 10.

As for the input variables used in the neural net-
work model, meteorological data were obtained from 
ERA5-Reanalysis dataset (Hersbach et al. 2017). For the 

implementation of MOHID-Land, the meteorological 
properties incorporated were the total precipitation, air 
temperature, and dew point temperature (at 2 m height), 
u and v components of wind velocity (at 10 m height), 
surface solar radiation downwards, and total cloud cover. 
Wind velocity was adjusted from 10 to 2 m height and 
relative humidity was estimated from air and dew point 
temperatures according to Allen et al. (1998).

Table 2  Cross sections 
dimensions according to drained 
area

Drained area  (km2) Model set-up Calibration

Width (m) Height (m) Area  (m2) Width (m) Height (m) Area  (m2)

1.00 – - – 1.00 1.00 1.0
10.00 2 0.04 0.1 2.00 1.00 2.0
49.18 4.61 0.19 0.9 4.61 1.50 6.9
86.80 6.22 0.24 1.5 6.22 1.50 9.3
143.70 8.12 0.30 2.4 8.12 2.25 18.3
395.33 13.84 0.45 6.2 13.84 3.00 41.5
748.75 19.38 0.58 11.2 19.38 3.00 58.1
2577.41 37.2 0.97 36.1 37.20 4.00 148.8

Table 3  Crop coefficient values 
for initial stage (Kc ini), mid- 
(Kc mid) and late (Kc end) season 
for each type of vegetation

Type of vegetation Crop coefficient

Model set-up Calibration

Kc ini Kc mid Kc end Kc ini Kc mid Kc end

Agriculture (summer crops) 0.15 1.15 0.35 0.15 0.70 0.50
Agriculture (winter crops) 0.70 1.15 0.30 0.40 0.70 0.15
Orchard 0.40 0.90 0.65 0.30 0.60 0.40
Forest 0.15 0.80 0.15 0.60 0.60 0.60
Pasture 0.30 0.75 0.75 0.30 0.60 0.60
Brush 0.40 0.40 0.40 0.30 0.30 0.30
Pine 0.15 0.80 0.15 0.60 0.60 0.60
Oak 0.15 0.80 0.15 0.60 0.60 0.60

Table 4  Mualem–van Genuchten hydraulic parameters by soil horizon. θr, residual water content; θs, saturated water content; α and η, empirical 
shape parameters; Ks,vert, saturated hydraulic conductivity

Horizon Layers (m) EU soil database 
depth (m)

ID θs  (m3  m−3) θr  (m3  m−3) η (–) Ksat,vert (m  s−1) α  (m−1) Ɩ (–)

Surface 0–0.6 0.3 1 0.491 0.0 1.193 1.64 ×  10–6 3.47 –4.3
2 0.409 0.0 1.134 5.05 ×  10–6 7.00 –5.0
3 0.465 0.0 1.116 2.26 ×  10–5 12.84 –5.0

Middle 0.6–2.0 1.0 4 0.384 0.0 1.121 4.29 ×  10–6 7.17 –5.0
5 0.413 0.0 1.119 1.43 ×  10–6 2.27 –5.0
6 0.432 0.0 1.170 9.93 ×  10–7 3.36 –5.0

Bottom 2.0–5.0 2.0 7 0.384 0.0 1.121 4.29 ×  10–6 7.17 –5.0
8 0.432 0.0 1.170 9.93 ×  10–7 3.36 –5.0
9 0.413 0.0 1.119 1.43 ×  10–6 2.27 –5.0
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Estimation of Maranhão inflow with MOHID‑Land

MOHID-Land was directly implemented in the entire Mara-
nhão watershed, but the lack of daily inflow data at the outlet 
only allowed model calibration and validation to be performed 
at Ponte Vila Formosa. There, the estimated daily streamflow 
data were compared with the observed data, and, when model 
results are similar to the observed values with the model hav-
ing a good representation of the streamflow generation on 
that sub-basin, the calibrated parameters were assumed as 
representatives of the Maranhão watershed. Hence, the daily 
streamflow estimated by the model in the outlet section was 
considered to represent the Maranhão reservoir’s inflow and 
was transformed to monthly volume. The monthly volumes 
were then validated with a reservoir mass balance identical 
to the one presented for the validation of 1D-CNN model’s 
results.

Models’ evaluation

MOHID-Land and 1D-CNN were calibrated/trained using 
the average daily streamflow in Ponte Vila Formosa hydro-
metric station. Validation was performed with daily and 
monthly timesteps. The dataset was also divided into wet 
(October–March), and dry (April–September) periods and 
the results were validated, ignoring the division between 
calibrated/trained.

In the case of MOHID-Land, the calibration period was 
from 01/01/2002 to 31/01/2003 and the validation was from 
01/01/2004 to 31/12/2009. For the 1D-CNN model, each of 
the 100 runs was evaluated considering the same test dataset 
presented by Oliveira et al. (2023). For both models, stream-
flow estimation performance was evaluated in Ponte Vila 
Formosa station. The analysis was made with four different 
statistical parameters, namely, the  R2, the PBIAS, the RMSE, 
and the NSE
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where Xi
obs and Xi

sim are the flow values observed and esti-
mated by the model on day i, respectively. Xmean

obs and 
Xmean

sim are the average flow considering the observed and 
the modeled values in the analyzed period, and p is the total 
number of days/values in this period. According to Mori-
asi et al. (2007), a model is considered satisfactory when 
NSE > 0.5, PBIAS ± 25%, and  R2 > 0.5, while the RMSE 
represents the standard deviation of the residuals with lower 
values meaning a better model’s performance.

Maranhão reservoir’s inflow was evaluated with a 
monthly timestep, since this is the frequency of the data 
available in the reservoir. Since the models were already 
calibrated, the validation of the reservoir’s inflow was 
done for the period comprehended between 01/01/2002 
and 31/12/2009.

For the validation process, the monthly water volume 
reaching the reservoir was incorporated into a mass bal-
ance where the observed stored volume from the previous 
month and the water volume that leaves the reservoir in 
the current month were also considered

where Vi
sim represents the estimated stored volume in month 

i,  Vi-1
obs represents the observed stored volume in the previ-

ous month, VIi
sim is the volume that enters the reservoir in 

month i resulting from the simulations, and  VOi
obs is the 

observed volume that leaves the reservoir. The stored vol-
ume estimated through the water balance was then compared 
to the observed stored volume of the corresponding month.

Performance assessment was made by a visual compari-
son, and it was complemented by the estimation of the R2, 
NSE, PBIAS, RMSE, and the RMSE-observation standard 
deviation ratio (RSR)

where Xi
obs and Xi

sim are the stored volume values observed 
and estimated on month i, respectively, and Xmean

obs and 
Xmean

sim are the average stored volume in the analyzed 
period. It is important to note that the typical approach 
for inflow validation, which considers the direct calcula-
tion of inflow values from a massa balance performed in 
the resevoir, was also tested. However, about 30% of the 
inflow values estimated with that approach resulted in nega-
tive inflow. Because of that, the referred approach was not 
considered in the study.
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Results

1D‑CNN at Ponte Vila Formosa

Considering the set of 100 runs performed with the 
1D-CNN model and the precipitation of Ponte Vila For-
mosa watershed, the four statistical parameters used to 
evaluate model’s performance were calculated for each run 
and considering the test dataset. Four sets of 100 values 
were obtained. For each of those sets, the minimum, maxi-
mum, average, standard deviation, median, and 1st and 
3rd quartiles were estimated and are presented in Table 5.

A spread range of results were obtained for the statis-
tical parameters, with RMSE ranging from 1.44 to 3.13 
 m3  s−1, PBIAS from – 40 to 67%, R2 from 0.59 to 0.90, 
and NSE from 0.42 to 0.88. Although some simulations 
did not reach the minimum requirements to be classified 
as satisfactory, most of them got acceptable values, with 
the 1st quartile presenting a NSE of 0.71 and a R2 of 0.75. 
This means that 75% of the simulations had higher val-
ues for NSE and R2. However, considering the PBIAS 
results, the table shows that the value of the 3rd quartile 
was 25%, which means that a quarter of the simulations 
present higher PBIAS. In turn, the 1st quartile of this sta-
tistical parameter was – 3.5% and the minimum value was 
– 40.3%, which indicates that from the 25 simulations that 
present lower PBIAS values, a significant part of them is 
still considered as having a satisfactory behavior.

The simulation considered as the best in fitting the 
observed streamflow in Ponte Vila Formosa station pre-
sented an NSE of 0.88, a R2 of 0.88, a PBIAS of – 7.8%, 
and a RMSE of 1.44  m3  s−1 (Table 5). Although the R2 of 
this model was not the maximum presented in the table, 
the combined values of the four statistical parameters rep-
resented the best solution, since the simulation with the 
maximum R2 presented a PBIAS of 25%, which relies in 
the limit of the range for a satisfactory performance.

For an easier comparison with MOHID-Land, the four 
statistical parameters were also estimated considering the 
entire dataset, neglecting the first year (2001). Streamflow 
results show that the model outputs included negative values 
for 1.5% of the dataset. Since these negative values occurred 
in isolated days, they were replaced by simply averaging 
the estimated streamflow from the previous and the next 
days. Table 6 presents those statistical parameters, while 
Fig. 5 allows a visual assessment of model’s performance. 
Table 6 also presents the goodness-of-fit indicators when the 
simulated interval was divided into wet and dry periods and 
considering the average monthly streamflow.

When considering daily results, the 1D-CNN model dem-
onstrated a very good performance, with the NSE and R2 
reaching values of 0.65, the PBIAS being – 7.21% and the 
RMSE as 4.75  m3  s−1. Results were better when average 
monthly streamflow were considered, with NSE, R2, PBIAS, 
and RMSE of 0.87, 0.87, 2.23%, and 2.01  m3  s−1, respec-
tively. This is justified, because the estimation of the average 
monthly values smooths out the daily errors. Considering 
the dry and wet periods, the 1D-CNN model shows a much 
better performance for the wet period. With the NSE and R2 
having both values of 0.79 and a PBIAS of 8.62% for the 
wet period, the dry period obtained only an NSE value of 
0.26, the R2 decreased to 0.57, and the PBIAS presents a 
value of -53%.

MOHID‑Land at Ponte Vila Formosa

MOHID-Land’s calibration focused on a large number of 
different parameters related to the porous media, river net-
work, and plant development processes. Among them, the 
 fh factor and the soil hydraulic parameters were a calibration 
target. In the river network, the minimum threshold area, the 
cross-section dimensions, and the Manning coefficient were 
evaluated, and for the vegetation development, the  Kc for dif-
ferent stages, and maximum root depth were also subjected 
to calibration.

The best solution obtained with MOHID-Land compre-
hended a river Manning coefficient of 0.035 s  m−1/3 and 

Table 5  Goodness-of-fit indicators for 1D-CNN model in Ponte Vila 
Formosa hydrometric station

Bold values indicate Model with the best performance

NSE R2 PBIAS (%) RMSE  (m3  s−1)

Minimum 0.42 0.59 –40.30 1.44
Maximum 0.88 0.90 66.76 3.13
Average 0.74 0.78 10.21 2.07
Standard deviation 0.08 0.06 19.13 0.30
Median 0.74 0.79 9.52 2.09
1st quartile 0.71 0.75 –3.51 1.90
3rd quartile 0.79 0.82 24.89 2.21
Best model 0.88 0.88 –7.80 1.44

Table 6  Goodness-of-fit indicators for 1D-CNN model in Ponte Vila 
Formosa hydrometric station

NSE R2 PBIAS (%) RMSE  (m3  s−1) RSR (–)

Daily
Entire dataset 0.83 0.83 – 7.25 2.62 0.41

Daily
Wet period 0.79 0.79 8.62 5.77 0.46
Dry period 0.26 0.57 – 52.74 2.16 0.86

Monthly
Entire dataset 0.87 0.87 2.23 2.01 0.36
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a minimum threshold area of 1  km2. The calibrated cross-
section dimensions are presented in Table 2, being clearly 
larger than those of the model set-up. In porous media, the  fh 
adopted the value 500, while the saturated water content of 
each soil type was increased by 10%. Finally, the maximum 
root depth was 25% to 60% lower than the default values of 
MOHID-Land’s growth database.

The comparison between the streamflow values regis-
tered in Ponte Vila Formosa station and those estimated by 
MOHID-Land is presented in Fig. 6, with the correspond-
ing statistical parameters shown in Table 7. Table 7 also 
shows NSE, R2, PBIAS, and RMSE for the average monthly 
streamflow and for the division of the analyzed period into 
wet and dry seasons.

MOHID-Land’s results show the satisfactory perfor-
mance obtained with this model. It reached an NSE and an 
R2 of 0.65 for the calibration period with a slight decrease in 
the validation period (0.62 for NSE and 0.63 for R2). PBIAS 
demonstrated an underestimation of streamflow in calibra-
tion and an overestimation during validation, while RMSE 
values were similar in both periods. When considering the 

monthly aggregation, the model reached a very good per-
formance, with NSE and R2 values above 0.85 in calibration 
and validation periods. The RMSE showed a decrease in 
both periods when compared with the daily values. Finally, 
PBIAS did not suffer significant changes. During the wet 
period, the performance of the model was better than in 

Fig. 5  Comparison between 
observed and estimated 
streamflow values (using the 
1D-CNN model) in Ponte Vila 
Formosa between 01/01/2002 
and 31/12/2009

Fig. 6  Comparison between 
observed and estimated stream-
flow values (using MOHID-
Land model) in Ponte Vila 
Formosa between 01/01/2002 
and 31/12/2009

Table 7  Goodness-of-fit indicators for MOHID-Land model in Ponte 
Vila Formosa hydrometric station

NSE R2 PBIAS (%) RMSE  (m3  s−1) RSR (–)

Daily
Calibration 0.65 0.65 – 7.21 4.75 0.59
Validation 0.62 0.63 4.18 6.50 0.68

Daily
Wet period 0.61 0.63 8.67 7.87 0.63
Dry period 0.39 0.69 – 30.14 1.96 0.78

Monthly
Calibration 0.85 0.86 – 6.59 1.97 0.39
Validation 0.92 0.95 4.15 1.57 0.28
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the dry period. Although R2 showed a better value for the 
dry period, NSE and PBIAS demonstrated an accentuated 
decrease in model’s performance in that period, with the first 
going from 0.61 to 0.39 and the second indicating an overes-
timation of about 9% in wet period and an underestimation 
of about 30% in dry period.

Maranhão reservoir’s inflow

The characterization of Maranhão reservoir’s inflow 
obtained with MOHID-Land and 1D-CNN models from 
01/01/2002 until 31/12/2009 is presented in Table 8. The 
respective flow duration curves are presented in Fig. 7.

Results from Table 8 showed a very similar behavior for 
both models apart from the maximum streamflow value. In 
that case, the 1D-CNN model presented a maximum stream-
flow more than twice the maximum streamflow estimated 
by MOHID-Land. However, MOHID-Land had a slightly 
higher streamflow average. It indicates that for the middle 
streamflow values, MOHID-Land tends to overestimate 
1D-CNN model. It is also demonstrated in Fig. 7, where it 
is possible to confirm that for streamflow values with non-
exceedance probability between 0 and 0.3, higher values are 
observed for MOHID-Land.

Regarding the validation of stored volumes considering 
the reservoir’s mass balance, NSE,  R2, PBIAS, RMSE, and 
RSR were estimated for the entire period, and the results 
are presented in Table 9. Figure 7 presents the graph with 
the comparison between the two models and the observed 
stored volumes.

Results showed good agreement between both models 
and observed values. In fact, 1D-CNN and MOHID-Land 
presented very similar R2 (1D-CNN: 0.84; MOHID-Land: 
0.85) and RMSE (1D-CNN: 18.62  hm3; MOHID-Land: 
18.61  hm3) values. NSE and RSR were equal in both cases, 
while PBIAS was the parameter in which some difference 
is observed. With a PBIAS of -0.55% for 1D-CNN model 
and -1.18% for MOHID-Land model, both models were 
slightly underestimating the reservoir’s inflow. MOHID-
Land showed a higher tendency for that underestimation.

Discussion

1D‑CNN model

The 1D-CNN model had already demonstrated its adequacy 
to predict streamflow in the sub-basin of Ponte Vila For-
mosa station as demonstrated in Oliveira et  al. (2023). 
The approach presented here, where 100 simulations were 
performed with the same 1D-CNN structure, allowed to 
slightly improve the results obtained in that study. Thus, 
the best solution had an NSE and an R2 of 0.88, a PBIAS of 
– 7.80%, and an RMSE of 1.44  m3  s−1, considering the test 
dataset. Results also show that half of the 100 simulations 
obtained a NSE higher than 0.74 and/or a R2 above 0.79. 
The same number of simulations got a PBIAS lower than 
9.52%. It indicates the suitability of the developed structure 
for streamflow estimation.

The results of the 1D-CNN model are in accordance with 
the results of several authors. Barino et al. (2020) used two 
1D-CNN models to predict multi-day ahead river flow in 
Madeira River, a tributary of the Amazon River, Brazil. One 
of those models considered only the river flow in previous 
days, while the other considered that same variable com-
bined with the turbidity. Both models obtained NSE and 
R2 values higher than 0.92, while mean absolute percent-
age error (MAPE) and normalized RMSE were lower than 

Table 8  Maranhão reservoir's 
inflow characterization for 
1D-CNN and MOHID-Land 
models

Inflow  (m3  s−1)

Min Max Average First quartile Median Third quartile

1D-CNN 0 143.1 3.6 0.7 1.9 4.1
MOHID-Land 0.1 68.4 3.9 0.5 1.6 4.4

Fig. 7  Flow duration curve for Maranhão reservoir's inflow estimated 
with MOHID-Land (blue line) and 1D-CNN (red line)

Table 9  NSE,  R2, PBIAS, and RMSE values for MOHID-Land and 
1D-CNN models for reservoir’s stored volume

NSE R2 PBIAS (%) RMSE  (hm3) RSR (–)

1D-CNN 0.79 0.84 – 0.55 18.62 0.46
MOHID-Land 0.79 0.85 – 1.18 18.61 0.46
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25% and 0.20, respectively. Among the models analyzed 
by Huang et al. (2020), two CNN models were studied to 
forecast a day ahead streamflow. Considering the lagged 
streamflow values of the past 16 days in the site to be fore-
casted and in the neighborhood, a generic CNN model and a 
CNN model trained with a transfer learning procedure were 
tested. With four different locations in the United Kingdom 
being the studied, the generic CNN model obtained MAPE 
values between 14.36% and 41.95%, while the MAPE of the 
other CNN model laid between 12.29% and 32.17%. Duan 
et al. (2020) considered the watersheds within the Catchment 
Attributes for Large-Sample Studies (CAMELS dataset), in 
California, USA, to test a temporal CNN model. The model 
was developed for long-term streamflow projection and con-
sisted of a one-dimensional network that used dilated causal 
convolutions. As input variables, authors elected precipita-
tion, temperature, and solar radiation and tested different 
time window sizes to delay the values. After performing 15 
runs for each watershed in the CAMELS dataset, the average 
NSE was 0.55, while the average NSE for the best run over 
all basins was 0.65. Finally, a CNN model was employed 
by Song (2020) to estimate daily streamflow in Heuk River 
watershed, in South Korea. Using rainfall, runoff, soil map, 
and land-use data, authors generated a hydrological image 
based on curve number method to feed the neural network 
and estimate streamflow in the watershed. Model evaluation 
resulted on a coefficient of correlation of 0.87 and a NSE 
of 0.60.

Usually, in machine learning methods, better results are 
verified when antecedent streamflow is considered as a 
forcing variable (Barino et al. 2020; Khosravi et al. 2022). 
However, when the model is used in the simulation of future 
scenarios or periods when no observed data are available, 
the antecedent streamflow values to feed the model are those 
already calculated by the model in the previous iterations. 
Consequently, the propagation and exacerbation of errors in 
the estimates can lead to a degradation of the results in the 
long-term. There are also other types of machine learning 
methods for streamflow estimation emerging in the last few 
years. For instance, Si et al. (2021) considered a graphical 
convolutional GRU model to predict the streamflow in the 
next 36 h hours, while Szczepanek (2022) used three differ-
ent models, namely, XGBoost, LightGBM, and CatBoost, 
for daily streamflow forecast. Additionally, hybrid solutions 
considering different machine learning algorithms, such as 
Di Nunno et al. (2023) and Yu et al. (2023), are becoming 
widely used and with improved results.

MOHID‑Land model

MOHID-Land daily results demonstrated to be satisfactory. 
With an NSE and an R2 higher than 0.62 and 0.63, respec-
tively, and a PBIAS between – 7% and 4%, and an average 

RMSE of 5.6  m3  s−1, these results were substantially better 
than those presented by Almeida et al. (2018) for the same 
study area. Using Soil Water Assessment Tool (SWAT), the 
authors compared the daily streamflow also in Ponte Vila 
Formosa station. They obtained an NSE, an R2, a bias, and 
an RMSE of – 3.05, 0.31, 2.93, and 12.61  m3  s−1, respec-
tively, for the calibration period. For the validation, the NSE 
was 0.11, the R2 was 0.24, and the bias and RMSE were 
– 0.46 and 15.21  m3  s−1, respectively. Almeida et al. (2018) 
also made a daily comparison in Moinho Novo hydrometric 
station, which is located in Montargil watershed and is very 
similar to Maranhão watershed sharing boundaries between 
them. For Moinho Novo station, the authors obtained for 
calibration and validation periods, respectively, an NSE of 
0.22 and 0.39, an R2 of 0.41 in both cases, a bias of 0.90 and 
– 1.07, and an RMSE of 13.1 and 16.6  m3  s−1. Bessa Santos 
et al. (2019) estimated the daily streamflow in Sabor River 
watershed, placed in Northeast Portugal and with an area of 
3170  km2. Using SWAT model, they compared the modeled 
and observed river flow values and the results reached an 
NSE of 0.62 and 0.61 for calibration and validation peri-
ods, respectively, and a R2 for those same periods of 0.63 
and 0.80. The PBIAS was 2.7% for calibration and -24% 
for validation, while RSR for calibration and validation was 
0.62 and 0.63, respectively. Considering Pracana watershed, 
located in Central Portugal, Demirel et al. (2009) also used 
SWAT model to predict daily streamflow. Authors classified 
the model as having a poor peak magnitude estimation.

Considering the monthly values, MOHID-Land’s perfor-
mance increased substantially when compared with the daily 
values. The results reached an NSE of 0.85 and 0.92 and a 
R2 of 0.86 and 0.95 for calibration and validation periods, 
respectively. PBIAS and RMSE also demonstrated the very 
good behavior of the model. Those parameters obtained very 
good results for the calibration and validation periods, with 
PBIAS indicating a slight underestimation during calibration 
(-6.59%) and an overestimation (4.15%) during validation, 
and the RMSE being about 2  m3  s−1 for both periods. In line 
with this work, Brito et al. (2018) used SWAT for long-term 
forecasts of monthly Enxoé reservoir’s inflow. With that 
watershed located in South Portugal and draining an area of 
60  km2, authors reached an NSE of 0.78 and an R2 of 0.77. 
Almeida et al. (2018) also presented a monthly analysis for 
Ponte Vila Formosa station, with SWAT obtaining an NSE 
of – 1.26 and 0.40 for calibration and validation periods. 
For calibration and validation, respectively, R2 reached val-
ues of 0.58 and 0.54, the bias was 2.97 and – 0.42, and the 
RMSE 6.04 and 5.93  m3  s−1. Ponte Vila Formosa streamflow 
was also modeled by van der Laan et al. (2023) with SWAT 
model. They obtained an NSE, an R2, and a PBIAS for cali-
bration period of 0.76, 0.77, and – 7.1%, respectively. For 
the validation period, the NSE was 0.89, the R2 was 0.9, and 
PBIAS was 15%.
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The comparisons presented above allowed to conclude 
that MOHID-Land’s performance is in line with the other 
studies carried out in Portuguese watersheds for daily 
streamflow estimation. The exception was the study per-
formed by Almeida et al. (2018) where the simulation of 
the same sub-basin that was being modeled here obtained a 
much poorer performance there. When monthly streamflow 
was considered, MOHID-Land’s performance surpassed the 
results obtained with SWAT model for the same or identical 
sub-basins. The difference in the performance of the models 
is justified by the fact that SWAT is more empirically para-
metrized than MOHID-Land. For instance, MOHID-Land 
explicitly estimates the infiltration and porous media fluxes 
based on Darcy’s law and Richards equation, respectively, 
with the remaining water transformed into surface runoff 
where fluxes are estimated based on Saint–Venant equation. 
On the other hand, in SWAT, a baseflow factor, which is 
a direct index of groundwater flow response to changes in 
recharge, or a surface runoff lag coefficient to control the 
fraction of the total available water that will be allowed to 
enter the reach on 1 day, needs to be defined. The empirical 
parametrization of some processes prevents a more accurate 
representation of reality, leading to more errors in estimates 
and the degradation of the overall performance, especially 
beyond the period of calibration.

Nonetheless, MOHID-Land has its own limitations. In 
one hand, the implementation effort is significatively high, 
with several parameters needing to be defined, such as the 
six hydraulic parameters of all the soil types, the crop coef-
ficients for each type of vegetation, the surface and the river 
Manning coefficients, and others. The high number of input 
data, parameters, and variables that the user should define 
conduces to an extremely high number of parameters that 
can be calibrated, which can be time-consuming. A con-
sequence of this is reflected in the number of simulations 
performed to reach the best solution. In this study, more 
than 70 simulations were made to test the sensitivity of the 
MOHID-Land to other parameters than those studied by 
Oliveira et al. (2020), and to obtain the combination that 
allows a good fit between modeled and observed streamflow. 
On the other hand, the empirical representation of parts of 
the hydrological processes or the generalization of some 
parameters can make the representation of the modeled sys-
tem difficult, leading to values of the calibrated parameters 
outside the normal ranges. That condition is here verified 
with the crop coefficients calibrated for the summer and win-
ter crops, which are considered too low.

Models’ comparison

Overall, the 1D-CNN model demonstrated a better perfor-
mance than MOHID-Land model for daily streamflow esti-
mation in Ponte Vila Formosa station. However, when the 

results are aggregated by month, MOHID-Land’s perfor-
mance surpassed the 1D-CNN results.

Focusing on wet and dry periods, it is interesting to ver-
ify that the results of both models complement each other. 
If on one hand, the 1D-CNN obtained a performance for 
the wet period better than that obtained by MOHID-Land, 
on the other hand, during the dry period, MOHID-Land 
demonstrated a better performance. Thus, in the first case, 
both models achieved satisfactory performances, but the 
1D-CNN, with an NSE and R2 of 0.79, was better than 
MOHID-Land, which obtained an NSE of 0.61 and an R2 
of 0.63. In the second case, the dry period, both models 
experienced a decrease in their performances, but MOHID-
Land, with an NSE of 0.39 and an R2 of 0.69, performed 
better than the 1D-CNN model, which obtained an NSE of 
0.26 and an R2 of 0.56. These results put in evidence the dif-
ficulty of MOHID-Land in estimating the peak flow events, 
but also a better ability to simulate the transitions between 
the wet and dry periods when compared to the 1D-CNN. It 
can also be verified in Figs. 5 and 6, where the results for 
MOHID-Land demonstrate a more natural behavior than 
those obtained for 1D-CNN model.

The more irregular behavior of 1D-CNN model is in part 
justified by the fact that these types of models have not a 
physical basis, which means that the streamflow estimation 
does not consider physical laws or limitations. This charac-
teristic of neural network models also justifies the difficulty 
in avoiding the existence of negative streamflow values. 
Although other authors did not refer to this issue, it was 
verified in this study and should not be ignored, since it can 
limit the application of the model.

Models’ extension to Maranhão watershed

The streamflow estimated by the extension of 1D-CNN and 
MOHID-Land models to the entire Maranhão watershed 
was made by the adaptation of the trained and calibrated 
models to that watershed. Thus, the 1D-CNN presents a 
maximum inflow value substantially higher than the maxi-
mum predicted by MOHID-Land, which is related to the 
fact that MOHID-Land demonstrated some difficulty in 
reproducing peaks flow (Table 8). The remaining statis-
tics are similar between both models, with the minimum 
streamflow near 0  m3  s−1, the average is between 3.6 and 3.9 
 m3  s−1, and the median is 1.9 and 1.6  m3  s−1 for 1D-CNN 
and MOHID-Land.

The evaluation of the inflow values based on the mass 
balance at the reservoir scale showed a very good perfor-
mance when using 1D-CNN and MOHID-Land (Table 9). 
Both models have NSE and RSR of 0.79 and 0.46, respec-
tively. R2 is 0.84 for 1D-CNN and 0.85 for MOHID-Land 
and the RMSE is 18.6  m3  s−1 for both models. The higher 
difference in the statistical parameters is in the PBIAS with 
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the 1D-CNN underestimating – 0.55% and the MOHID-
Land also presenting an underestimation, but a little higher, 
of about – 1.18%. Visually, it is also possible to verify 
slight differences between the stored volume estimated with 
inflow from 1D-CNN model and from MOHID-Land model 
(Fig. 8), with the main differences occurring in the wet sea-
son (October–March).

In a similar approach but considering the continuous 
simulation of the stored water in two reservoirs included 
in the same modeled watershed, Rocha et al. (2020) found 
identical results. Using SWAT model to Monte Novo and 
Vigia reservoirs, in South Portugal, the authors validated the 
stored volume of both reservoirs with a monthly timestep, 
obtaining an NSE of 0.44 and a PBIAS of 6.3% for Monte 
Novo reservoir and an NSE of 0.70 and PBIAS of 10.1% for 
Vigia reservoirs.

In this case, models were extended to an ungauged water-
shed, which physical characteristics and the rainfall regime 
are similar to those verified in the sub-basin where the mod-
els were trained or calibrated. In that sense, the question that 
arises from this study is about the behavior of this expand-
ing approach when larger watersheds, marked by diversi-
fied characteristics and rainfall regimes, are the target of 
the study. In those cases, the calibrated parameters cannot 
be representative or even represented in the expanded area, 
for the typical hydrological models, or the differences in the 
rainfall regime when considering the expanded area can-
not be correctly related with the runoff values, which was 
already referred to by Parisouj et al. (2020).

Finally, it is important to note that several sources of 
uncertainty are involved in modeling Ponte Vila Formosa 
watershed, but also in expanding the optimized models to 
the entire watershed. Besides difficulties in correctly con-
sidering the differences between monitored and unmoni-
tored areas, models also have their own uncertainty. On one 
hand, the limitations of model developers and users in cor-
rectly representing real systems through the structure of a 

hydrologic model and approximations made by numerical 
methods result in residual model errors and, therefore, in 
model output uncertainties (Loucks and van Beek 2017). 
However, the attempt of improve the representation of reality 
through the increase of model complexity results in add-
ing the cost of data collection and may also introduce more 
parameters needing to be defined, which can then result in 
more potential sources of error in model output. On the other 
hand, Gal and Ghahramani (2016) focused on the high levels 
of uncertainty when using deep learning tools for regression 
and classification, even with simple modeling structures. 
In that sense, further investigation should be carried out 
concerning the expansion of both models and the involved 
uncertainty. For a better understanding, for example, several 
instances of the same model, with slight but coherent dif-
ferences in the parametrization, can be taken into account, 
with the calculation of the streamflow resulting from the 
combination of those instances and considering the estima-
tion of confidence intervals.

Conclusions

The proposed approach showed the adequateness of imple-
menting a 1D-CNN model and a physically based model 
for estimating daily streamflow generation at the outlet of 
an ungauged watershed after prior calibration/validation 
of those models in a sub-basin of the same catchment. 
Considering the sub-basin modeling, the 1D-CNN model 
demonstrated a better performance than MOHID-Land 
when considering the daily values and the wet period. 
The MOHID-Land model showed a better performance 
in estimating streamflow values during dry periods and 
for a monthly analysis. When the validation of the reser-
voir mass balance was considered, the results showed an 
identical behavior for both models, with only a slight dif-
ference in the PBIAS. That difference indicates a smaller 

Fig. 8  Comparison between 
observed stored volume (black 
line) and stored volumes esti-
mated considering the stream-
flow simulated by MOHID-
Land (blue line) and 1D-CNN 
model (red line)
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underestimation of inflow by the 1D-CNN than that esti-
mated by MOHID-Land.

Although the results were considered from satisfactory 
to very good in all the steps taken during the validation pro-
cess, the generation of negative values by the 1D-CNN is 
of concern. In that sense, the model presented here should 
be a target of improvement in future applications. In turn, 
MOHID-Land model revealed a lower performance for daily 
streamflow estimation, but its physical basis contributes to 
avoiding unpredictable and incomprehensible results.

Finally, it is worth noting that neural network models are 
developed and trained for present and/or past conditions, and 
their application to future scenarios can be limited. Also, the 
prediction of events that go beyond the observations can be 
problematic. This limitation is mainly related to its lack of 
capacity to absorb information about future conditions in 
cases where neural networks were not prepared to be forced 
by variables that include the impact of those future changes. 
Nonetheless, the changes in future conditions can be easily 
imposed in physically based models, with the main prob-
lems being: (i) the detail of the characterization of future 
conditions, that most of the time is too coarse for the detail 
adopted on physical models; and (ii) the high computational 
time needed to run long-term simulations, usually performed 
in analysis of future scenarios. Thus, hybrid solutions, com-
bining different types of models or different models, can be 
used to incorporate the predicted changes in neural network 
models.
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