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Abstract
Pyrite  (FeS2) is one of the most abundant sulfides on Earth and has already been studied in numerous ways for decades 
because of its rapid oxidation and the associated environmental impacts. This study proposes a new experimental physico-
chemical approach (air, tridistilled water and water drip exposure) to determine the oxidation rate of pyrite using surface 
and depth data via XPS (X-ray Photoelectron Spectroscopy) analyses. Our experimental study of almost pure pyrite reveals 
a maximum oxidation rate of 11.7 ± 1.8 nm  day−1 for drip exposure with precipitation of sulfates or Fe-oxides depending 
on the experimental condition. The oxidation rates obtained under various experimental conditions may be extrapolated to 
weathering rates of different zones of supergene profiles/ores (leached zone, saprolite and cementation zone). The extrapola-
tion suggests a maximum rate of 4.3 ± 0.6 m  Ma−1, which is consistent with data obtained by isotope dating of weathering 
profiles. Under geological conditions however, the oxidation rate of pyrite may be influenced by additional parameters, 
such as the nature of the host rock, its porosity/permeability, the climate, the influence of an oxidizing environment, and the 
mineralization of secondary minerals.
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Introduction

Mining and mineral processing are critical components of 
metal producing industries. These have grown considerably 
over the last few decades, thanks to advancing technolo-
gies that require more specific metals. Consequently, they 
generate huge amounts of waste that can lead to acid mine 
drainage (AMD) all over the world (Kefeni et al. 2017; Park 
et al. 2019; Nyström et al. 2021). During AMD, metals 

are typically released through leaching of sulfides (mostly 
pyrite), by meteoric water, which oxidize and release sulfuric 
acid. In addition to the acidity, the leached fluids frequently 
contain trace elements that can be toxic to ecosystems and/
or humans (Nyström et al. 2021). Pyrite oxidation can be 
described by several chemical reactions depending on the 
oxidation conditions (Eqs. 1 and 2), in humid air (Eq. 3) and 
under anaerobic conditions (Eq. 4) (Garrels and Thompson 
1960; McKibben and Barnes 1986; Jerz and Rimstidt 2004; 
Neculita et al. 2007). The release of  Fe2+ ions can also lead 
to formation of  Fe3+, which also increases the acidity (Eq. 5) 
(Nordstrom 1982). The role of bacteria in the AMD process 
with formation of thiosulfate is illustrated in Eqs. 6 and 7 
(Melashvili et al. 2015):

(1)FeS2(s) +
7∕2O2(aq)

+ H2O → Fe2+ + 2SO2−
4

+ 2H+

(2)
FeS2(s) +

15∕4O2(aq)
+ 7∕2H2O → Fe(OH)3(s) + 2SO2−

4
+ 4H+

(3)FeS2(s) +
7∕2O2 + H2O → Fe2+ + 2SO2−

4
+ 2H+
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The oxidation of pyrite has already been modeled 
extensively, providing various oxidation rates (McKib-
ben and Barnes 1986; Nicholson et al. 1990; William-
son and Rimstidt 1994; Jerz and Rimstidt 2004; Lapakko 
and Antonson 2006). These models are mainly based on 
the specific surface area of pyrite: the surface reaction 
rate is calculated as the amount of change in reactants 
or products divided by the total surface area of pyrite. 
Here, we performed new experiments on the evolution of 
pyrite at depth under various conditions using XPS (X-ray 
photoelectron spectroscopy) in order to propose an anal-
ogy with the evolution of weathering profiles. This study 
deals with almost pure pyrites that are similar to the syn-
thetic pyrites sometimes used for the mentioned models; 
our studied samples remain natural to simulate natural 
conditions. Our experimental results will be extrapolated 
to describe the evolution of pyrite in geological weather-
ing profiles, their rate depending on several factors dis-
cussed in this article. The formation rate of these weath-
ering profiles, which can be of economic interest, has 
already been estimated by isotope dating methods (e.g., 
Vasconcelos and Conroy 2003; Braun et al. 2012; De Put-
ter et al. 2015), which will be compared to those provided 
experimentally in this study.

Geological settings

Geology of Mons Basin

Pyrite samples were collected in the Danube–Bouchon 
quarry (Hautrage, Belgium), in the mining Wealden facies 
sediments of the Mons Basin (Fig. 1A). The Mons Basin is 
a geological unit almost 40 km long and 10 km wide on the 
NE edge of the Anglo–Paris basin. Its formation is the result 
of a combination of deep karstic and tectonic subsidence 

(4)FeS2(s) + 14Fe3+ + 8H2O → 15Fe2+ + 2SO2−
4

+ 16H+

(5)Fe2+ + 1∕4O2 +
5∕2H2O → Fe(OH)3 + 2H+

(6)2FeS2 + H2O + 1.5O2 → 2FeOOH + 4S0

(7)4S0 + 4OH−
→ 2HS− + S2O

2−
3

+ H2O

caused by the partial dissolution of thick levels of anhy-
drites and the reactivation of ante-Cretaceous faults at an 
extensive regional context (Dupuis and Vandycke 1989; 
Vandycke et al. 1991; Spagna et al. 2011). The rocks of 
the Mons Basin consist of Meso–Cenozoic sediments, all 
unconformably deposited on the Paleozoic basement that 
has been folded and faulted during the Variscan orogeny 
(Marlière 1954). In the Mons Basin, the Wealden facies 
sediments are the products of continental erosion ranging 
from middle Barremian to late Albian (Schnyder et al. 2009; 
Yans et al. 2010).

Danube–Bouchon quarry

The Danube–Bouchon quarry (city of Hautrage) exploits 
the Wealden facies sediments of the Hautrage Clay Forma-
tion (HCF), which are mainly used for the manufacture of 
refractory materials and concrete. The HCF forms layers and 
lenses of a thickness of a few decimeters to several meters, 
with grain sizes ranging from clay to sand, hosting many 
plant fossils (Barral et al. 2016, 2017). The deposit is strati-
fied with a direction from N95° E to N105° E, and a dip of 
10°–25° (Yans 2007). These sediments are interpreted as a 
fluviatile environment (Spagna et al. 2012).

The HCF (~ 230 m thick) is divided into 9 different zones 
from bottom to top (Fig. 1B) (Spagna et al. 2011, 2012): 
(i) approximately 85 m of reddish clay facies with siderite 
 (FeCO3) nodules (units A to C); (ii) white, greyish, blueish, 
brownish or black clays intersected by lenses of sand and 
levels of pyritized plant debris of a total thickness of 112 m 
(units D to G); (iii) 35 m of sandy, sometimes conglomeratic 
sediments with some clayey intercalations that are rich in 
plant debris (units H and I). Only the upper units (E to I) are 
still visible in the Danube–Bouchon quarry (Yans 2007). 
The mineralogy of clays of HCF is mainly characterized by 
illite, kaolinite, chlorite and various mixed-layers minerals 
(Yans et al. 2010). A black clay level (Fig. 1C, D), rich in 
wood debris and pyrite, is observed in the upper zone of 
unit G (Fig. 1E). Yans (2007) suggests that the formation of 
pyrite in HCF is related to organic debris being epigenized 
into pyrite during early diagenesis.

Materials and methods

Sampling, experimental oxidation and chemical 
analyses

Pyrite samples (Fig. 1E) were collected from the black 
clay level of the upper zone of Unit G (HCF). The col-
lected pyrites were washed with tridistilled water directly 
after sampling to remove residual clays. A representative 
number of pyrites were analyzed by XPS to ensure that 

Fig. 1  A Simplified geological map of Mons Basin. Location of Hau-
trage and Wealden facies sediments (in black) on the northern border 
of the Basin (modified from Yans et al. 2005). B Simplified lithologi-
cal log of the Hautrage Clay Formation deposits (Spagna et al. 2011). 
C General view of the Hautrage quarry showing the black level (unit 
G). D Black clay level for pyrite sampling. E Nodular and wood-
related pyrite sampled from black clays (unit G)

◂
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they were unoxidized/fresh before starting the experimen-
tal oxidation. The pyrite nodules show cubic aggregates 
on the surface, followed by a fibroradial "crown" and a 
microcrystalline pyrite in its center (Fig. 1E). Only the 
outer cubic crystals were used for the experiment here. 
Pyrites associated with wood were not used because of 
slight or even intense oxidation (= not "fresh").

After sampling and cleaning, each pyrite was num-
bered and exposed to various experimental conditions: 
(i) air (20 samples); (ii) tridistilled water (15 samples); 
(iii) or exposure to a continuous water drip simulating a 
flow (25 samples). The lab conditions were as follows: 
atmospheric pressure (1 bar), humidity between 45 and 
55%, temperature between 19 and 23 degrees Celsius. 
Tridistilled water (Milli-Q) has a low conductivity (5.4 
µS/cm) and pH ~ 5.8 (mostly dissolved  CO2), which is 
similar to rainwater pH but lacking solubilized elements.

For the drip exposure we used an  ISMATEC© Perstal-
tic Ecoline VC MS/CA 8/6 pump with 8 tubes of Isma-
prene (0.51 mm diameter) connected to a tridistilled water 
tank of 50 L (ESM1). Each tube simulates a non-perma-
nent flow (0.1 ml/min) over the pyrite. For each type of 
experiment (air, water, drip exposure), oxidation is ana-
lyzed at different points in time, from t = 0 to 10,000 h. 
To stop the oxidation process at a given time, the samples 
are removed from the exposure system and placed in a 
vacuum chamber at a pressure of  10–7 mbar, waiting for 
XPS measurements. For each sample, at least one surface 
and one depth measurement were performed on a planar/
smooth surface (cubic grains).

Chemical analyses were carried out by Activation 
Laboratories Ltd. (Actlabs, Canada). Major elements 
were identified with the help of FUS–ICP (Fusion Induc-
tively Coupled Plasma Optical Emission Spectrometry) 
while the reduced iron (FeO) was determined by titration. 
Trace elements were analyzed by FUS–MS (Mass Spec-
trometry) while S was measured using the IR method 
(Infrared).

XPS surface and depth‑profile analyses

XPS measurements were performed using a K-alpha spec-
trometer (Thermofisher), equipped with a monochromatic 
Al Kα source (1,486.6 eV) with a spot size of 300 µm. The 
Thermo Avantage software was used for data processing. 
Survey and high-resolution spectra were calibrated with  C1s 
with an energy step of 1.0 and 0.1 eV, and a pass energy 
of 200 eV and 20 eV respectively. Spectra recorded during 
the depth profiles were measured using the so-called snap-
shot mode. This mode allows to acquire faster profiles with 
sufficient energy resolution to separate sulfate and sulfide 
peaks. The sputtering was performed using  Ar+ ions with 
an energy of 2 keV and a raster size of 1.5 × 1.5  mm2. A 
flood gun with combined electron and low energy ions was 
also used during analysis to prevent surface charging. The 
depth profile analysis consists of several sputtering steps 
ranging from 5 to 30 s, depending on the total profile time 
to be reached. After each sputtering step, measurements of 
S 2p, Fe 2p3/2, O 1s,  Si2p and  C1s were performed using a 
snapshot acquisition. For S 2p and Fe 2p3/2 spectra, the 
different peaks and binding energies associated with pyrite 
and oxidation products are listed in Table 1.  Ar+ sputtering 
can slightly affect the structure of the pyrite to form some 
Fe–S-type surface species resulting in a small flat peak at 
708.8 eV (Karthe et al. 1993), which is, however, negligible 
compared to the induced oxidation processes and which can 
be easily discerned from the oxidized species formed (sul-
fates and Fe-oxides).

The sputtering rate was evaluated by measuring the depth 
of the crater that was left after the sputtering process on 
polished pyrite, using a DektakXT stylus profilometer by 
 Bruker© (Fig. 2A). The average sputtering rate was 0.6 nm.
s−1 and is reproducible. The applied XPS measurements 
provide exact information on the elemental composition 
of samples with an excellent depth resolution (< 10 nm). 
Despite the oxidation process being relatively slow, this 
method allows to determine the evolution of the oxidation 

Table 1  XPS binding energies 
for relevant chemical species

Species Binding 
energy 
(eV)

References Species Binding 
energy 
(eV)

References

Fe 2p3/2 S 2p
Fe(II)–S 707.4 Karthe et al. (1993) S2− 161.1 Buckley and Woods (1987)
(Pyrite) 707.1 Eggleston et al. (1996) 161.3 Pratt et al. (1994)
FeO 709.6 Mills and Sullivan (1983) S2

2− 162.5 van der Heide et al. (1980)
Fe3O4 710.8 Mills and Sullivan (1983) 162.4 Eggleston et al. (1996)
α-Fe2O3 711.0 Harvey and Linton (1981) S8 163.7 Hyland and Bancroft (1990)
α-FeOOH 711.9 Ferris et al. (1989) 163.8 Wanger et al. (1979)

712.1 Scheidegger et al. (1993) SO4
2− 169.1 Wanger et al. (1979)

168.5 (Jones et al. (1992)
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depth already within a single year in the laboratory, while 
the natural process takes place over thousands or even mil-
lions of years. Moreover, the data on chemical bonds allow 
to distinguish pyrite (Fe-sulfides) from Fe-sulfates or even 
Fe-oxides, even if they occur only in small quantities and in 
depth. However, the shortcoming of this method is its lim-
ited sensitivity (~ 0.1 at. %). Therefore, XPS cannot deter-
mine the evolution of trace elements, which were monitored 
by FUS–MS and hardly impacted the experiments.

For each depth profile, the thickness of the oxidation layer 
was derived from several characteristics: the Fe/S ratio, the 
oxygen concentration of the depth profile, and the presence 
of sulfates or oxides (mostly iron). The evolution of S, Fe 
and O concentrations of a typical XPS depth profile is shown 
in Fig. 2B. The oxygen content is never zero due to the shad-
owing effect and roughness of the sample, but it remains 
stable when no more oxidation happens (which is also 
observed for fresh pyrite). The limit of the oxidized layer 
is also characterized by a Fe/S ratio of 0.5 (Fig. 2B, etching 
time 1125 s). It should be noted that a Si signal can reveal 
the presence of a potential clay-filled (micro)fracture, which 
would affect the result. Once the limits of the oxidation layer 
are defined, the associated sputtering time is converted to 

oxidation depth by using the sputtering rate. Error bars are 
mainly caused by slight variabilities in depth profile meas-
urements, but also by the natural character of pyrite causing 
variation in experimental time periods. Thus, for a given 
time period, the error bar represents both the variability of 
the oxidation depth between samples, and the measurement 
error of the crater depth with DektakXT, which is, however, 
negligible compared to the natural variability of the sample.

Results

Chemical analyses of the outer part of the pyrite nodules 
(Fig. 1E; “crown” used for the XPS analyses) performed 
with FUS–ICP/MS are listed in Table 2. The pyrite was 
composed of 52.5 wt.% S and 45.3 wt.% Fe which corre-
sponds to a 2.018 S/Fe molar ratio. Other elements were 
poorly represented except for  SiO2 (0.61 wt.%) and  Al2O3 
(0.13 wt.%). The concentration of Ni, Ba, Mo, Cr, Zn, As 
and Cu (main trace elements) was 80, 28, 27, 20, 20, 14 and 
10 wt.ppm, respectively.

The oxidation depth results obtained by XPS for the dif-
ferent experiments (air, water and drip exposure) are shown 
in Fig. 3.

For pyrite in tridistilled water (Fig. 3A, B), initial oxida-
tion was fast but saturated at a shallow depth: 150–200 nm 
at 2000 h (y = 0.0714x, R2 = 0.88). Following this rapid 
evolution, the oxidation continued to slightly increase up 
to 10,000 h with a very gentle slope (y = 0.000690x + 162, 
R2 = 0.82), corresponding to an oxidation rate of 0.017 nm.
day−1. On the samples for the 10,000 h experiment, no sul-
fate or oxide could be noticed macroscopically (Fig. 3C) 
or by XPS: pyrite exposed to tridistilled water was macro-
scopically comparable to fresh pyrite (Fig. 1E). The pro-
gression of the pH-value of the water was also measured 
(Fig. 4) until 2,500 h, distinguishing between “pure” pyrite 
and pyrite containing low residual clay fractions from the 
HCF. The initial pH (5.8) equaled the pH of the tridistilled 
water. For "pure" pyrite the pH dropped rapidly to 3.5–4, 
then decreased less significantly and stabilized at around 
2.2–2.5 after 2,000 h. The pH values were again measured 
at 5,000 h and 10,000 h and varied between 2.2–2.4 and 
2.1–2.3, respectively, depending on the sample. This evo-
lution of the pH suggests that oxidation of the pyrite was 
slightly ongoing, which has been confirmed by XPS obser-
vations (Fig. 3A), but macroscopically undetectable.

For air exposure (Fig.  3A), initial oxidation depth 
increased rapidly during the first 2,000 h (~ 80 days) with 
a slope of 0.174 nm  h−1 (R2 = 0.97) to reach about 320 nm. 
Afterwards, the oxidation process was much slower with a 
slope of 0.0115 nm  h−1 (R2 = 0.75). For this second trend, 
data are more scattered and vary more significantly depend-
ing on the pyrite sample, resulting in larger error bars. For 

Fig. 2  A Example of a DektakXT profile and crater depth measure-
ment (ΔZ) for 3000 s sputtering. (B) Determination of the oxidation 
limit with Fe/S ratio and oxygen from XPS profile on pyrite
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these pyrites, the oxidation rate was 0.28 ± 0.03 nm.day−1. 
Iron sulfate (a whitish mineral) was macroscopically vis-
ible soon (~ 500 h, sulfate peak also observed by XPS) and 
continued to increase during the progress of the experiment 
(e.g., 5000 h, Fig. 3C). This was confirmed by XPS surface 
data with the proportion of sulfate increasing over sulfides 
(Fig. 5A). Few Fe-oxides (a blackish mineral, e.g., 10,000 h, 
Fig. 3C) were observed later, with traces already being vis-
ible after 2000 h of experiment. After 10,000 h, air-exposed 
pyrites (Fig. 3C) were macroscopically distinct from fresh 
ones (Fig. 1E).

In the drip exposure experiment (Fig. 3B), the oxidation 
depth over time was almost linear (y = 0.487x, R2 = 0.98) 
over the whole exposure time (4500 h) with a slight decrease 
of the slope at later exposure time (> 3500 h). Oxidation 
depth was close to 1000 nm after the first 2,000 h and 
reached ~ 2000 nm at 4000 h of exposure. This results in 
an oxidation rate of 11.7 ± 1.8 nm  day−1. Very quickly, a 
heterogeneous layer of Fe-oxides with few discrete sul-
fates appeared macroscopically on the surface of the pyrite 
samples (Fig. 3C, ~ 2500 h). At 5,000 h, oxidation was well 
established and almost homogeneously covered the pyrite 
surface while sulfates were almost absent. These observa-
tions were confirmed by XPS indicating the presence of 
iron oxides and pyrite at 2298 h (Fig. 5B). The almost fully 
oxidized surface at 4085 h lacked a peak of Fe–S (pyrite) 
(Fig. 5B).

Discussion

Structure and chemistry of pyrite

Natural specimens of pyrite do not have ideal chemistry 
 (FeS2) and contain small quantities of minor and trace 
elements (Co, Ni, As, …), even if in most specimen/sam-
ples the ratio of molar proportions of Fe and S is close 
to 1:2 (Abraitis et  al. 2004). For example, Doyle and 
Mirza (1996) determined the S/Fe ratio via electron probe 
microanalysis with values ranging from 1.983 to 2.015, 
which corresponds to less than 1% deviation from the 
ideal formula without considering the influence of trace 
elements. Oberthur et al. (1997) report average composi-
tions of pyrite from the Great Dyke (Zimbabwe) as 45.44 
wt.% Fe and 53.25 wt.% S (molar ratio S/Fe ~ 2.041) with 
Co and Ni as minor elements of less than 2 wt.%. How-
ever, such minor deviations from ideal stoichiometry 
could have important consequences regarding the elec-
trical properties of the mineral (Abraitis et al. 2004). In 
pyrite, lattice substitutions can be either stoichiometric or 
non-stoichiometric. Stoichiometric substitutions mainly 
result from  Co2+ and  Ni2+ replacing  Fe2+, and Se or Te 
replacing S (Abraitis et  al. 2004). The most common Ta
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non-stoichiometric substitutions in pyrite include the 
incorporation of As by substituting Fleischer (1955) and 
Vaughan and Craig (1978) found the following maximum 
contents for minor elements in pyrite: As (5 wt.%), Pb 
(5,000), V (1,000), Sb (700), Ti (600), Sn (400), Tl (340), 
Se (300), Ag (200), Au (200), Ga (100), Bi (100), Ge (50), 
Mo (30), Cd (10), In (10) and Hg (0.4) (all concentrations 
given in wt.ppm except As). Several authors (Wells and 
Mullens 1973; Huston et al. 1995; Oberthur et al. 1997; 
Large et al. 2009; Sykora et al. 2018; Steadman et al. 2021) 
determined minor and trace elements in pyrite (Table 3).

Our studied pyrite samples show an S/Fe ratio of 2.018, 
which is very close to the ideal stoichiometry. The low per-
centage of  SiO2,  Al2O3 and other oxides (Table 2) may be 
associated with very low clay contents in the microfractures/
structures of the pyrite. Moreover, the main minor elements 
(Table 3) are present in very low concentrations, indicating a 
lack of inclusions of other sulfide minerals. Thus, the stabil-
ity, and hence, oxidation rate of the pyrite samples studied 
here is only slightly or even unaffected by trace elements.

Fig. 3  Pyrite oxidation depth over time under air exposure, in tridistilled water (A, B), and under drip exposure (B). C Macroscopic evolution of 
pyrite over time in the different experiments

Fig. 4  Evolution of pH for pyrite in tridistilled water with and with-
out residual clay
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Pyrite oxidation rate: comparison and geological 
extrapolation

Pyrite oxidation rates have already been studied using mod-
eling based on specific surface area. Several authors (e.g., 
McKibben and Barnes 1986; Pesic et al. 1989; Nicholson 
et al. 1990; Moses and Herman 1991; Williamson and Rim-
stidt 1994; Holmes and Crundwell 2000; Kameia and Ohmo-
tob 2000; Jerz and Rimstidt 2004; Huminicki and Rimstidt 
2009; Wang et al. 2019; Verron et al. 2019) defined laws 
for pyrite oxidation under different experimental setups 
(Table 4). Most of these models use the specific area  (m2.
g−1) of the pyrite and therefore the surface reaction rate 
(mol.m−2.s−1) calculated by dividing the amount of change 
in reactants or products by the total surface area of pyrite. 
These equations generally apply only under precise experi-
mental conditions and are very difficult to use in geological 
applications that require extrapolation over millions of years.

Wang et al. (2019) propose a rate model that includes 
the rate of pyrite destruction and the rate of unreacted core 

shrinking. Their model assumes that a diffusion barrier 
around fresh pyrite forms as a thin layer predominantly by 
precipitation of oxides, which decreases the diffusion of oxy-
gen to the pyrite surface over time. Some other authors (Gar-
rels and Thompson 1960; Huminicki and Rimstidt 2009; 
Wang et al. 2022) also mention the presence of a thin layer 
of ferrous sulfate, iron oxides and sulfuric acid on the pyrite 
surface that delays oxygen transport. However, Manaka 
(2023) considers that the oxy-hydroxides layer do not pas-
sivate the oxidation of pyrite. In carbonated systems, the 
precipitation of gypsum or anhydrite (sulfates) with calcium 
and sulfuric acid could have two opposed effects: (i) the 
same barrier effect as mentioned above; (ii) the consumption 
of sulfates could favor pyrite oxidation (Verron et al. 2019) 
according to the Le Châtelier principle. Verron et al. (2019) 
mention that the addition of clay phases or other detrital 
silicates has no impact on pyrite oxidation rate.

Our study based on new XPS analyses provides pyrite 
oxidation rates that can be extrapolated (linear regression) 
considering that the barrier effect of sulfates (and oxides) 

Fig. 5  A XPS spectrum of sulfates and sulfides on the surface of air exposed pyrite (at 667 h and 3044 h). B XPS spectrum of Fe (pyrite or/and 
oxides) on the surface of drip exposed pyrite (at 2298 h and 4085 h)

Table 3  Range or maximum values for main minor elements in pyrite (in wt.ppm or *wt.%)

Values are in wt.ppm except for values with * that are in wt.%

Co Ni Pb Zn Cu As Sb Au

Steadman et al. (2021) 100–1* 10–0.5* 50 – – 500–1* – 50
Abraitis et al. (2004) 2.2* 0.2* 0.9* 0.9* – 9.6* 0.6* 0.3*
Oberthur et al. (1997) 1.45* 0.2* 96 9 0.2* 6
Huston et al. (1995) 590–2.16* 300–640 330–0.87* 580–0.94* 0.22*–4.52* 16–4.67* 25–0.73* 20–210
Wells and Mullens (1973) – – – – – 0.79*–9.6* 0.12*–0.56* 0.15*–0.35*
Fleischer (1955), Vaughan 

and Craig (1978)
– – 0.5* – – 5* 700 200

This study 7 80 12 20 10 14 3.7 –
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on the surface is constant and therefore, oxidation is also 
constant over time. This regression/assumption leads to an 
average oxidation rate of about 0.10 ± 0.02 m.Ma−1 under 
air exposure. The same approach applied for the data from 
the drip exposure experiment results in an oxidation rate of 
4.3 ± 0.6 m.Ma−1. However, the assumption is only valid 
with regards to the oxides’ barrier since sulfates are almost 
entirely leached. These two oxidation rates are different. In 
the case of air exposure, only the ambient humidity plays a 
role in the weathering of pyrite. Furthermore, the mineral 
phases that form on the surface (mainly sulfates) are not 
leached which probably increases the sulfate barrier effect 

mentioned by (Butler and Rickard 2000) compared to the 
drip exposure experiment. Underwater pyrite is almost 
unaffected by oxidation with values remaining below 1 cm.
Ma−1.

Although the presence of clays slightly buffered pH val-
ues in the experiment with tridistilled water during the oxi-
dation of pyrite (Fig. 4), the effect was very limited and 
vanished over time. Nevertheless, pyrite from the Dan-
ube–Bouchon quarry is embedded in clay (Hautrage Clay 
Formation), which preserved them from the oxidizing condi-
tions on the surface. Furthermore, it has already been dem-
onstrated that chlorite (Brown 1967) or even carbonates 

Table 4  Examples of laws for pyrite oxidation rates

References Oxidation rate law Unit Comments

McKibben and Barnes (1986) rPy,O2
= −10−9.77M0.5

DO

rPy,Fe3+ = −10−9.74M0.5

Fe3+
M−0.5

H+

mol  cm−2  min−1 pH 2–4, 20–40°C

Nicholson et al. (1990) rPy,O2
= �R2∕

(

R(R−r)

rDs

+
R2

r2kε

)

pH 6.7–7.5

Moses and Herman (1991) rPy,O2
= 10

−3.23
(

A

V

)

pH 6–7

Williamson and Rimstidt (1994) rPy,O2
= 10

−8.19(±0.1)M
0.5(±0.04)

DO
M

−0.11(±0.01)

H+

rPy,Fe3+ = 10
−6.07(±0.57)M

0.93(±0.07)

Fe3+
M

−0.4(±0.06)

Fe2+

mol  m−2  s−1 pH 2–10

Holmes and Crundwell (2000) rPy,O2
= k[H+]−0.18[O2]

0.5 pH 1.5–3.5

Kameia and Ohmotob (2000) rPy,O2
= 10

−5.3±0.5MDO
mol  m−2  s−1 pH 5.7 ± 0.3

Jerz and Rimstidt (2004) rPy,O2
= 10

−6.6P0.5t−0.5 mol  m−2  s−1 Neutral pH, 25°C

Verron et al. (2019) rPy = 10
−4.8PO2

0.5t−0.5

rPy+Ca = 10
−5.1PO2

0.5t−0.5

mol  m−2  s−1 100°C

Fig. 6  A Oxidation depth vs. pH evolution over time for pyrite in tri-
distilled water. B Eh–pH stability field diagram for the system Fe–S–
H2O at 25 °C. Increasing total Fe and S concentrations  (10–7–10–1 m) 

result in an increase in the extent of the  FeS2 stability field (grey) 
(Butler and Rickard 2000)
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(Descostes et al. 2002) present in the solution/rock can neu-
tralize acidic fluids, which will play a significant part in the 
regulation of the pH and the subsequent oxidation process. 
Thus, the evolution of the pH will have an impact on the 
oxidation of pyrite (McKibben and Barnes 1986; William-
son and Rimstidt 1994; Jerz and Rimstidt 2004; Wang et al. 
2019; Verron et al. 2019).

According to our data on the evolution of pH and oxida-
tion depth for pyrite in water (Fig. 6A), the first rapid oxida-
tion induces a simultaneous drop in pH and is mainly due 
to the oxygen dissolved in the water, which is consumed to 
oxidize the pyrite. Once this amount of dissolved oxygen has 
been depleted, only trace amounts of oxygen are introduced 
into the system via the exchange between the atmosphere 
and the closed plastic pot containing tridistilled water and 
pyrite. The diffusion coefficient of oxygen in water is also 
relatively low. As a result, the evolution of pyrite oxida-
tion and pH is constant but much slower (Fig. 6A), which is 
confirmed by a stability field diagram (Fig. 6B) that assumes 
that pyrite can be stable at low pH with an Eh close to zero 
(Butler and Rickard 2000).

Consequences for weathering profiles

Our experimental data can be related to different zones of 
weathering profiles (Fig. 7). Our drip exposure experiment 
can be associated with the vadose zone, where rainfall and 
runoff oxidize and leach pyrite in laterite and saprolite parts 

of the weathering profile. Thus, the average oxidation rate 
should range between the two values we determined via 
drip (4.3 ± 0.6 m.Ma−1) and air exposure (0.10 ± 0.02 m.
Ma−1), since most regions of the world experience both 
drier and wetter seasons. Dry periods promote the formation 
of sulfates while wet periods would favor leaching and the 
development of oxidized levels. Because sulfides are stable 
below the water table level under reducing conditions, our 
observations on pyrite in water can also be extrapolated to 
weathering profiles, referring to the cementation zone (sec-
ondary sulfides) (Guilbert and Park 1986; Brookins 1988; 
Robb 2005).

Regarding pyrite oxidation rates in geological conditions, 
our results are similar to those of Lapakko and Antonson 
(2006) (Table 5). The latter authors show that pyrite oxida-
tion rates, normalized for exposed surface area, range from 
4 ×  10−10 to 18 ×  10−10 mol  m−2   s−1. If we convert their 
data, considering the molecular weight of pyrite (119.975 g 
 mol−1) and its density (5 g.cm−3), we obtain an oxidation 
rate of 1.36 m.Ma−1. This oxidation rate lies between the 
two values (air and drip exposure) observed experimentally 
in this study.

Experimentally obtained weathering rates are probably 
lower than actual weathering rates in the geological field. 
As White and Brantley (2003) have shown with a study on 
silicate minerals, the weathering rate depends on (i) intrinsic 
characteristics of the mineral/fluids, and (ii) extrinsic char-
acteristics related to the weathering environment. Intrinsic 

Fig. 7  Comparison between our experimental study on pyrite oxidation and geological weathering profiles
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effects include increased physical surface area due to sur-
face roughness, concurrent decrease in reactive surface area 
due to reduced compositional and structural heterogenei-
ties, and physical occlusion by secondary minerals (see dis-
cussion above). Extrinsic factors might have a significant 
effect but are more difficult to reproduce in the laboratory. 
In contrast to natural/geological weathering, which involves 
much lower fluid/mineral interactions over much longer time 
periods, experimental rates are measured with high fluid/
mineral ratios reacting over short periods of time. Sun et al. 
(2019) simulated an average silicate (granite) weathering 
rate of 7.0 t  km−2  y−1, which corresponds to 2.6 m  Ma−1 
(calculated with a granite density of 2.7). Other studies 
estimated weathering rates using different dating methods. 
Dequincey et al. (1999) estimated the weathering rate of 
Goyoum laterite (Cameroum) via radioactive disequilibria 

(234U/237U), based on the hypothesis that the measured dis-
equilibria represent geochemical fractionations that would 
be characteristic for the formation and evolution of laterite 
profiles. The resulting weathering rate of 6–8 m  Ma−1 is 
higher but still comparable to our experimental data con-
sidering the humid tropical climate of the area in Cameroun 
(promoting the leaching of sulfates) in addition to the fact 
that experimental data slightly underestimated geological 
values. de Oliveira Carmo and Vasconcelos (2006) studied 
grains of cryptomelane in the Cachoeira Mine weathering 
profile, Minas Gerais (SE Brazil), and estimated the weath-
ering front propagation rate, measured by 40Ar/39Ar ages, to 
be 8.9 ± 1.1 m  Ma−1, which corresponds to a saprolitization 
rate of 24.9 ± 3.1  tkm−2  y−1. Vasconcelos and Conroy (2003) 
conducted a similar study with grains of supergene jarosite, 
alunite, and cryptomelane from weathering profiles in the 

Table 5  Oxidation/weathering rate for minerals, rocks and profiles, based on various geological methods

References Oxidation/Weathering rate Comments

Mineral/Rock experiment This study 4.3 m  Ma−1 Pyrite
Lapakko and Antonson (2006) 4 ×  10−10 to 18 ×  10−10 mol  m−2  s−1

 1.36 m  Ma−1
Pyrite

Sun et al. (2019) R = 7.0 t  km−2  y−1

2.59 m  Ma−1
Silicate weathering rate—Granite

Isotopic datation on profile Dequincey et al. (1999) 6 to 8 m  Ma−1 Goyoum Laterite (Cameroun) – 
234U/238U dating

Kaolinite and Fe-(oxi)hydroxides
Humid tropical climate

de Oliveira Carmo and Vasconcelos 
(2006)

8.9 ± 1.1 m  Ma−1

24.9 ± 3.1 t/km2/year
Weathering front propagation—

40Ar/39Ar
Saprolitization rate (Cachoeira Mine, 

Brazil)
Vasconcelos and Conroy (2003) 3.8 m  Ma−1 Weathering rate—40Ar/39Ar

Dugald River area (Australia)
Braun et al. (2012) Min  2 to 10 m  Ma−1 Nsimi (South Cameroun)

Saprolite rate production (Eocene)
Braun et al. (2012)  ~ 2 m  Ma−1 Mule Hole SEW (South India)
De Putter et al. (2015)  ≥ 7.7 m  Ma−1 (≥ 100 m in 13 Ma) Kisenge Mn deposit (Katanga, DRC)

Table 6  Main factors influencing oxidation/weathering rates in geological profiles. Effect + will increase the rate of weathering profile; effect - 
will decrease the rate of weathering profile

References Parameters Effects

Fricke and O’Neil (1999), Boni and Large (2003) Climate change over time (rainfall, temperature,  CO2 in 
atmosphere, …)

 ± 

White and Brantley (2003), Choulet et al. (2014), Boni and Mondillo (2015), 
Verhaert et al. (2017), Sillitoe (2019)

Oxidizing environment  + 

Boni and Mondillo (2015), Ciantia and Castellanza (2016) Nature of the host rock for neutralization processes  ± 
Borg (2009), Choulet et al. (2014), Boni and Mondillo (2015) Faulting and fractures/porosity of host rocks  + 
White and Brantley (2003), Jerz and Rimstidt (2004), Wang et al. (2019) Secondary mineralization precipitation/occlusion –
Wilson (2004) Nature of primary mineralization  ± 
De Putter et al. (2010), Korehi et al. (2013), Vera et al. (2013) Bacteria acting as catalysts  + 
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Dugald River area (Australia) using 40Ar/39Ar dating and 
estimated a weathering rate of 3.8 m.Ma−1. These values 
correspond to our data, as other weathering rates (Table 5).

All of these weathering rates are therefore close to the 
experimental ones. However, deposits in natural systems do 
not predominantly consist of pure pyrite (or more gener-
ally sulfides). Mineral inclusions in pyrite such as galena or 
sphalerite (up to 0.9 wt.% of Pb and Zn) can occur and are 
generally associated with arsenian pyrite, which is strongly 
correlated with high contents of Au (Table 3) (Large et al. 
2009). These sulfides are embedded in a host rock with vari-
able chemical–mineralogical–petrographical compositions, 
porosities, fractures, and catalysts such as bacteria. These 
geological parameters (Table 6), as well as climate change 
over time (Boni and Large 2003), will influence the weather-
ing rate. The role of bacteria (thiosulfates) is not observed in 
our experiments but could play a role in the pyrite oxidation 
process in natural systems.

Conclusion

This study provides new experimental data on the oxida-
tion rate of pyrite, using X-ray Photoelectron Spectroscopy 
(XPS). This technique allows to measure the thickness of 
the oxidation layer under air, water or drip exposure by 
performing elemental (O, Fe, S) depth profiles. In addi-
tion, the technique detects the presence of surface minerals 
such as sulfate, sulfide or iron oxide. Pyrite in tridistilled 
water showed only a very limited rate of oxidation, as well 
as pyrite exposed to air that oxidized only slightly, show-
ing varying degrees of sulfate precipitation at the surface. 
Pyrite under drip exposure exhibited the highest oxidation 
rate at 0.28 ± 0.03 nm  day−1. By extrapolation to geological 
weathering profiles, this oxidation rate could reach up to 
4.3 ± 0.6 m  Ma−1, which is consistent to numerous studies 
based on isotopic dating. Nevertheless, various parameters 
may explain variations between experimental and geologi-
cal rates of weathering profiles, such as: (i) the nature of 
the host rock (protore) including the primary mineralogy (a 
deposit is rarely composed solely of sulfides), ii) its porosity/
permeability and fractures, (iii) the presence of an oxidizing 
or non-oxidizing environment, (iv) climate change over time, 
(v) the action of bacteria as catalysts.
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